OUR INHERITANCE IN
THE GREAT PYRAMID

THIRD AND MUCH ENLARGED EDITION
INCLUDING ALL THE MOST IMPORTANT DISCOVERIES UP TO THE TIME OF PUBLICATION

With Twenty-four Explanatory Plates
GIVING MAPS, PLANS, ELEVATIONS, AND SECTIONS

BY

Charles Piazzi Smyth, F.R.S.E., F.R.A.S.
ASTRONOMER-ROYAL FOR SCOTLAND

"BECAUSE THAT WHICH MAY BE KNOWN OF GOD IS MANIFEST IN THEM; FOR GOD HATH SHOWED IT UNTO THEM, FOR THE INVISIBLE THINGS OF HIM FROM THE CREATION OF THE WORLD ARE CLEARLY SEEN, BEING UNDERSTOOD BY THE THINGS THAT ARE MADE."

ROMANS 1. 19, 20.

LONDON
DALDY, ISBISTER & CO.
56, LUDGATE HILL
September, 1877
"David, in a choice of evils similar to these, said, 'Let me fall into the hands of the Lord, for very great are his mercies; but let me not fall into the hand of man' (1 Chron. xxi. 13). The people of England know what it is to experience somewhat of the latter calamity; and though they are bound to acknowledge that their long-protracted griefs are to be preferred to the short but severe sufferings which the nations of the Continent had to endure, they must feel, after all, that it is a deep affliction which many have had to bear. But let them with Faith and Patience endure their troubles a little longer. *Their redemption draweth nigh.*"

John Taylor's *Wealth the Name and Number of the Beast*, p. 149.
EXAMPLE OF THE CASING-STONES OF A PYRAMID, SUPER-POSED.
ON THE RECT-ANGULAR MASONRY COURSES: FROM A PHOTOGRAPH BY P.S. OF THE SUMMIT OF THE 2d PYR.

REMNANT OF THE ORIGINAL CASING-STONE SURFACE OF THE GREAT PYRAMID.
NEAR THE MIDDLE OF ITS NORTHERN FOOT. AS DISCOVERED BY THE EXCAVATIONS OF COL HOWARD VYSE IN 1857.
TO THE MEMORY OF THE LATE

JOHN TAYLOR,

GOWER STREET, LONDON

(DEPARTED JULY, 1864),

AUTHOR OF

"THE GREAT PYRAMID; WHY WAS IT BUILT, AND WHO BUILT IT?"

THE NOW THIRD EDITION OF

THIS FURTHER ATTEMPT TO APPLY ACTUAL

SCIENTIFIC EXAMINATION

TO TEST HIS

MOST MOMENTOUS THEORY,

AND MOST Precious DISCOVERY OF THE AGE FOR ALL MANKIND;

If TRUE,—

IS DEDICATED BY

THE FRIEND OF HIS FEW LAST YEARS,

BUT ADMIRER OF ALL HIS LONG AND EARNEST CHRISTIAN LIFE;

PIAZZI SMYTH.

EDINBURGH, 5th September, 1877.
"THE GREAT, THE MIGHTY GOD, THE LORD OF HOSTS, IS HIS NAME, GREAT IN COUNSEL, AND MIGHTY IN WORK: ... WHICH HAS SET SIGNS AND WONDERS IN THE LAND OF EGYPT, EVEN UNTO THIS DAY."

JEREMIAH XXXII. 18—20.
PREFACE.

When the late worthy John Taylor, publisher, of Gower Street, London (originally of Bakewell, Derbyshire), produced, first his larger work entitled "The Great Pyramid: why was it built, and who built it?" in 1859, and afterwards, in January, 1864, his smaller pamphlet, "The Battle of the Standards (of Linear Measure): the ancient of four thousand years against the modern of the last fifty years—the less perfect of the two,"—he opened up for archaeology a purer, nobler, more intellectual pathway to light than that study had ever enjoyed before.

But academic archaeology would not accept it; indeed, the whole reading world stood askance; and I can hardly now explain how it came about that something induced me, in February, 1864, to commence an independent examination of Mr. Taylor's theory, in so far as that was amenable to semi-professional studies at home; and my publication of that year (i.e. the first edition of the present book) contained the findings so arrived at. Findings, in many points, confirmatory of the principal thread of Mr. Taylor's chief and most startling discovery; but exhibiting in the general literature of the subject, and on which, unfortunately, he had been obliged to depend, a lamentable deficiency in the accuracy of almost all the numerical
data required; and which accuracy nothing but practical examination and instrumental measure at the place could hope properly to supply.

Meanwhile John Taylor died, at the age of eighty-four, and with almost his last breath emphatically confided this, the most important labour of his long life-toil, to my most unworthy hands; and yet hands not altogether unused to some of the operations next required. How, then, with little help from any one, save a single subscription volunteered by a kind friend * in Edinburgh, my wife and self did, on very scanty private means, sail for Egypt in November, 1864; and did, through a four months' residence on the Great Pyramid hill in 1865, employ a variety of surveying and astronomical instruments, in obtaining many measures of the mighty monument; some of them to far more exactness than had ever been attempted before, and others descending to numerous details unnoticed by former observers, though still leaving other large parts to the future efforts of the public or the national purse, to which alone they are amenable—all this was described by me, first in abstract to the Royal Society, Edinburgh, in April, 1866; and afterwards, in 1867, at much more length, to the world in my three-volume book, "Life and Work at the Great Pyramid in 1865."†

That last publication, from the very oppositions it called up—supercilious and uncompromising to the last degree—undoubtedly helped to spread a knowledge both of the importance of the question at issue, and the only means for solving it; especially as against the modern hiero-

* Andrew Coventry, Esq., died, much regretted, August 11th, 1877.
† Pages 1,653. Plates 36. Published by Edmonston and Douglas, now "Douglas and Foulis," Edinburgh.
glyphic scholars, the so-called Egyptologists of modern schools, who, though exceedingly learned in their way, and only too earnest cultivators of the mystical mythology of the land of Ham, and never so happy as when erecting in the museums of this Christian country, and at the public expense, some of the grossly animal-headed idol gods of the later Theban period of Egyptian history,—have never troubled themselves to examine the far more ancient, as well as purer, Great Pyramid in the plain manner now required. They, therefore, remain singularly and perseveringly ignorant of its chief mathematical proportions and most refined numerical features, the only adornments there.

Indeed, the literary Egyptologists seem rather angered than otherwise to hear, that such precise data, in merely British scientific measure, when at last collected by others than themselves, tend to establish that the Great Pyramid, though in Egypt, is not, and never was, of Egypt—that is, of their favourite idolatrous Egypt; and, also, that though built in the earliest ages of man upon earth, far before written history, the Great Pyramid was yet prophetically intended,—by inspiration afforded to the architect from the one only true and living God, who rules in heaven and earth, and who vowed vengeance against the idols of Egypt (Ezekiel xxx. 13)—to subserve a high purpose for these days in which we live and the coming days. That it, the Great Pyramid, has never been even remotely understood yet by any race of men, and least of all by Egyptian or other branch of the Cainite and anti-Israelite family of nations, though it has been a standing riddle guessed at by all of them throughout their successive ages; but that it is able nevertheless to tell its
own story and explain its grand, even Messianic future mission most unmistakably. Not, indeed, in the usual manner of less ancient monuments, by reference to, or use of, any written language, whether hieroglyphic or vulgar, but by aid of the mathematical and physical science of modern times applied to show the reasons of its ancient numbers, measures, and proportions; a means fore-ordained and most efficacious both for preventing the parable being read too soon in the history of the world, and for insuring its being correctly read, and equally by all the advanced nations, when the fulness of time shall have arrived.

This confirmation and extension of the main view arrived at by John Taylor, viz. that the world and mankind are in possession of a Monument of Inspiration, as well as a Book of Inspiration, one of them dating altogether, and the other partly, from primeval times,—brought by degrees many able and inquiring intellectualists of the mathematical and Christian, rather than the Egyptological, order into the field. And they have succeeded, and are succeeding, in demonstrating the Pyramid purpose and meaning of so many successive parts of the structure (measured by me most carefully in 1864, though in total ignorance at the time of any theoretical importance attachable to them), that if a second and amended edition of my original work was called for in 1874—much more is a third and extended edition required now, when there are so many additional discoveries by other workers to be cited. So many, indeed, even within the last three years, that the grievous imperfections of my first and solitary labours in the earlier editions become of less importance; and the world
has at last the opportunity of seeing the Great Pyramid, not, indeed, as yet fully, but much more clearly,—both by its own light, and as its inspired architect intended that it should be seen when the fifth thousand of years of its existence had begun,—than ever has been the case hitherto, within the long, long period to man, of all human history.
ERRATA.

Plate XII. The Lime-stone in upper north end of east wall is in three, not two, pieces.

Plate XXIV. Third compartment—for Etruscan read Etruscan.

P. 81, line 4 ab imo—for open read apex.
P. 82, line 8 ab imo—for 13·340 read 13,340.
CONTENTS.

PART IV.
MORE THAN SCIENCE AT THE GREAT PYRAMID

<table>
<thead>
<tr>
<th>CHAP.</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>XXVI. THE SACRED CURVIT</td>
<td>299</td>
</tr>
<tr>
<td>XVII. TIME MEASURES</td>
<td>324</td>
</tr>
<tr>
<td>XVIII. MOSES AND EGYPTIAN WISDOM</td>
<td>352</td>
</tr>
<tr>
<td>XIX. MECHANICAL DATA</td>
<td>378</td>
</tr>
<tr>
<td>XX. SACRED, AND PROPHETIC, TIME</td>
<td>414</td>
</tr>
</tbody>
</table>

PART V.
INEVITABLE CONCLUSIONS TOUCHING THE GREAT PYRAMID.

XXI. HEBROLOGISTS AND CHRONOLOGISTS	449
XXII. THE SHEPHERD KINGS	477
XXIII. SUPERIOR TESTIMONY	502
XXIV. PREPARATIONS FOR UNIVERSAL METROLOGY	523
XXV. GENERAL SUMMATION: SECULAR AND SACRED	548

APPENDICES.

APPENDIX	PAGE
I. Queen's Chamber | 586 |
II. Iron in History | 589 |
III. The Royal Society | 596 |
IV. James Simpson's Calculations | 601 |
V. Texas Letter | 608 |
VI. Alfreton Pamphlet | 611 |
VII. The Religion of Antichrist | 613 |
VIII. Perverseness of Man | 615 |

INDEX | 617 |
ILLUSTRATIONS.

(ENGRAVED BY ALEX. RITCHIE, EDINBURGH.)

Plate III. has been placed after Plate VI., and Plate XX. after Plate V., in order to illustrate more nearly the march of the argument in the subsequent pages.

The Binder is therefore requested to place the Plates in order as below; and, excepting Plate I., which is the Frontispiece, all together after page xviii.

EXTERIOR OF GREAT PYRAMID.

PLATE
I. CASING STONES OF THE GREAT AND SECOND PYRAMIDS.
II. MAP OF THE PYRAMIDS OF JEEZEH.
IV. VERTICAL SECTIONS OF ALL THE JEEZEH GROUP OF PYRAMIDS.
V. VERTICAL SECTIONS OF ALL THE RESIDUAL PYRAMIDS OF EGYPT.
XX. THE CENTRE OF THE EARTH'S LAND SURFACE IN OCCUPATION BY THE GREAT PYRAMID.

INTERIOR OF GREAT PYRAMID, EARLIER PORTION.

VI. VERTICAL SECTION OF GREAT PYRAMID AND ITS HILL.
III. GROUND PLAN OF THE GREAT PYRAMID.
VII. CHAMBER AND PASSAGE SYSTEM OF GREAT PYRAMID.
VIII. ENTRANCE INTO GREAT PYRAMID, ELEVATION AND SECTION.
IX. QUEEN'S CHAMBER, SO CALLED, IN THE GREAT PYRAMID.

INTERIOR OF GREAT PYRAMID, HIGHER AND GRANITE PORTION.

X. NORTHERN CORNER AND BEGINNING OF GRAND GALLERY IN GREAT PYRAMID.
ILLUSTRATIONS.

PLATE

XI. The Grand Gallery, Arabs ascending and descending the same.

XII. The Ante-chamber; Granite Leaf, and Boss.

XIII. King's Chamber and Neighbourhood, in Vertical Section.

XIV. King's Chamber, in Plan, and Coffin.

HISTORY AND THEORY OF THE GREAT PYRAMID.

XV. Cheops' Tomb "not" in the Great Pyramid, but as described by Herodotus.

XVI. Royal Ovals from the Tombs; and Dr. Grant's and Mr. Waller's Orders of Granite Surfaces in Great Pyramid.

XVII. Size and Shape of Great Pyramid, measured without.

XVIII. Size and Shape of Great Pyramid, from Testimony within.

XIX. Construction Hypothesis of Passage Angles in Great Pyramid.

ASTRONOMY AND ARCHITECTURE OF THE GREAT PYRAMID.

XXI. The Antediluvian Starry Skies, as seen on the Great Pyramid Principles of observing.

XXII. The Starry Skies as seen at the Great Pyramid at its Date of Foundation, 2170 B.C.

XXIII. The Starry Skies of the present time, as seen at the Great Pyramid on its Principles of observing.

XXIV. All the Chief Buildings of the World, from the earliest times to the present; exhibited in Chronological Order according to the Dates of their Erections, and on a uniform Scale as to Height.

The aspects of all these buildings were carefully drawn by me on a large scale, in pen and ink, from plates and woodcuts in the chief architectural works of the day, principally Mr. Fergusson's admirably illustrated volumes of his "History of Architecture;" and such MS. drawings were then copied on a reduced size by Mr. W. H. Davies in photolithography, and thence printed by Mr. Ritchie.

The numbers above each building have reference to a descriptive list which may be published on a future occasion.
THE THREE KEYS
REQUIRED FOR THE OPENING OF THE GREAT PYRAMID.

KEY THE FIRST.
The key of pure mathematics, as supplied chiefly in mediæval and modern times, and mostly by the labours of private philosophers in their own studies, sometimes to absolute truth, sometimes to such close approaches thereto, as to be certain up to the last figure of any fraction yet arrived at; as, for one example much used and illustrated in the Great Pyramid, the value of the circumference of a circle in terms of its diameter, \[\pi \approx 3.14159 \]

<table>
<thead>
<tr>
<th>[\pi]</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.14159</td>
</tr>
<tr>
<td>26535</td>
</tr>
<tr>
<td>89793</td>
</tr>
<tr>
<td>23846</td>
</tr>
<tr>
<td>26433</td>
</tr>
<tr>
<td>83279</td>
</tr>
<tr>
<td>50288</td>
</tr>
<tr>
<td>41971</td>
</tr>
<tr>
<td>69399</td>
</tr>
<tr>
<td>37510</td>
</tr>
<tr>
<td>56209</td>
</tr>
<tr>
<td>74944</td>
</tr>
<tr>
<td>69230</td>
</tr>
<tr>
<td>78164</td>
</tr>
<tr>
<td>08286</td>
</tr>
</tbody>
</table>
| + &c., &c.

KEY THE SECOND.
The key of applied mathematics, or of astronomical and physical science, as furnished by the latest and best approximations of all the first-class nations of the world; who have been working publicly for centuries and at a cost of millions of money, and have attained, or are on the point of attaining, an accuracy, sometimes in the second figure, sometimes in the third, fourth, fifth, or even lower figures, according to the facility in nature of the question concerned. As thus:

Polar semi-diameter of the earth = between 500,378,000 and 500,560,000 British inches.
Mean equatorial semi-diameter of the earth between 502,080,000 and 502,230,000 British inches.
Mean density of the earth between 5.3 and 5.5; the two latest determinations by powerful government institutions.
Mean distance of the earth from the sun between 91 and 93 millions of miles, British.
Obliquity of the ecliptic in 1877 A.D. = 23° 27' 17.9 to 23° 27' 19.0
Length of the solar tropical year in mean solar days = 365.24222 to 365.24224.
Precession of the equinoxes in years, = 25,816 to 25,870.

KEY THE THIRD.

The key of positive human history—past, present, and future—as supplied in some of its leading points and chief religious connections by Divine Revelation to certain chosen and inspired men of the Hebrew race, through ancient and medieval times; but now to be found, by all the world, collected in

THE OLD AND NEW TESTAMENTS.

There is no twisting, no forcing needed in using any of these Keys; and least of all, is any alteration of them required for this particular purpose.
Wherefore no man who either vainly maintains a sensibly different value of \(\pi \), or demands in these latter days new principles of Astronomy, or insists on having private interpretations of the open and published word of Scripture, need hope to arrive at the true explanation of

THE GREAT PYRAMID.
PART I.

THE GEOGRAPHY, AND THE EXTERIOR, GREAT PYRAMID.
"In that day shall there be an altar unto the Lord in the midst of the land of Egypt, and a pillar at the border thereof to the Lord.

"And it shall be for a sign and a witness unto the Lord of hosts in the land of Egypt."—Isaiah xix. 19, 20.

"Who hath laid the measures thereof, if thou knowest? or who hath stretched the line upon it?

"Whereupon are the foundations thereof fastened? or who laid the corner stone thereof?

"When the morning stars sang together, and all the sons of God shouted for joy?"—Job xxxviii. 6, 6, 7.
LONGITUDE MERIDIAN OF THE GREAT PYRAMID.

Sandy Plain, formerly overflowed by the Nile Flood.

Ancient Rubbish Mound.

Northern Causeway.

Second Pyramid.

Sist Tombs.

Bent Pyramid.

Isolated Group.

Southern Causeway.

Third Pyramid.

king Shaffes.

Temple.

MAP OF THE PYRAMIDS OF JEEZEH, ON THEIR FLAT TOPPED HILL OF ROCK, RISING JUST SOUTH OF THE LOW DELTA LAND OF LOWER EGYPT, AND WEST OF THE NORTHERN END OF THE SINGLE LONGITUDINAL VALLEY, BY WHICH THE NILE BRINGS ITS WATERS THROUGH 36° OF LATITUDE, FROM THE EQUATORIAL LAKES.
GROUNDB PLAN OF THE GREAT PYRAMID.
TOGETHER WITH ITS HORIZONTAL SECTIONAL AREA AT THE LEVEL OF
THE KING'S CHAMBER
PLATE IV.

THE GREAT PYRAMID.

THE SECOND PYRAMID.

GROUND PLAN OF THIS PYRAMID WHEN COMPLETE.

GROUND PLAN OF THIS PYRAMID WHEN COMPLETE.

SOUTH.

NORTH.

SOUTH.

NORTH.

THE THIRD PYRAMID.

THE FOURTH PYRAMID.

THE FIFTH PYRAMID.

THE SIXTH PYRAMID.

THE SEVENTH PYRAMID.

THE EIGHTH PYRAMID.

THE NINTH PYRAMID.

ALL THE PYRAMIDS OF JEEZEH IN VERTICAL AND MERIDIAN SECTION.

THEIR ANCIENT SIZE AND SHAPE BEING SHOWN BY THE DOTTED TRIANGLES OVER THEM.

Scale 1/500 of Nature.
ALL THE PYRAMIDS OF EGYPT, (other than those of Jezzeh.)
beginning from the North and going to the South of the country.
CHAMBER AND PASSAGE SYSTEM OF GREAT PYRAMID.

enlarged from the Frontispiece.

SCALE OF BRITISH INCHES.
FRONT ELEVATION. Looking South.
OF THE ANGLE STONES AND PRESENTLY DILAPIDATED MASONRY.
OVER THE ONE AND ONLY ORIGINAL ENTRANCE PASSAGE INTO THE GREAT PYRAMID.
From a "PHOTOGRAPH by P.S".

VERTICAL LONGITUDINAL SECTION.
Looking West.
OF THE UPPER, NORTH, END, OR BEGINNING, OF THE ENTRANCE PASSAGE
INTO GREAT PYRAMID.
SCALE OF BRITISH INCHES.
PLATE X.

SECTION
(vertical and longitudinal)

LOOKING WEST OF LOWER OR NORTHERN END OF GRAND GALLERY IN OR PYRAMID.

Horizontal Passage to Queen's Chamber

Top of First Ascending Passage

ENLARGED PERSPECTIVE VIEW OF THE BROKEN OUT RAMP STONE AND THE ENTRANCE TO THE WELL, so called.
VERTICAL TRANSVERSE SECTION WITH ARABS ASCENDING THE GRAND GALLERY, GR. PYR.

VERTICAL TRANSVERSE SECTION WITH ARABS DESCENDING THE GRAND GALLERY, GR. PYR.
In sectional parts
single line shading = Limestone
crossed lines = Granite.

NORTH WALL

SOUTH WALL

EAST WALL

WEST WALL

SOUTH WALL

NORTH WALL

SIDES OF ANTE-CHAMBER.
OPENED OUT ON PLANE OF EAST WALL.
Limestone blocks marked L; others are Granite.

Scale of British Inches

0 50 100
VERTICAL SECTION (Looking West) OF KING'S CHAMBER: ALSO OF ANTE-CHAMBER, SOUTH END OF GRAND GALLERY, AND VYSE'S HOLLOWS OF CONSTRUCTION, ABOVE KING'S CHAMBER. CROSSED LINES INDICATE GRANITE.

Scale of British Inches
KING'S CHAMBER.
ITS SIX SIDES OPENED OUT ON
PLANE OF NORTH WALL.

<table>
<thead>
<tr>
<th>Length</th>
<th>412 1/2 P. Inches</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breadth</td>
<td>206 1/4 P. Inches</td>
</tr>
<tr>
<td>1st height</td>
<td>230 - 329 P. Inches</td>
</tr>
<tr>
<td>2nd height</td>
<td>235 - 389 nearly</td>
</tr>
</tbody>
</table>

Enlarged perspective view of base of Granite walls.

Five Inches below Floor plane.

SCALE OF BRIT INCHES. for Plan of King's Chamber.

ELEVATION OF COFFER. Looking West.

GROUND PLAN OF COFFER.

WEST-WALL.

CEILING.

EAST-WALL.

NORTH-WALL.

SOUTH-WALL.

FLOOR.
AN ANCIENT TOMB, 1000 ft. SSE of S.E. foot of Gs Pyramid, fulfilling the description of Herodotus, as to the place where King Cheops was buried, viz., 'not in Gs Pyramid at all, but in a subterranean island, surrounded by the waters of the Nile, which filter through the intervening rock up to their level in the River at the time.'
ALTES REICH
Dynastic I-V.

PLATE XVI.

DYNASTIE I
MEMPHIS

DYNASTIE III
MEMPHIS

DYNASTIE IV
MEMPHIS

DYNASTIE V
MEMPHIS

ANTÉ-CHAMBER WALLS.

GRANITE-LEAF.

KING’S CHAMBER WALLS.

COFFER-SIDE.

DE J. A. S. GRANT’S EXAMPLES OF ORDERS OF GRANITE WORKED-SURFACES
in the interior of the Great Pyramid.

Digitized by Google
DIRECT VERTICAL SECTION OF GREAT PYRAMID.

EQUALITY OF BOUNDARIES.

EQUALITY OF AREAS No. 1.

Area of square base of Great Pyramid = area of a Circle whose diameter is given + 100 in. the Ante-chamber.

P 1 - PYRAMID INCHES.

EQUALITY OF AREAS No. 2.

Area of Circle with G.Pyr. height for radius = area of square whose length of side is given + 100 in the Ante-chamber.

S.C. - SACRED CUBIT.
EQUATION OF AREAS N. 3.

Direct Vertical Section of Gr. Pyr.

9131.05 P.I.

Circle with Diameter.

Vert. Height of G. Pyr.

Square with side computed by \pi.

$\pi 626.02 = \text{Ante-chamber length} \times 100 = \text{Sun's distance from the earth in terms of the breadth of the Earth from Pole to Pole.}$

EQUATION OF BOUNDARIES AND AREAS.

CIRCLES AND SQUARES, INCHES INSIDE AND SACRED CUBITS OUTSIDE GREAT PYRAMID.

$365.242 + 80 = \text{Base side length of Gr. Pyr.}$

in Sacred Cubits.
Fig 1.

GENERAL PASSAGE ANGLE OF GR. PYR.

\[\text{ADB = Direct or right, vertical section of Great Pyramid from North to South.} \]

\[\text{EFCH = Square and Circle of equal area to above.} \]

\[\text{Angle BCS = } 26^\circ 38' 10'' \]

Fig 2.

LENGTHS AND PLACES OF PASSAGES IN GREAT PYR.

\[\text{Add to Fig 1, IC intersected & CR bisected by horizontal lines, then} \]

\[\text{ZY parallel to CS, marks entrance passage.} \]

\[\text{WT at an equal but opposite angle marks first ascending Passage and the Grand Gallery.} \]

\[\text{Angle BCP where CP side of equal area square = } 30^\circ = \text{Latitude, apparent} \]
THE GREAT PYRAMID IN THE CENTRE.
AND AT THE SAME TIME AT THE BORDER OF THE
SECTOR-SHAPED LAND OF LOWER EGYPT.

LOWER EGYPT IN THE GEOGRAPHICAL CENTRE OF
THE LAND SURFACE OF THE WHOLE WORLD
(on the Equal Surface Projection.)
GROUND PLAN OF THE

CIRCLES OF THE HEAVENS ABOVE THE SITE OF THE THEN
UNBUILT GREAT PYRAMID; AT THE ANTEDELIUVIAN DATE OF
3440 B.C.

α DRACONIS ON MERIDIAN BELOW POLE, AT ENTRANCE PASSAGE ANGLE:
PLEIADES AND VERNAL EQUINOX NOWHERE VISIBLE.
GROUND PLAN OF THE
CIRCLES OF THE HEAVENS ABOVE THE GREAT PYRAMID, AT ITS EPOCH
OF FOUNDATION, AT MIDNIGHT OF AUTUMNAL EQUINOX
2170 B.C.
Ο DRACONIS ON MERIDIAN, BELOW POLE, AT ENTRANCE PASSAGE ANGLE:
AND PLEIADES ON MERIDIAN ABOVE POLE IN 0° R.A.;
OR COINCIDENTLY WITH VERNAL EQUINOX.
GROUND PLAN OF THE
CIRCLES OF THE HEAVENS ABOVE THE
PRESENT GREAT PYRAMID
IN THE AUTUMN OF
1881 A.D.

Ω DRACONIS ON MERIDIAN, BELOW POLE, BUT AT SEVEN TIMES EN. PASS. ANGLE;
PLEIADES FAR FROM MERIDIAN, EASTWARD;
VERNAL EQUINOX FAR FROM MERIDIAN, WESTWARD;
BUT THE DISTANCE OF THEIR MERIDIANS APART, INDICATING ON THE PRECESSIONAL DIAL
THE AGE OF THE GREAT PYRAMID.
THE STONE ARCHITECTURE OF ALL AGES, IN TIME, AND IN HEIGHT.
CHAPTER I.

INTRODUCTORY STATEMENT.

The ancient pyramids of Egypt form somewhat of a long clustering group of gigantic monuments, extending chiefly over about a degree of latitude; beginning in the north at the head of the triangular-shaped land of "Lower Egypt," and stretching thence southward along the western side of the Nile.

Within that nearly meridional distance, one traveller claims to have noted forty-five, another says sixty-seven; and another still, leaving Egypt altogether, and ascending the river as far as Meroe, Noori, and Barkal in Ethiopia, mentions one hundred and thirty as existing there. But they are mediaeval rather than ancient, small instead of large, and with very little about them either in form or material to remind of the more typical early examples entirely in stone; or those really mathematically shaped old pyramids, which, though few in number, are what have made the world-wide fame of their land's architecture from before the beginning of history.

Now it is precisely with those grander specimens only, or the oldest examples of the country (probably not more than thirty-eight in number), that we have to do in this book; and selecting even further amongst them, we find, that of all the more important instances that have yet attracted the attention of mankind, there are none to equal the combined fame and antiquity, the purity of
shape and excellence of both preservation and construction, of the several stone pyramids near Jeezeh,* in view of the ancient Memphis, and not far from the present city of Cairo.

This particular pyramidal group is situated, like all the others, on the western, or more thoroughly African, and desert, side of the river; but close to the southern and sectorial point of origin of the delta-shaped plain of Lower Egypt. It is conspicuously planted there on the northeastern edge of the dry and rocky steppe; so that while it overlooks on one side the sand-strewn wastes of the interior, it beholds on the other the green and fertile plains of Nile, about 130 feet in level below. But amongst these Jeezeh Pyramids, again, there is one that transcends in value all the rest; one that has been involuntarily by all the world named for ages past the "Great Pyramid;" and which stands out distinct and distinguished from all its fellows by its giant size, its wondrous internal structure, its superior age, more frequent historical notice, and yet, the hitherto inscrutable destiny of its purpose; the greatest of the seven old wonders of the world in the days of the Greeks, and the only one of them all which is still in existence on the surface of the earth.

With many of the smaller and later pyramids there is little doubt about their objects; for, built by the Egyptians as sepulchres for the great Egyptian dead, such dead, both Pharaohs, and their relatives, were buried in them, and with all the written particulars, pictorial accompaniments, and idolatrous adornments of that too graphic religion, which the fictile nation on the Nile ever delighted in. But as we approach, ascending the stream of ancient

* The following varieties of orthography, by different authors, may lead to the correct pronunciation, viz.: Gyzech, Ghizoh, Gizeh, Jeezeh, Gezech, Jizeh, Djiza, Dsjise, Duichoch, Goezeh, El-Geezeh, Dzireth, &c. &c.

"Jeezeh, or Geezeh, is the proper way of spelling this word in English," writes Dr. J. A. S. Grant, from his Sanatorium, Palmas Matatia, in Cairo, in March, 1877.
time, in any careful chronological survey of pyramidal structures, to the "Great Pyramid," Egyptian emblems are gradually left behind; and in, and throughout, that mighty built mass, which all history and all tradition, both ancient and modern, agree in representing as the first in point of date of the whole Jeezeh, and even the whole Egyptian,* group, the earliest stone building also positively known to have been erected in any country—we find in all its finished parts not a vestige of heathenism, nor the smallest indulgence in anything approaching to idolatry; no Egyptology of any kind properly so called, and not even the most distant allusion to Sabaism, and its worship of sun, or moon, or any of the starry host of heaven.

I have specified "finished parts," because in certain unfinished, internal portions of the constructive masonry of the Great Pyramid discovered by Colonel Howard-Vyse in 1837, there are some rude Egyptian markings for a temporary mechanical purpose to be presently explained; and I also except, as a matter of course, any inscriptions inflicted on the same pyramid by modern travellers, even though they have attempted, like the Prussian sacerdotes of 1843 A.D., to cut their names in their own slight ideas of the ancient hieroglyphics of the old Egyptian idolaters. But with these simple exceptions we can most positively say, that both exterior and interior are absolutely free from all engraved or sculptured work, as well as from everything relating to idolatry or erring man’s theotechnic devices. From all those hieratic emblems, therefore, which from the first to the last have utterly overlaid every Egyptian temple proper, as well as all Egypt’s obelisks, sphinxes, statues, tombs, and whatever other monuments they, the

* There are some disputations still touching the possibly greater antiquity of the so-called Great Pyramid, or pyramid of degrees, at Sakkara (see Plato V.); but though it is rudely and clumsily built, those qualities do not invariably and necessarily imply greater age in Egypt; and it has no other point wherein it can presume to compare with the Great Pyramid of Jeezeh, through all of its features of exact mensuration, the chief tests employed in this book.
Egyptians, did build up at any known historical and Pharaonic epoch in connection with their peculiar, and, alas! degrading religion.

Was the Great Pyramid, then, erected before the invention of hieroglyphics, and previous to the birth of the false Egyptian religion?

No! for there, both history, tradition, and recent exploratory discoveries, testified to by many travellers and antiquaries, are perfectly in accord; and assure us that the Egyptian nation was established, was powerful, and its spiritually vile hieratic system largely developed, though not arrived at its full proportions, at the time of the erection of the Great Pyramid; that that structure was even raised by the labour of the Egyptian population;* but under some remarkable compulsion and con-

* This very important conclusion results from the "quarry marks" of the workmen (see Colonel Howard-Vyse's volumes, "Pyramids of Gizeh," London, 1840), being found in red paint on parts of the stones left rough, and in interior places of the structural mass of masonry never intended to be seen. The marks are evidently in the Egyptian language or manner freely handled; and in so far prove that they were put in by Egyptians. They are excessively rude, no doubt, but quite sufficient for their alleged purpose, viz. checks for workmen, whereby to recognise a stone duly prepared at the quarry, and to see it properly placed in its intended position in the building.

That these marks were not meant as ornaments in the structure, or put on when there, is abundantly evidenced by some of them being upside down, and some having been partly pared away in adjusting the stone into its position (see Colonel Howard-Vyse's plates of them); and, finally, by the learned Dr. Birch's interpretation of a number of the marks, which seem from thence to be mostly short dates, and directions to the workmen as to which stones were for the south, and which for the north, wall.

These markings, moreover, have only been discovered in those dark holes or hollows, the so-called "chambers," but much rather "hollows of construction," broken into by Colonel Howard-Vyse above the "King's Chamber" of the Great Pyramid. There, also, you see the square holes in the stones, by which the heavy blocks were doubtless lifted to their places, and everything is left perfectly rough; for these void spaces were sealed up, or had been built up outside in solid masonry, and were never intended to be used as chambers for human visitation or living purposes. In all the other chambers and passages, on the contrary, intended to be visited, and approached by admirably constructed white-stone passages, the masonry was finished off with the skill and polish almost of a jeweller; and in them neither quarry marks nor "bat holes," nor hieroglyphics of any sort or kind, are to be seen: excepting always those
INTRODUCTORY STATEMENT.

strain, which prevented them from putting their unmistakable and accustomed decorations on the finished building; and especially from identifying it in any manner, direct or indirect, with their impure and even bestial form of worship.

According to Manetho, Herodotus, and other ancient authorities, the Egyptians hated, and yet implicitly obeyed, the power that made them work on the Great Pyramid; and when that power was again relaxed or removed, though they still hated its name to such a degree as to forbear from even mentioning it except by a peculiar circumlocution,—yet with involuntary bending to the sway of a really superior intelligence once amongst them, they took to imitating as well as they could, though without any understanding, a few of the more ordinary mechanical features of that great work on which they had been so long employed; and they even rejoiced for a time to adapt them, so far as they could be adapted, to their own more favourite ends and congenial occupations.

Hence the numerous quasi-copies, for sepulchral purposes, of the Great Pyramid, which are now to be observed further south along that western bank of the Nile; always betraying, though, on close examination, the most profound ignorance of their noble model's chiefest internal features, as well as of all its niceties of proportion and exactness of measurement; and such mere failures are never found, even then, at any very great number of miles away from the site, nor any great number of years behind the date, of the colossal parent work.

The full architectural idea, indeed, of the one grand primeval monument, though expensively copied during a modern hieroglyphics which Dr. Lepsius put up over the entrance into the Great Pyramid, "on a space five feet in breadth by four feet in height," in praise of the then sovereign of Prussia; and which have recently misled a learned Chinese envoy, by name Pin-ch'-un, into claiming a connection between the Great Pyramid and the early monuments of his own country. (See Athenæum, May 21, 1870, p. 677.)
few centuries, yet never wholly or permanently took the fancy of the ancient Egyptians. It had some suitabilities to their favourite employment of lasting sepulture, and its accompanying rites; so they tried what they knew of it, for that purpose. But it did not admit of their troops of priests, nor the easy introduction of their unwildly “sacred” animals, nor bulls, nor crocodiles, nor the multitudes of abject worshippers, with the facility of their own temples; and so, on the whole, they preferred them. Those more open and columned, as well as sculptured and inscribed structures, accordingly, of their own entire elaboration, are the only ones which we now find to have held, from their first invention, an uninterrupted reign through all the course of ancient and mediæval Egyptian history; and to reflect themselves continuously in the placid Nile, from one end of the long-drawn Hamitic land to the other. They, therefore, are, architecturally, Egypt. Thebes, too, with its hundred adorned Pylon temple-gates, and statues of false gods, is intensely Egypt. But the Great Pyramid is, in its origin and nature, something perfectly different.

Under whose direction, then, and for what purpose, was the Great Pyramid built; whence did so foreign an idea to Egypt come; who was the mysterious carrier of it to that land; and under what sort of special compulsion was it that, in his day, the Egyptians laboured in a cause which they appreciated not, and gave their unrivalled mechanical skill for an end which they did not at the time understand; and which they never even came to understand, much less to like, in all their subsequent national ages?

This has been indeed a mystery of mysteries, but may yet prove fruitful in the present advancing stage of knowledge to inquire into further; for though theories without number have been tried and failed in, by ancient Greeks and mediæval Arabians, by French, English, Ger-
mans, and Americans, their failures partly pave for us the road by which we must set out. Pave it poorly, perhaps; for their whole result has, up to the present time, been little more than this, that the authors of those attempts are either found to be repeating idle tales, told them by those who knew no more about the subject than themselves; or skipping all the really crucial points of application for their theories which they should have attended to; or, finally, like some of the best and ablest men who have given themselves to the question, fairly admitting that they were entirely beaten.

Hence the exclusive notion of temples to the sun and moon, or for sacred fire, or holy water, or burial-places, and nothing but burial-places, of kings, or granaries for Joseph, or astronomical observatories, or defences to Egypt against being invaded by the sands of the African desert, or places of resort for mankind in a second deluge, or of safety when the heavens should fall, have been for a long time past proved untenable; and the Great Pyramid stands out now, far more clearly than it did in the time of Herodotus (no less than 2,400 years ago), as both a prehistoric monument, and yet rivalling the best things of modern times in its eminently grand and pure conception; and which, though in Egypt, is yet not of Egypt, and whose true and full explanation is still to come.

Under these circumstances it is, that a new idea, based not on ancient hieroglyphics, profane learning, Egyptian literature, or modern Egyptology springing therefrom, but on new scientific measures of the actual facts of ancient masonic construction in number, weight, and measure, was recently given to the world by the late Mr. John Taylor, of London, in a book published in 1859.* He had not visited the Pyramid himself, but had been for thirty years previously collecting and comparing all the published accounts, and

* "The Great Pyramid. Why was it built? and who built it?" (Longmans and Co.)
specially all the better-certified mensurations (for some were certainly poor indeed) of those who had been there; and while so engaged, gradually and quite spontaneously (as he described to me by letter), the new theory opened out before him. Though mainly a rigid induction from tangible facts of scientific bearing and character, Mr. Taylor's result was undoubtedly assisted by means of the mental and spiritual point of view from whence he commenced his researches, and which is, in the main, simply this:

That whereas other writers have generally esteemed that the unknown existency who directed the building of the Great Pyramid (and to whom the Egyptians, in their traditions and for ages afterwards, gave an immoral and even abominable character) must, therefore, have been very bad indeed,—so that the world at large, from that time to this, has ever been fond of standing on, kicking, and insulting that dead lion whom they really knew nothing of,—he, Mr. John Taylor, seeing how religiously bad the idol-serving Egyptians themselves were, was led to conclude that those they hated (and could never sufficiently abuse) might perhaps have been pre-eminently good; or were, at all events, of a different religious faith from the land of Ham. Then, remembering, with mutatis mutandis, what Christ himself says respecting the suspicion to be attached when all the world speaks well of any one, Mr. Taylor followed up this idea by what the Old Testament does record touching the most vital and distinguishing part of the Israelitish religion; and which is therein described, some centuries after the building of the Great Pyramid, as notoriously an "abomination to the Egyptians:" and combining this with certain unmistakable historical facts, he successfully deduced sound and Christian reasons for believing that the directors of the building, or rather the authors of its design and those who controlled the actual builders of the Great Pyramid,
were by no means Egyptians, but of the chosen race, descendants of Shem, and in the line of, though preceding, Abraham; so early indeed as to be closer to Noah than to Abraham. Men, at all events, who had been enabled by Divine favour to appreciate the appointed idea, as to the necessity of a sacrifice and atonement for the sins of man by the blood and the act of a Divine Mediator:—an idea coeval with the contest between Abel and Cain, and which descended through the Flood to certain pre­destined families of mankind; but which idea no one of Egyptian born would ever contemplate with a moment's patience; for every ancient Egyptian, from first to last, and every Pharaoh of them more especially, was a genuine Cainite in thought, act, and feeling to the very back­bone; confident of and professing nothing so much, or so constantly, as his own perfect righteousness, and absolute freedom by his own innate purity from every kind of sin.

On this ground it was that Mr. Taylor took his stand; and, after disobeying the world's long­formed public opinion of passively obedient accord with profane Egyptian tradition, and setting at nought the most time­honoured prejudices of polite society so far as to give a full, fair, and impartial examination to the whole case from the beginning, announced that he had discovered in some of the arrangements and measures of the Great Pyramid—when corrected for injuries of intervening time—certain scientific results, which speak of much more than, or rather something quite different from, any human intelligence. For, besides coming forth suddenly in the primeval history of its own day without any childhood, or known preparation, the actual facts at the Great Pyramid, in the shape of built proofs of an exact numerical knowledge of the grander cosmical phenomena of both earth and heavens, not only rise above, and far above, the extremely limited and almost infantine knowledge of science humanly attained to by any of the Gentile nations of 4,000, 3,000, 2,000, nay, 1,000
years ago, but they are also, in whatever of the physical secrets of Nature they chiefly apply to, essentially above the best knowledge of man in our own time as well.

This is indeed a startling assertion, if true; but, from its subject, admits of the completest and most positive refutation, if untrue. For the exact science of the present day, compared with that of only a few hundred years ago, is a marvel of development; and is capable of giving out no uncertain sound, both in asserting itself, and stating not only the fact, but the order and time of, the invention of the practical means necessary to, the minutest steps of all separate discoveries yet made. Much more then can it speak with positiveness, when comparing its own present extended knowledge against the little that was known to man, by his own efforts and by his school methods, in those early epochs before accurate and numerical physical science had begun, or could have begun, to be seriously cultivated at all; that is, in the truly primeval day when the Great Pyramid was built, finished, sealed up, and left as we see it now, dilapidations only excepted.
CHAPTER II.

GEOMETRICAL PROPORTIONS.

John Taylor's First Discovery.

Mr. Taylor's first-discovered theorem with regard to the Great Pyramid's shape, as derived from modern measures and calculations of it, is, that the Pyramid's height, in the original condition of the monument, when each one of its four sloping triangular sides was made into a perfect plane by means of the polished outer, sloping, surface of the bevelled casing-stones (see Frontispiece Plate, also Plate XVII.), and when those sides, being continued up to their mutual intersections, terminated at, and formed the summit in, a point,—that its central, vertical height then was, to twice the breadth of its square base, as nearly as can be expressed by good monumental work, as the diameter to the circumference of a circle.

Or, that the vertical height of that Pyramid was to the length of one side of its base, when multiplied by 2, as the diameter to the circumference of a circle; i.e. as 1 : 3.14159 + &c.; this last number being no other than our "Key the first" of page xv.

Or again, as shown more recently by Mr. St. John Day, the area of the Pyramid's right section (i.e. a vertical, central section parallel to one of the sides of the horizontal base) is to the area of the base as 1 to the same 3.14159, &c.

Or, as the same fact admits again of being differently
expressed, the vertical height of the Great Pyramid is the radius of a theoretical circle, the length of whose curved circumference is exactly equal to the sum of the lengths of the four straight sides of the actual and practical square base of the building.

Now this is neither more nor less than that celebrated practical problem of the mediæval and modern ages of Europe, “the squaring of the circle;” and the thing was thus practically done, truly and properly at the Great Pyramid, thousands of years before those mediæval days of our forefathers. For it was accomplished by the architect who designed that pyramid, when,—over and above deciding that the building was to be a square-based pyramid,—with of course all the necessary mathematical innate relations which every square-based pyramid must have,—he also ordained that its height, which otherwise might have been anything, was to bear such a particular proportion to its breadth of base, as should bring out the nearest possible value of \(\pi \) as above mentioned; and which proportion not one out of any number of square-based pyramids would be otherwise necessarily endowed with; and not one out of all the thirty-seven other measured pyramids in Egypt has been proved to be endowed with even approximately.

If, therefore, the quantity is really found built into the Great Pyramid with exactness, as well as magnitude, characterizing the whole of that vast mass, it must have been the result either of some most marvellous accident, or of some deep wisdom and settled, determined purpose; not less, too, than 3,000 years in advance of the learned world in the building’s own time. And that wisdom of the Great Pyramid’s founder was apparently working in a peculiar confidence, not for its contemporaries, to whom it explained nothing and showed very little, but for distant posterity; knowing well that a fundamental mathematical truth like \(\pi \), would inevitably come to be understood both in
and by itself alone, and without any written inscription in
that then distant day when mathematics should at last be
extensively and successfully cultivated amongst mankind,
even as they are now. A most just conclusion too; for ex­
perience has shown that neither mathematics nor mechanics
can progress in any country in modern times without know­
ing well the numerical value and calculational quantity of \(\pi \). In testimony whereof I may mention that in Dr. Olinthus
Gregory's "Mathematics for Practical Men," third edition
thereof by H. Law, C.E., at page 64 of Appendix, there
is a Table 5, of "useful factors in calculation" (the cal­
culations, be it remembered, of the hard-headed, strong­
handed, exemplary working-men who construct our steam•
engines, iron ships, railways, docks, and all other modern
engineering), and consisting of that invaluable number or
proportion \(\pi \), or 3.14159, &c., in no less than fifty-four
different mathematical forms.

Inquiry into the Data.

Now of this scientific value of \(\pi \) there is, and can be, in
the present day, no doubt in any school or university all
the world over; neither of the Great Pyramid's chronolo­
gical priority over all the existing architectural monuments
raised, and much more over all known books ever written,
anywhere by any of the sons of men; nor again that the
numbers which Mr. Taylor gives for the vertical height
and double breadth of base of the Great Pyramid do realise
the \(\pi \) proportion very closely. But, as we are to take
nothing for granted that we can inquire into ourselves in
this book, it becomes our duty to ask what foundation
John Taylor may have had, for the numbers which he has
employed being really those which the Great Pyramid was
anciently constructed to represent, or does contain within
itself, when duly measured and corrected for modern dila­
pidations.
In this research I soon found it necessary to read rather extensively in a particular branch of literature, where the respective authors are not only numerous, but their accounts of mensurations, as a rule, most strangely contradictory. Colonel Howard-Vyse, in the second volume of his important work,* published in 1840, gives either extracts from, or abstracts made with admirable fairness of, no less than seventy-one European and thirty-two Asiatic authors. Many more are now to be added to the list, and it is extremely instructive to read and compare them all. Unless, indeed, a very great number be read, no sufficient idea can be formed as to how little faith is often to be placed in the narratives even of highly, though too exclusively mentally, educated men on a very simple practical matter.

Thus it would be easy to string together a series of so-called measures, made by successive travellers, on the same parts of the Great Pyramid, which should show its blocks of solid stone expanding and contracting between different visits to it, like elastic India-rubber; but it will suffice for the present to indicate the necessity of weighing the evidence in every case most scrupulously; to have a large quantity of evidence, a great variety of observers, and to place in the first rank of authors to be studied in the original, closely in every word they have written, but not necessarily to be always followed therein:

Professor John Greaves, the Oxford astronomer, in 1638.

The magnificent French or Bonaparte Expedition in 1799.

The princely Colonel Howard-Vyse in 1837; and

The learned and amiable Sir Gardner Wilkinson, from 1840 to 1858.

At present the Great Pyramid is, externally to the sight, a rough, huge mass; a gigantic cairn, as it were, of a strikingly crystalline figure on the whole; rudely, though regu-

* "The Pyramids of Gizeh." (Fraser, Regent Street, London.)
larly and masterly, built of worked and cemented limestone blocks, in great horizontal sheets, or courses, of masonry; their outer, broken-off edges necessarily forming a sort of rectangular steps up the sloping sides; and, with a platform of sensible area on the top, forming an abnormally blunted summit. But this spurious or adventitious flattened top, as well as the spurious and adventitious steps on the sides, have all of them merely resulted from the mediæval dilapidations and forcible removal of the Pyramid's once polished white-stone casing (with its outer surface bevelled smoothly to the general slope, see Plate I.), which had stood for more than 3,000 years, and had in its day given to the structure almost mathematical truth and perfection. This state of things was that described by Greek, Roman, and early Arabian writers, and it existed until the Caliphs of Egypt, about the year 1,000 A.D., profiting by the effects of a severe, and for Egypt very unusual, earthquake, recorded to have happened in 908 A.D., began methodically to strip off the polished and bevelled casing-stone blocks; built two bridges to convey them more easily to the river, after chipping off the prismoidal angles and edges; and then employed them in building mosques and palaces; for the lining of the great "Joseph" well, and for other public structures which still adorn their favourite city El Kahireh, or the victorious—the Cairo of vulgar English.

It is evidently then the original, not the present, size and shape which we require, and must have, for testing

* To what extent these sheets of masonry are absolutely continuous throughout the mass can never be known until the whole is taken to pieces; nor is it necessary to be known, so long as we see each stratum recording itself similarly on each of the four sides, excepting only the small interruption of a portion of rock at the north-east corner, and also a hole filled with rubble work which is now reported by Dr. Grant, about a third of the way up one of the sides.

† Very recently my friends Mr. Wayman Dixon and Dr. Grant have visited the celebrated Mosque of Soltan Hassan, in Cairo, to see if any of the component blocks forming its walls could be identified as having belonged to the Great Pyramid. They found them to be undoubtedly of
Mr. Taylor’s proposition; and for approximating, by whatever degree of exactitude may be reached, to whether it was accident or intention which decided the shape of the building; and he has well pointed out that no one had any pretence to have got the old base-side length until the French Academicians, in 1799, cleared away the hills of sand and débris at the north-east and north-west corners, and reached beneath them the levelled surface of the living rock itself on which the Pyramid was originally founded. There, discovering two rectangular hollows carefully and truly cut into the rock, as if for “sockets” for the basal corner-stones, they measured the distance between them with much geodesic skill, and found it to be equal to 763·62 English feet. The same distance being measured thirty-seven years afterwards by Colonel Howard-Vyse, guided by another equally sure direction of the original building, as 764·0 English feet,—we may take for the present problem, where a proportion is all that is required, the mean, or 763·81 feet, as close enough for a first approximation only to the ancient base-breadth.

But the ancient height of the Great Pyramid, which we also need to have for the solution of our problem, is not at all easy to measure directly with any approach to exactness; especially after so very much of the original top has actually been knocked away as to leave a platform “large enough for eleven camels to lie down” on, or beneath, the very place where once the four triangular sloping sides were continued up to a point; a sharp point on which an angel, or, as the monkish writer argued, any number of angels, might stand, but not one man. In fact, the key-stone of the whole theory of the Great Pyramid would have been entirely wanting to poor John Taylor’s the same Mokattam stone, but too well squared to retain any of the outside bevelled, and, perhaps, inscribed, surface. The inquiry was, however, put a stop to by the Mohammedan janitors, before it had reached some of the more likely places near the top of the Mosque, wherein to meet with an accidentally or carelessly left oblique surface of the other far older building.
First efforts, but for Colonel Howard-Vyse's most providential finding of two of the ancient "casing-stones" in situ, at the foot of the Pyramid (see Frontispiece); for they enable the problem to be attacked in a different manner; or by angular, as contrasted to, but afterwards made to furnish an idea of, linear, measure; in the shape of the vertical height to be used with the already obtained base-breadth.

Beginnings of Objections by certain captious Individuals to the earliest Data on which the Modern Scientific Theory of the Great Pyramid rests.

After reading my first paper on this casing-stone part of the problem to the Royal Society, Edinburgh, I was seriously warned that two very shrewd and experienced members there had utterly condemned it. One of them, an engineer, saying "that he had twice passed through Egypt, been to the Pyramids, saw no symptoms of casing-stones, and therefore would not believe in anything about them." The other, an Indian naval officer, had also been to the Pyramids on a visit, and "found such heaps of rubbish about the great one, that he could not see how any man could measure even its base-side length with any degree of correctness, much less the angles of casing-stones which he also could not see."

The First Objector.

Both these speeches are only too faithful examples of the small extent of information on which many persons, of commanding social rank, will even yet persist in speaking most authoritatively on both the present, and the long past, state of the Great Pyramid. Yet the first doubter about the casing-stones should at least have read the accounts of Herodotus, Strabo, Pliny, and many early Arabian authors, who described what they saw before their
eyes when the casing was still complete, and eminently smooth and beautiful; and then should have taken up Colonel Howard-Vyse's own book, descriptive, in details vocal with simple, naïve truth, both of how he succeeded, after immense labour with hundreds of workmen, in digging down to, finding, and measuring probably the last two of the northern side's bevelled blocks; (still were they in situ, and adhering closely by their original cement to the pavement base of the building;) and then how he failed, though he covered them up again with a mound of rubbish, pending an application to Government to remove them to the British Museum,—how he failed to save them from the hammers of Mohammedan prowlers by night; deadly jealous as they were of Christians obtaining anything really valuable from the country they rule over.

Besides which, the large amount of casing-stones, bevelled externally to the slope, still existing upon other pyramids, as on the two large ones of Dashoor (see Plate V.); the well-preserved ones of the second Jeezeh Pyramid, conspicuous near its summit, and on a bright day "shining resplendently afar," as says M. Jomard (see Plates I. and IV.); and the granite ones of the third pyramid, so excessively hard that modern workmen have not cared to have much to do with them—all this, which has long been known, and more particulars which I have presently to relate, should effect much in convincing unwilling minds as to what was the original state of the outside of the Great Pyramid. While a similar case of spoliation to what that building experienced in A.D. 840, was perpetrated only a few years ago, on the south stone pyramid of Dashoor by Defterdar Mohammed Bey, in order to procure blocks of ready-cut stones of extra whiteness wherewith to build himself a palace near Cairo.* All these well-known social

* There is even a large consumption of ancient building-stones in the accidents of modern Egyptian life, let alone the oft burning of limestone blocks into lime, for mortar and plaster-work. Thus I was astonished in 1884 at the massive outside stair to his house which one of the Sheikhs
and historic recorded facts should have qualified the opposition of Objector No. One, even in the year 1864.

The Second Objector.

Then the doubter about the possibility of other men succeeding in measuring what would have puzzled him as he looked on idly, and never had held a measuring rod of any kind in his hand, should have read the whole account of the active and hard-working French Academicians in Egypt; of which the following extract, from p. 63 of "Antiquités, Description," vol. ii., is worthy of being more generally known than it seems to be: viz. that after digging down through the rubbish heaped up about the lower part of the building, "They recognised perfectly the esplanade upon which the Great Pyramid had been established; and discovered happily, at the north-east angle, a large hollow socket (encastrément) worked in the rock, cut rectangularly and uninjured, where the cornerstone had been placed; it is an irregular square, which is 118 British inches broad in one direction, 137.8 British inches in another, and 7.9 of the same inches deep" all over its floor (measures since then tested by myself, but only after several days spent in digging and clearing the locality over again by a civil engineer with a party of of the nearest Pyramid village had made, evidently with stone blocks from the tombs on the Great Pyramid Hill. But in 1873 I am informed by Mr. Waynman Dixon that that village has been in the interval entirely washed away by a high Nile inundation, and that its inhabitants have since then built themselves a new village much closer to the Great Pyramid Hill, and in so far nearer to their inexhaustible quarry of stones, cut and squared to their hand.

"Ils reconnaissent parfaitement l'esplanade sur laquelle a été établie la pyramide, et découvrirent heureusement à l'angle nord-est un large encastrément, creusé dans le roc, rectangulairement dressé et intact, où avait posé la pierre angulaire; c'est un carré irrégulier qui a 3 mètres dans un sens, 3.52 mètres dans l'autre, et de profondeur 0.207 mètres; ils firent les mêmes recherches à l'angle nord-ouest, et ils y retrouvèrent aussi un encastrément semblable au premier; tous deux étaient bien de niveau. C'est entre les deux points les plus extérieurs de ces encastrements et avec beaucoup de soins et de précautions qu'ils mesurèrent la base. Ils la trouveront de 232.747 mètres."
Arabs). "The French savants made the same research at the north-west angle, and there also discovered a hollow socket (enca~trement) similar to the former: the two were on the same level. It was between the two exterior points of these hollows, and with much care and precaution, that they measured the base-side length. They found it 763·62 British feet."

The "enca~trement," so brought to light in the basal rock at the north-east angle, is duly figured in plan amongst the large French plates; and, as I have since verified at the place, has the inner corner curiously pared away (see Plate III.), evidently indicating the well-shaped rectangular outer corner to be the true starting-point for measure; and because, also, it was originally the terminal point of the Pyramid's substance at that lower angle or foot. From the outer corner of the north-east to the outer corner of the north-west "encastrements" of their happy discovery it therefore was that the skilful French surveyors extended their measuring bars, and with the result given above.

They also triangulated the ground round about, and from thence measured the altitude of the present summit of the Great Pyramid with a success which would doubtless have astonished the mind of Objector No. Two, had he been present to behold. But as there was no ancient fiducial mark up there, we have, after all, for real ancient results, to return to the angular plane of the two original casing-stones below, so happily uncovered by Colonel Howard-Vyse in 1837, and proved to have been the very beginning of the northern upward-sloping side of the building.

Howard-Vyse's Casing-stones.

The extreme value residing in these angular relics was not only because they were of the number of the original casing-stones, and actually in situ and undisturbed, and
therefore showing what was once the veritable outside of the Great Pyramid, viz. smooth, polished, dense white lime-stone, almost like marble, in a sloping plane; but because they exhibited such matchless workmanship: as correct and true almost as modern work by optical instrument-makers, but performed in this instance on blocks of a height of nearly 5 feet, a breadth of 8 feet, and a length, perhaps, of 12 feet; with the finest of joints, said to be no thicker, even including a film of white cement, than "silver paper." The angle of the inclined or bevelled outer surface, measured very carefully by Mr. Brettell, civil engineer, for the Colonel, came out 51° 50'; and being computed from linear measures of the sides, made for him by another engineer, came out 51° 52' 15.5".* Results not indeed identical, and which might have been made better, with more care at the time; but yet, extremely accordant with one another, as compared with the French angular determination (before there was anything on which to determine accurately, other than the present ruined and dilapidated sides of the edifice) of 51° 19' 4"; or of previous modern observers, who are actually and incomprehensibly found anywhere, and most variously, between 40° and 60°.

* Sir John Herschel, Athenæum, April 23, 1860.

John Taylor's Proposition supported by Howard-Vyse's Casing-stone Angle.

On the whole, then, taking everything into fair consideration, the ancient angle of the Great Pyramid's slope may be considered to be certainly somewhere between the two measured quantities of 51° 50' and 51° 52' 15.5'', while there are many other reasons for believing that it must have been 51° 51' and some seconds. How many mere seconds, the modern observations are not competent altogether to decide; and a second of space is an
exceedingly small quantity even in the most refined astronomical observations. But if we assume for the time 14·3", and employ the whole angle, viz. 51° 51' 14·3", with the base-side as already given from linear measure = 763·81 British feet, to compute the original height-quantity which we have been struggling after so long, we have for that element 486·2567 of the same linear units. And from these values for the ancient height and base-breadth, computing the proportion of diameter to circumference, there appears 486·2567 : 763·81 \times 2 : : 1 : 3·14159, &c.* And this result in so far shows that the Great Pyramid does represent, as closely as the very best modern measures can be trusted, the true value of \(\pi\); a quantity which men in general, and all human science too, did not begin to trouble themselves about until long, long ages, languages, and nations had passed away after the building of the Great Pyramid; and after the sealing up, too, of that grand primeval and prehistoric monument, of an age, which was the patriarchal age of the earth according to Scripture.

Subsequent Confirmations of the above grand Datum.

Hence the first stage of our trial terminates itself with as eminent a confirmation as the case can possibly admit of, touching the truth of John Taylor's theory, proposition, or statement; and now begins the second stage, wherein I can add the absolute weight of direct personal examination, as well as of practical researches carried on at the place by myself for a longer time and with better measuring instruments than any of my predecessors had at their command. I was not indeed so fortunate as Colonel Howard-Vyse in finding anything like such large, entire, unmoved, and well preserved casing-stones as he did; but

* John Taylor's numbers for the vertical height and the base-breadth of the Great Pyramid were 486 and 764 feet; evidently the nearest possible approximation by whole feet.
was enabled to prove, that the enormous rubbish mounds now formed on each of the four base sides of the Pyramid consist mainly of innumerable fragments of the old casing-stones, distinguishable both by the superior quality of their component stone and their prepared angle of slope always conformable, within very narrow limits, to Colonel Howard-Vyse's determination. And a number of these almost "vocal" fragments were deposited by me, on my return, in the museum of the Royal Society, Edinburgh.

Also, by careful measures of the angle of the whole Pyramid along all four of its corner or "arris" lines from top to bottom, observed with a powerful astronomical circle and telescope, as more particularly described in my larger book, "Life and Work at the Great Pyramid," in 1865, the same result came out. For that corner angle so measured (see Plate XVII.) was found to be $41^\circ 59' 45''$ nearly: and that gives by computation (according to the necessary innate relations of the parts of a square-based pyramid), for the side slope of this "Great" one, $51^\circ 51'$ and some seconds; or without any doubt the representative of the angle Colonel Howard-Vyse did observe on the side directly; and the one which, if it is there, necessarily makes the Great Pyramid, in and by its whole figure, express the value of that most scientific desideratum π.

Nor has the proving of the matter stopped with me. For other explorers have now been induced to search the rubbish mounds about the Pyramid, and have seldom left without carrying off some fragment, wherein two evidently anciently worked sides met, not at a right angle, but at the angle of either $51^\circ 51'$ or $128^\circ 9'$ nearly: one being the angle at the foot, the other at the head, of every casing-stone of a π pyramid, if built, as the Great Pyramid is, but some others are not, in accurately horizontal courses of masonry.

I learn, too, from a recent American book of travel,
that my former Arab assistant in measuring the Great Pyramid, Alee Dobree by name, and who was very quick in seizing the idea of angle expressed in numerical amount when I first explained it to him in 1865,—that he is now driving quite a trade, and most unexceptionally, with the travellers who visit the Monument, by selling them "casing-stone fragments with the angle;" which fragments he is able to pick out of the very same hills of rubbish they walk carelessly over, by the gift of a sharp and appreciating eye.

Yet even all his feats in that way have been far transcended by my friend, Mr. Waynman Dixon, C.E., who, taking advantage of an extensive cutting into the Great Pyramid rubbish mounds by the Egyptian Government merely for material wherewith to make the road by which the Empress of France visited the Monument in 1869, discovered almost a whole casing-stone. Not a very large one, indeed, but with portions more or less of all its six, original, worked sides; or a completer example than is known at the present moment to exist anywhere else all the world over.

This most unique specimen Mr. Waynman Dixon graciously sent from Egypt as a present to me, and I have deposited it under a glass case in the official residence of the Astronomer Royal for Scotland, where it has been closely measured, and its ascending angle found to be certainly between 51° 53' 15" and 51° 49' 55"; or as close as could be expected, from the block's size and fractured condition, to that typical 51° 51' 14", about which all the fragments of the Great Pyramid are found to collect.

But none of the fragments of the other pyramids of Egypt do so. Their casing-stones were sometimes worked with equal hand-skill, so as to preserve one particular angle very closely over the whole surface of a large building, but it is always the wrong angle. The ability of head
was wanting there, and meaningless angles of 43°, 50°, 57°, 63°, and even 73° occupied, and wasted the time of their workmen.

Closer up in the very neighbourhood of the Great Pyramid, as on the hill of Jeezeh itself, some of the imitation pyramids could hardly fail to be nearer their original, and were in fact within half, or three-quarters, of a degree. But they are constant at that deviation; and as we proceed with our inquiry, we shall find other constructive features which separate them further still, and at last irretrievably.
CHAPTER III.

STANDARD OF LENGTH.

A Foot Standard unsuitable for π on the Great Pyramid’s Scale.

In the process of recomputing Mr. Taylor’s circumferential analogy of the Great Pyramid on p. 24, after his own manner, by linear vertical height and linear horizontal base-breadth, the quantities which we worked upon, were expressed in English feet;* but it is not therefore intended to imply that they, or indeed any foot-measures, were employed by the ancient builders.

Certainly the length, want of meaning, and inconvenience of the fractions obliged to be introduced in order to represent the true, or π, proportion of the one pyramid element to the other, in these particular, absolute, linear terms, tend to forbid the idea. No doubt that a foot is something of a natural and very common measure,† and may have been (I do not say that it was) extensively used in the patriarchal world for many agricultural and other operations, which, if lowly, “are innocent and hurt not;” but still there is good reason for disputing whether a “foot” was ever lifted up against that grandest building

* Viz. vertical height = 486·2567 feet, and length of one side of base = 763·81 feet.
† The natural or naked foot of man is shorter, say about 10·5 in place of 12 inches; but the practical foot of civilized man, sandalled, shoed, or booted, is often more than 12 inches long.
of all antiquity, the Great Pyramid, by any of the constructors, or applied to it by the authors, thereof.

If then a foot-measure was not likely, and the profane Egyptian cubit (whose length was close to 20.7 British inches) gave similarly inconvenient fractions, what sort of standard of linear measure was likely to have been employed at the building, or rather by the very builder and architect of the whole design of the Great Pyramid?

What Standard would suit \(\pi \) on the Scale of the Great Pyramid?

As a first step in such an inquiry, let us see whether an equally exact proportion between linear height and twice base-breadth, to what our long fractions of feet gave, cannot be obtained from some simpler number. Take, for instance, 116.5:366.0. These do not give the value of \(\pi \) exactly, as no simple numbers can, when the proportion itself belongs really to the incommensurables; but it is an astonishingly close approach, and an admirable clearing away of fractional troubles in all approximate work, for such plain and small numbers to make; and the exceedingly trifling fraction* by which the one should be increased, or the other decreased, does not, in the existing state of our pyramidal knowledge, make much practical difference upon most of the questions which we shall have presently to take up.

Are there, however, any other reasons than such mere convenience, why we should attach any real significance, in the design of the Great Pyramid, to these particular numbers?

There are such reasons.

In the first place, 366, which represents here (for our arbitrary diameter of a circle 116.5) the \(\pi \) circumferential

* Either 116.5014:366.0000, or
 116.5000:365.9966, would be closer, and not so convenient in multiplication and division.
analogy of that circle, is also the nearest even number of
days in a year; or more precisely, of mean solar days in a
mean tropical solar year (of the earth); or, again, of day-
steps in the circle of the earth's year, which year is the
most important of all circles to the physical life of man.

We now know, by modern science, that the exact num-
ber of these day-steps in such terrestrial year is 365·2422
+ an almost endless fraction of unascertained length;
though practically, and for the ordinary purposes of life,
all civilised nations now use 365 even; except in leap-
year, when they do, evenly also, make their year to con-
sist of 366 days.

In the second place, it may be stated, that that portion
of the Pyramid employed as the chief datum of linear
measure in the problem under discussion, viz. the length
of each side of its square base as determined by the
"socket" measurements, both of the French savants and
Colonel Howard-Vyse, when it comes to be divided into
366 parts, seems to give each of them a length approach-
ing nearly to one ten-millionth of the earth's semi-axis of
rotation, or close upon 25 British inches. Equivalent,
therefore, if further and independently proved, to the
architect having laid out the size of the Great Pyramid's
base with a measuring-rod 25 inches long in his hand,—
and in his head, the number of days and parts of a day in
a year; coupled with the intellectual and instructive
direct intention to represent that number of days in
terms of that rod on each base-side of the building.

A Day and Year Standard indicated, with Earth
Commensurability.

Now this is a feature, in all sober truth, if that quantity
of length was really used intentionally as a standard of
measure, of the most extraordinary importance; for it is
only since Newton's time that men knew anything ex-
time of the first edition of this book being published, the only admissible, because the only socket-founded, determinations of the base-side lengths that I was acquainted with were, 1st, the French one (see p. 22) = 763.62 English feet = 9163.44 British inches; and, 2nd, Colonel Howard-Vyse's, of 764 English feet = 9,168 British inches; and both of them are far too large.

This error, if it is so, did not affect our determination in the last chapter for the π shape of the Great Pyramid, because we computed the height in terms of this same base-breadth by reference to an angle observed quite independently. But now we require to know more positively whether the length then used was real or figurative only; and when I was actually at the Great Pyramid in 1865, Messrs. Aiton and Inglis, engineers, succeeded in uncovering all four of the Great Pyramid's corner sockets (as duly detailed in my book, "Life and Work"), and then proceeded to measure from socket to socket every one of the four sides of the base: and with what result? They made them all shorter, far shorter; to me it was at first incredibly shorter, than both the French and Howard-Vyse determinations, or equal only to 9,110 British inches on the mean of the four sides.

Either their measures then must have been very bad and too short, or those of the French and Colonel Howard-Vyse were also bad and too long. And why was there so much badness amongst them? Mainly because the ground to be measured over is covered, and heaped, and thrown into horrible confusion of ups and downs by those hills of rubbish, formed by the fragments of casing-stones, of which we had so much to say in the last chapter. Very useful were they then, for the angular fragments they yielded; but dreadfully obstructive now, when a linear measure over a long distance is wanted; and, like all distance-measuring in surveying work, it is required to be in a straight and level line only, for ultimate use or reference. Each
measurer hoped that he had cleverly corrected his really up-and-down measures to what they would have been if the ground had been level—but when their severally independent results are brought together, behold how they differ! And this, remember, is modern science, critical.

After much consideration I was inclined to divide the errors very nearly evenly between the several parties, in my book "Life and Work," published in 1867; adopting, therefore, neither the 9,168 or 9,163 on one side, nor the 9,110 on the other, but 9,142. And in 1869, when the Royal Engineer surveyors, returning from the Sinai survey, went (according to orders) to the Great Pyramid, and announced, through their colonel at home, that the mean length of a side of its square base, from socket to socket, was 9,130 British inches, they were nearer to 9,140 than to any of the measured results.*

But as there are internal features of evidence that none of the measures, not even the last, were accurate enough to be depended on to the third place of figures (whether measured upon only one side, or all four sides, of the base considered square by everybody), all men are at this very moment left by the last Pyramid base-side measurers of modern times in this predicament—viz. the theoretical length of 9,140 inches, which would imply such almost unutterable wisdom, or such inconceivably happy accident,

* The Great Pyramid's base-side length, "by the Ordnance Surveyors," was recently quoted from Sir H. James by the Warden of the Standards in Nature as 9,120 Br. inches. But this was an error; for on page 7. line 4 ab inu, Sir H. James (then Colonel, now General), R.E., states distinctly, in his "Notes on the Great Pyramid," that the "mean length of the sides obtained by the Ordnance Surveyors was 9,130 inches;" and it is only when he goes on, at home and in the closet, to take the mean of his men's 9,130, with Aiton and Inglis's 9,110,—wholly excluding the French surveyors and Colonel Howard-Vyse,—that he announces that "9,120 inches was therefore the true length of the side of the Great Pyramid when it stood perfect." The reason of this dishonourable shelving of the most honourable older observers, with their larger results, is shown in the next line, where the Colonel develops his strangely mistaken theory of the much later Greek cubit having decided the length of the early Great Pyramid base-side, and requiring such a length as 9,120 inches; of which more anon.
for that primeval time, on the part of the designer of the Great Pyramid, is really found amongst, or as though it were one of, the best conclusions of modern measure. It is, indeed, notably confirmed by them; or may be asserted upon and by means of them, within such limits as they can confirm anything; and if those limits are coarse, that coarseness is entirely the fault of the modern measurers, not of the ancient building; which, founded on a rock (and an admirably firm and nearly unfissured hill of dense rock of nummulitic limestone, in nearly horizontal strata), could not possibly have expanded and contracted between the successive modern dates of 1799, 1837, 1865, and 1869 A.D., as the recent measures seem at first to imply. The variations, therefore, first from 9,163 to 9,168, then to 9,110, and then to 9,130, must be merely the plus and minus errors of the modern measurers: or of men intending honestly to do well if they could, but erring involuntarily, sometimes to one side and sometimes to the other of absolute exactitude.

The Earth-axis, and Year-commensurable, Result further indicated.

Of course better measures than all that have been yet taken, might be made in the present age of science, and should be instituted forthwith, to clear up so notable a point in the primeval history of man; but the expense to be incurred in the preliminary clearing of the ground from those obstructing rubbish-heaps of broken stones, to allow of accurate measuring apparatus being brought to bear effectually, is beyond the means of any private and poor scientific man; and the Great Pyramid is not a favourite subject either with rich men or the powerful governments of wealthy nations: while the invaluable corner sockets, never properly covered up since 1865, are daily being trodden and cruelly broken down at their
edges out of shape and out of size; so that we are not likely to see speedily, if ever, any better measures of the Great Pyramid's base-side length than those already obtained.

But as they, when considered by any computer fully, honestly, and fairly, do include the theoretical 9,140 British inches, we are already justified so far (and we shall have in a future chapter signal confirmation from the interior of the Pyramid), in upholding the high degree of probability that the reason why the Great Pyramid (made already of a particular shape to enunciate the value of the mathematical term π) had also been made of a particular size, was,—in part, to set forth the essence of all true chronology for man in recording the order of his works, and in understanding the chief physical basis on which he is ordained to prosecute them, upon this earth. For evidently this was accomplished there, by showing that the number of times that the Pyramid's standard of linear measure would go into the length of a side of its square base, was equal to the number of days and parts of a day, in the course of a year. That standard of linear measure being, moreover, with a marvellously complete appropriateness of symbology, the ten-millionth of the length of the earth's semi-axis of rotation: or of half of that axis, by the earth's rotating upon which before the sun, that particular number of days for work and nights for rest is constantly being produced for all humanity in the course of the earth's annual revolution around the sun.

Hence there is here wheel within wheel of appropriate and wise meaning, far above all the then contemporary knowledge of man, and indicating far more than any mere single case of simple coincidence of numbers. A grouping, indeed it is, of some of the earth and heaven relations established by the Creator for the accompaniments of human life, which implies something vastly beyond mechanical
accident on the part of the unknown ancient architect, though modern Egyptologists and the ancient Egyptians, and all the rest of the pagan world too, both see, and saw, nothing in it. The affair was, moreover, perfectly open, because it was on the surface, during all antiquity; and especially open during the days of the Greek philosophers in Alexandria, when the Great Pyramid was still complete in size and finish, with its bevelled casing-stones forming the then outside finished surface of the whole; and the ground round about so eminently free from the present obstructions, and all others too accompanying ordinary masons' work, that Strabo declared the building looked as if it had descended upon its site ready formed from Heaven, and had not been erected by man's laborious toil at all.*

Any of those learned Alexandrians, therefore, Greek mythologists and idolaters though they were, might, by merely dividing the Pyramid's base-side length by the number of days in a year, have acquired to themselves, with both ease and accuracy, the most valuable scientific standard of length contained in the whole physical earth; but none of them did so; or rather was allowed so to do.

* The question which chiefly troubled poor Strabo was—"What have the builders done with their chips? Here is the most enormous building in the world, constructed almost entirely of stones squared by man's hand, so that the involuntary production of chips must have been immense; but none of them are to be seen; all round the Great Pyramid is a level area swept as clean as if no stones at all had ever been chipped or squared upon it." Yet what he could not discover, time and the weather of 1,800 years since his day have abundantly revealed; for the said primeval chippings by the original masons (a totally different affair from, and on an enormously larger scale than the hills of rubbish of the casing-stone fragments of Mohammedan time now to be seen about the building), were all thrown over the northern edge of the Pyramid hill, or firmly banked up against the natural cliff on that side, and levelled on the top so as to extend the esplanade on the northern front of the monument. And there a good photograph from the north-east sand-plain shows them still to be; discriminating admirably between the natural hill, and this adventitious addition to it. (See Plate VI.)
Beginning of Reference to the Great Pyramid’s Numbers.

And the affair grows in wonder the further we inquire into it. For Mr. Taylor, led by the numbers of British inches which measure the earth’s polar-axis length—and other men, also led by the dominance of fives in the Pyramid’s construction (as that it has five angles and five sides, including the lower plane of the base mathematically as one)—ventured the suggestion, that the author of the Great Pyramid’s design both had, and used, as his smaller unit of measure, an inch. An inch, though, larger than a British inch by a thousandth part, i.e. about half a hair’s breadth; an apparently unimportant quantity, and yet it is that which enables the round, and at the same time grand, Pyramid number of five hundred millions of them, even, to measure the length of the earth’s polar diameter with exactitude.

With these inches, the day standard of linear measure for the side of the base of the Great Pyramid is 5×5, or just 25 of them; and that length, while it will be shown presently to be fully deserving of the appellation, amongst all Christians, of “Sacred Cubit,” we shall in the meanwhile only call the cubit of the Great Pyramid’s scientific design. But in its inches, the side of the Great Pyramid’s base will no longer now measure 9,140, but 9,131.05. Next, as there are four sides to the Pyramid’s base, the united length of all of them evidently equals 365.242 of the same Pyramid inches; or, at the rate of a round hundred of those inches to a day, the whole perimeter of the building (already shown to represent the theoretical π circle) is here found to symbolize once again, in day lengths, 365.242, or the practical circle of the year, so essential to the life and labours of man.

Now, is it not most strange,—or rather, is it not ominously significant, that the ancient profane cubit of idolatrous and Pharaonic Egypt, 20.7 British inches long nearly,
if applied either to the Great Pyramid's base-side, or base-diagonals, or vertical height, or axis-lines, or any other known radical length of the building, brings out no notable physical fact, no mathematical truth? While the other length of 25·025 British inches (which the profane Egyptians, and the Jupiter, Juno, and Venus worshipping Greeks and Romans, when in Egypt, knew nothing of) brings out in this and other cases so many of the most important coincidences with the laws of Heaven and the ordinances of this earth we inhabit, as make the ancient monument, at once, speak both intelligibly and most intellectually to the scientific understanding of men of the present day; but preferentially to the men of Great Britain rather than to any other European nationality.

Why, it seems almost to imply—so far as the closeness of a 25 British inch length, to being a true key for opening this part of the design of the Great Pyramid, is concerned—that there was more of intercommunication in idea and knowledge between the architect of the Great Pyramid, and the origines of the Anglo-Saxon race, whoever they were, than between the said architect or designer of the one Great Pyramid in Egypt, and all the native Egyptian people of all the ancient ages, with their invariable 20·7 inch cubit. A standard of measure, that, which has had no doubt a strangely long existence in the world, or more than 4,000 years, but explains nothing for the Great Pyramid; nor for the Egyptians, except their early connection with Babel; and they, the holders of that linear standard, idolaters worse than Babylonian, and intense Cainite religious professors every one of them.

Neither can any other pyramid in Egypt presume for a moment to compete with the Great Pyramid in this all-important 25-inch-standard matter. That is, none of their base-side lengths, when divided by the number of days in a year, are able to show that crucial quantity, or anything near it. The general instinct of the whole
human race through all ages, in so readily and universally allowing to the first Pyramid the surname of "Great," has been well borne out by the application of modern measure. That method has, indeed, and as we have just seen, its uncertainties, but within comparatively narrow limits; so that while the ancient base-side length of the Great Monument has been quoted so low as 9,110, it has also been quoted so high as 9,168 British inches, and in a manner to lead to the inference that 9,140 is very nearly the true quantity.

But what are the measures of the base-side lengths of the greatest of the other Pyramids of Egypt, taken in the same manner?

When measured by Colonel Howard-Vyse and his assistant, Mr. Perring (the authors of the 9,168 measure for the Great Pyramid, and therefore rather liable to err in excess than defect)—they, that is the respective ancient base-side lengths, are reported thus:

<table>
<thead>
<tr>
<th>Pyramid</th>
<th>Length (British inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Second Pyramid of Jeezeh</td>
<td>8,493</td>
</tr>
<tr>
<td>North Stone Pyramid of Dashoor</td>
<td>8,633</td>
</tr>
<tr>
<td>South Stone Pyramid of Dashoor</td>
<td>7,400</td>
</tr>
<tr>
<td>The chief Pyramid of Saccara</td>
<td>4,727</td>
</tr>
<tr>
<td>Third Pyramid of Jeezeh</td>
<td>4,254</td>
</tr>
<tr>
<td>The chief Pyramid of Abooosir</td>
<td>4,317</td>
</tr>
<tr>
<td>Northern Brick Pyramid of Dashoor</td>
<td>4,200</td>
</tr>
<tr>
<td>Southern Brick Pyramid of Dashoor</td>
<td>4,110</td>
</tr>
<tr>
<td>Pyramid-base of Mustabat el Pharaoh</td>
<td>3,708</td>
</tr>
<tr>
<td>Foundation for a Pyramid at Aboo-Rosah</td>
<td>3,840</td>
</tr>
</tbody>
</table>

And so we might go on through all the thirty-seven, continually diminishing, until the last of them, one of the Pyramids of Abooosir, has a base-side length of only 905 British inches.

The Great Pyramid's Linear Standard contrasted with the French Mètre.

We have thus arrived by a comparatively short and easy path, and dealing only as yet with the externals of the monument, at the same chief result touching the Great
Pyramid's standards and units of linear measure, and a probability of whence the British inch was derived in primeval days of purity and patriarchal worship before idolatry began,—which Mr. Taylor equally obtained, but by a more circuitous process; and what a result it is, in whatever point of view we look upon it, or by whatever fair road we have attained to it!

The nations of the world three thousand years ago, of their own selves and by their own knowledge, cared little about their national measures beyond their use as such; and knew nothing but what was childish with regard to the size of the earth, so that all our present exact acquaintance with it is confined within the history of the last hundred years. The great attempt of the French people, in their first Revolution, to abolish alike the Christian religion, and the hereditary weights and measures of all nations, and to replace the former by a worship of philosophy, and the latter by their "mètre," "French mètre," scheme depending in a most unfortunate and ill-advised manner of their own upon the magnitude of the earth, as well as to substitute the week of seven days by an artificial period of ten days,—is only eighty years old. And how did they, the French philosophers, endeavour to carry out the metrological part of their scheme? By assuming as their unit and standard of length, the 1-10,000,000th part of a "quadrant of the earth's curved surface!" Well may we ask with surprise if that was all that science, trusting in itself, was able to do for them. For the grasp and understanding of the subject, that took a curved, a crooked, line drawn on the earth's surface in place of the straight axis of rotation, was truly inferior in the extreme. Sir John Herschel has well said, but after John Taylor's statement about the Pyramid had lighted up his mind with the exquisite thought, of how near after all the British hereditary inch is to an integral earth-measure, and the best earth-
measure that he had ever heard of,—Sir John Herschel, I repeat, has said, "So long as the human mind continues to be human, and retains a power of geometry, so long will the diameter be thought of more primary importance than the circumference of a circle;" and when we come to a sphere, and in motion, the axis of its dynamical labour should hold a vastly superior importance still. The Paris superficial, and curved, mètre idea, continues he yet more emphatically, "was not a blunder only: it was a sin against geometrical simplicity."

Again, those French philosophers of eighty years ago, in fixing on a Meridional quadrant of surface for their mètre's derivation, had no idea that within the last fifteen years the progress of geodesy would have shown that the earth's equator was not a circle, but a rather irregular curvilinear figure,* perhaps ellipsoidal on the whole, so that it has many different lengths of equatorial axes, and therefore also different lengths of quadrants of the Meridional in different longitudes. They, the savants of Paris, could not indeed foresee these things of the present day, or a state of geodesic science beyond them; and yet these things were all taken into account, or provided for, or certainly not sinned against, by the grand, and as yet mysterious, mind that directed the building of the Great Pyramid 4,040 years ago; and the reference for the ruling standard, the 10th, or ten-millionth, part of the earth's polar semi-axis, then adopted, is now shown to be the only sound and scientific one which the earth itself possesses.

Through those long medieval periods, too, of darkness, confusion, and war, when our nation thought of no such things as mathematics, geodesy, and linear standards, another, if not the same, master-mind, very much like

Providence, prevented our hereditary and quasi-Pyramid, smaller unit of measure, the inch, from losing more than the thousandth part of itself. For this is the result, if it turns out as John Taylor believed—and as he was the first of men in these latter days both to believe and to publish his belief—that the Great Pyramid is the one necessarily material centre from which those practical things, weights and measures, in a primeval age, somewhere between the time of Noah and Abraham, take whatever chronology you will, were Divinely distributed, though to certain peoples only; and were carried by them in faith and with the utmost regard of each national mind from land to land; for some special purposes of a grand future manifestation, which is yet to make its appearance on the stage of human history.
CHAPTER IV.

THE EARTH-SIZE AND SUN-DISTANCE.

HAVING established thus much, though to such degree of approximation only as yet, touching the shape, size, and linear standard of the Great Pyramid, it may be worth our while to bestow some special attention on another analogy between that building and the earth, published by John Taylor; and which, on being examined soon afterwards by Sir John Herschel,* was honourably declared by him to be, so far as he then knew, the only direct relation between the size of the earth and the size of the Pyramid which had up to that date been successfully made out; though at the same time he expressed his belief that it was only approximate.

A most useful caution; and keeping it fully in view, let us test the supposition over again and in terms of those very pyramidal units and standards which we ourselves have now obtained; for inasmuch as they allow us to speak of the Great Pyramid in the actual primal measures apparently employed by its architect in planning the design, we may thereby be enabled to put his work to a stricter test and more immediate proof.

The analogy is, when put into the form subsequently

* Athenæum, April, 1860; and Mr. Taylor's 'Battle of the Standards,' 1864. See the Appendix to the Second Edition of his 'Great Pyramid.' Longmans & Co.
chosen by Sir John Herschel, "a band encircling the earth, of the breadth of the base of the Great Pyramid, contains one hundred thousand million square feet." The built size, in fact, of the Great Pyramid is here stated to bear such a remarkably round and even number, as its proportion to the created size of the natural earth (at the epoch of its human habitation, for that is a very necessary limitation both of time and circumstance to keep in view), that an argument for intention rather than accident may spring therefrom, if it hold closely in fact.

The feet to be used on such an occasion can hardly be any other than Pyramid feet, or 12 Pyramid inches set in a line; and the part of the earth for the colossal band to encircle, what should that be?

Though it is allowable enough, and very useful too in approximate work, to speak of the earth as a globe, or sphere, whose every great circle, or section through its centre, will have the same length of circumference, we cannot so do, or content ourselves therewith, either in accurate modern science on one side, or in any advanced stage of Pyramid investigation on the other; especially when some of our earliest discoveries there, indicated that its design discriminated between the axis of rotation diameter, and any and every other possible diameter through the really spheroidal, or ellipsoidal, or chiefly flattened-at-the-poles figure, of the great mass of the earth.

Let us come to some very clear conclusion then on the size and shape of our planet, the earth, in Pyramid units of measure too, before we attempt the solution of any further problem supposed to connect the two.

Of the Length of the Earth's Polar Axis.

Expressed in Pyramid inches (each of them 0.001 of an inch longer than the national British inch), the polar diameter, or axis of rotation of the earth, has been stated
by different observers of the best modern schools of the present time to be either 499,878,000 or 500,060,000 Pyramid inches in length, or any and almost every quantity between those limits. They cannot, in fact, be determined much closer by the best measures of the best men in the present day; and although one nation publishes its results to an arithmetical refinement of nine places of figures, it cannot convince any other nation of its correctness beyond the first three places of figures. Some of them may agree to four places, few or none of them to five or six or more places. Therefore, in this case and all other similar ones throughout this book, I shall try to simplify all numerical statements of measures by only entering the significant numbers as far as they can be depended upon. Hence the 000 with which the above statements terminate are merely to give the proper value to the preceding figures, and not to indicate that any one man's measures of the earth gave forth an even number of inches in tens, hundreds, or thousands.

"But why do they not ascertain what the length of the earth's axis is, and state it exactly?" may ask many a reader, not directly experienced in practical scientific measurement. Well, by all means let any and every such reader ask, and ask again, that question in the proper quarter. Let him ask, for instance, at the Ordnance Survey Office in Southampton, and from the Trigonometrical Survey of India, where generations after generations of Engineer officers have been taken away from their proper military duties, and kept at nothing but observations and calculations to get at the size and shape of the earth all their lives long. They have lived and died at that employment alone, and are still succeeded at the task by others, and yet it is not completed. In fact, the expense of the methods and the men employed, is increasing every day. And not in our country alone, but in every state on the Continent, is similar work going on, and with
less chance than ever of one exact, absolute, and universally admitted conclusion being ever arrived at.

Neither is this any fault of those individuals; it is the nature of human science, because it is human and not Divine. Human practical science can only go on by approximations, though it work at one and the same simple subject for ages. And though the subject itself in nature and to the eye of its Creator is absolutely simple, human science makes it so complicated and difficult as it advances with its successive inductive approximations, that the matter is crushed in the end by its own weight; and at last falls out of the range of all ordinary men to deal with, or even to be interested in.

Not only, too, do the experts of two different countries produce different measured results for the size of one and the same earth’s axis of rotation, but they produce different results in computing the same observations; until even one and the same computer will produce varying quantities out of the same data by different methods of computation; the absolute correctness of any of which methods he does not pretend to guarantee, though he can say a great deal for them all, in the present advanced state of the science.

Latest Determination of the Earth’s Polar Axis.

A good example of this condition of our best knowledge of the earth’s size was given by a volume published by the Ordnance Survey in 1866. It contained some splendid computations by Colonel Clarke, R.E., the chief mathematician of the establishment, and gave perhaps the most highly advanced results of all earth surveys then made by any and every nation. Yet he presents his final results in two different shapes, and by one of them makes the polar axis of the earth (reduced here from British into Pyramid inches) to measure by one mode of
computation 499,982,000, and by another 500,022,000; leaving the reader to choose which he likes, or any mean between the two.

That publication was, in its day, a most creditable advance upon everything before it; but now, in place of being contented with either one or other or both of those results, all European countries are engaged on further more numerous, more extensive, more tedious, and more costly measurements of the earth; which measurements, after the consumption of more millions of money, may enable the successors of the parties concerned, in the course of the next century or two, to amend the above numbers by some very small fractional part; but which way, and how much, there is no saying.

In a work entitled "The Metric System," by President Barnard, of Columbia College, New York, 1872, that able analytical mathematician and forcible writer, at pages 94 to 105, sets forth admirably, and in good plain words, the inconceivable practical difficulties which small irregularities in the earth's figure throw in the way of modern science determining the size and shape of the whole earth to any much further degree of refinement. And, wonderfully extensive, as well as dreadfully expensive, as have been the geodesic operations of all nations, taken together, during the last hundred years, he considers that all their resulting data, expressed by him shortly as "40 latitudes," must eventually be increased to not less than 4,000 such, before the observed materials for computing the earth's size will be worthily ready for the mathematicians to begin their unwieldy, unenviable, and humanly almost impossible, discussions of high, modern-day science upon.

Equatorial, and other, Diameters of the Earth.

Meanwhile we have already assumed as the polar-axis length for computation in the Pyramid comparisons,
500,000,000 Pyramid inches; and that being a quantity which this recent Ordnance publication may, and to a certain extent does, and must, largely confirm, but cannot overthrow, let us hasten on to an equally close knowledge of what the other diameters of the earth may measure.

These lengths depend partly on what amount of elliptical compression the computers assume, as either $\pi \sqrt{2}$, $\pi \sqrt{3}$, or $\pi \sqrt{4}$, from special measures of it; and partly what shape they assign to the section of the earth at the equator, where a species of transverse elliptical compression is supposed to exist (not absolutely, but only with a certain slightly different degree of probability that it is so, rather than not) by the Ordnance book; but to an extent that may make one of the equatorial diameters 150,000 Pyramid inches longer than another.

Without then attempting to decide any one's correctness, I have represented these extremes in the accompanying table, and placed between them the very set of earth-measures which I had computed as probably nearest the truth in the first edition of "Our Inheritance in the Great Pyramid."

Table of Earth's Size in Pyramid Inches.

<table>
<thead>
<tr>
<th>Parts of the Earth referred to</th>
<th>Result with Clarke's smallest equatorial diam. 1866.</th>
<th>Result adopted in "Our Inheritance, etc." First edition, 1864.</th>
<th>Result with Clarke's largest equatorial diam. 1866.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polar Diameter</td>
<td>500,000,000</td>
<td>500,000,000</td>
<td>500,000,000</td>
</tr>
<tr>
<td>Diameter in Lat. 60</td>
<td>500,396,000</td>
<td>500,420,000</td>
<td>500,435,000</td>
</tr>
<tr>
<td>" " 45</td>
<td>500,792,000</td>
<td>500,840,000</td>
<td>501,869,000</td>
</tr>
<tr>
<td>" " 30</td>
<td>501,186,000</td>
<td>501,257,000</td>
<td>501,301,000</td>
</tr>
<tr>
<td>" Equator</td>
<td>501,577,000</td>
<td>501,672,000</td>
<td>501,730,000</td>
</tr>
</tbody>
</table>

John Taylor's Analogy tested.

With these data at our command, let us return to the Taylor-Herschel Pyramid analogy, which asserts that "a band of the width of the Great Pyramid's base-breadth
encircling the earth, contains 100,000,000,000 square feet."

An equatorial band is the only one which could encircle the earth in a great circle, and at the same time in one and the same parallel of latitude. We proceed, therefore, thus: from the equatorial diameters given above, we compute the equatorial circumferences by multiplying them by that almost magic number to work calculations with, the \(\pi \) of the Great Pyramid, or 3.14159, &c. Reduce them to Pyramid feet by dividing by 12, and next multiply by the already determined Pyramid base-breadth in Pyramid feet, viz. \(\frac{213}{65} = 760.921 \); the following results then come out, viz.:

They all give smaller figures than the required 100,000,000,000; for the smaller equatorial diameter gives 99,919,000,000, and the largest equatorial diameter gives 99,949,000,000.

Not absolutely true, therefore, with any allowable equatorial diameter, further than the first three places. An interesting approximation,* therefore, but by its very want of being closer, indicating that there may be something still grander than the size of the earth alone, to be typified by the completer measures of the Great Pyramid, and by viewing them in a different set of relations; just as, when the point of suspension of a

* Even one very close approximation by mere accident is not, however, so frequently met with as some persons imagine. For whereas in 1869 one of the Ordnance officers attempted to turn the pyramid cubit into ridicule as an earth-measure,—"Because," said he, "the British foot is as closely commensurable a measure of an equatorial degree of longitude, in terms of the year and its days too, as the pyramid cubit of the earth's polar semi-axis (i.e. five places of numbers); and we know that that relation of the modern foot must be purely accidental!"—yet when I came to test the assertion by calculating the matter out, I found that the officer had taken Colonel Clarke's maximum equatorial radius on the ellipsoidal theory, had used it as though it had been the mean radius, and did not get the full number he required for his assertions even then. So that his number, instead of coming out to 365,242, only reached 365,234, but had no right to be quoted higher than 365,183; and there all the scoffers' reasoning and analogy ended, while the Pyramid's continued to go forward to greater things.
steel-yard is changed, and all its indications are multiplied in value.

Grander Pyramid and Solar Analogy.

Something then further than earth-size reference had been deemed possible in the Great Pyramid, but was only at last obtained when Mr. William Petrie, C.E., after studying the mensurations detailed in “Life and Work,” in October, 1867, deduced the mean distance of the earth from the sun, or the sun from the earth; in fact “the Sun-distance,” to be the quantity hitherto vaguely expected only. An enormous length of line, even in the heavens, is this sun-distance; and before which the mere size of the earth vanishes into almost nothingness; yet is it a distance from the great centre of light, of heat, and support of all physical, terrestrial life, on which man’s existence eminently depends, on which all his science is intimately based, and concerning which it behoves him to know fully as much as it may have pleased the Creator to permit him to learn.

Mr. Petrie had remarked, and naturally enough, that the circle typified by the base of the Great Pyramid has already been proved to symbolize a year, or the earth’s annual revolution around the sun; and the radius of that typical circle had also been shown to be the ancient vertical height of the Great Pyramid, the most important and unique line which can be drawn within the whole edifice.

Then that line, said he further, must represent also the radius of the earth’s mean orbit round the sun, however far away that may be; and in the proportion of 10^9, or 1 to 1,000,000,000; because, amongst other reasons, 10 : 9 is practically, in one mode of viewing it, the shape of the Great Pyramid. For this building, notwithstanding, or rather by virtue of, its π angle at the sides, has practically
and necessarily such another angle at the corners (see Figs. 1 and 2, in Plate XVII.), that for every ten units which its structure advances inward on the diagonal of the base, it practically rises upwards, or points to sunshine, by nine. Nine too, out of the ten characteristic parts (viz. five angles and five sides), being the number of those parts which the sun shines on in such a shaped Pyramid, and in such a latitude, out of a high sky; when the sun "sits on the Pyramid with all his rays," and the building is then said "to devour its own shadow."*

The Pyramid Sun-distance.

To computation Mr. Petrie instantly proceeded, reducing the 5,813 Pyramid inches of the Great Pyramid's height to British inches, multiplying them by 10^9, and reducing those inches to British miles,—when he worked out the quantity 91,840,000 of those miles. Alas! sighed he, the analogy does not hold even in the second place of figures, for the real sun-distance by modern astronomy has been held during the last half-century to be 95,233,055 miles.†

So he threw his papers on one side, thinking he had

* This 10:9 shape of the Great Pyramid was independently discovered soon afterwards by Sir Henry James and Mr. O'Farrell, of the Ordnance Survey Office; and it is interesting to notice that the side angle computed from it amounts to 51° 50' 39''·1; the π angle being 51° 51' 14''·3; and the angle from Mr. Taylor's interpretation of Herodotus, or to the effect of the Great Pyramid having been built to represent an area on the side, equal to the height squared, 51° 49' 25''. The vertical heights in Pyramid inches are at the same time, using the same base-side length for them all—by the 10:9 hypothesis, 5,811; by the π hypothesis, 5,813; and by the Herodotus-Taylor hypothesis = 5,807.

† Mr. Petrie may have used, and indeed did use, and I believe still upholds (though on what I am compelled to consider an unfortunately mistaken and unfounded idea) a rather greater measure, viz. 5,823 Pyramid inches, for the Great Pyramid's vertical height; in which case his sun-distance comes out also greater than our 91,840,000 British miles. But so slightly greater, in comparison, that the general nature of his result and its bearing on the 95,233,055 miles sun-distance of all high-class European astronomy up to within fifteen years ago, remain sensibly just the same.
erred altogether in the very conception, and attended to other matters; until one fine morning he (a professional man then almost wholly and intensely occupied with chemical engineering, besides his own serious religious avocations) chanced to hear, that although the above number, ninety-five millions odd, had been held to for so long by all the modern world, mainly because it had been produced by the calculations of a late first-rate German astronomer (calculations so vast, so difficult, and with such a prestige of accuracy and power about them, that no living man cared to dispute their results), yet the astronomical world had been forced to awaken during the last twelve years to a new responsibility, and not only admit that the number might possibly be erroneous, even very erroneous, or actually in the second place of figures, but to institute many series of difficult observations on either side of the world at the same time, for endeavouring to determine what the correction should be.

Such observations, too, actually had just then been collected from either hemisphere, and the daily press was full of their new-computed results. And what were they?

Why, one group of astronomers of several nations declared the true mean sun-distance to be about ninety-one to ninety-one and a half millions of miles; and another group of the same and other nations declared it to be from ninety-two and a half to ninety-three millions of miles. And while they were fighting together as to whose results were the better (an actual duel with swords was expected at one time between M. Le Verrier and the late lamented M. De Launay), Mr. Petrie steps in and shows that the Great Pyramid result, which he had formerly allowed to drop from his hands, out of his exceeding respect to all modern science from the beginning of learning up to the year 1855 A.D., is between these latest and greatest two; indeed, it is almost exactly the mean between the contending parties, and forms there-
fore in itself, and in all its grand simplicity and antiquity, a single representation of the whole of the numerous, laborious, and most costly sun-distance results of all humankind even in the present age.*

Granting then that modern science is now, i.e. not in that past day of 1855 or 1860 A.D., but in 1874 and 1877 A.D., so far advanced that it may talk, at least on a mean of all its best results, with some degree of confidence at last of what may not improbably be the true, real, celestial sun-distance,—the correct figures for it were given, and built up, by the Great Pyramid’s design 4,040 years ago; or before any nations of mankind had begun to run their independent, self-willed, theotechnic, and idolatrous courses. And if we desired any additional proof to the records of the history of science in general, and of the sun-distance problem in particular,† that such knowledge could not have been obtained in that early day, when men were few and weak upon the earth, and confined to inhabit a very small portion only of its surface,—except their knowledge came from Divine inspiration,—the

* A word of advice may be looked for here; seeing that, in spite of our steel-yard comparison and allusion to the principle of limits on a former page, some critics have remarked,—“You claimed in Chapter II. that the size of the Great Pyramid was regulated by the number of days in the year and the length of the ten-seventh part of the Earth’s semi-axis of rotation; and now you want to say that it was regulated by the height of the ten-ninth part of the Sun’s mean distance from the earth. Do you then give up the former?” By no means; there are good symbologies pointing to both in the building; and there are, here and there, in the solar system, man knows not how, some remarkable harmonics of measure and proportion; and these two are apparently of them. Not to absolute exactitude very probably, but to within a smaller fractional quantity than the science of modern times has yet measured to. See also a higher ground of the argument in the author’s review of Mr. Proctor’s late criticisms, in “Life from the Dead” for June, 1877; published by W. H. Guest, Paternoster Row, London.

† In the age of the Greeks, the distance attributed to the sun from the earth began with the infantine quantity of about ten miles; it increased slowly to 10,000; still more slowly to 2,500,000; then, after a long delay, increased to 30,000,000, under German Kepler; to 78,000,000 in the days of Louis XIV., under French La Caille; and only at length reached the full quantity, and then clumsily overpassed it, at the beginning of the present century, under the leadership of German mathematical astronomy.
modern astronomers are now splendidly, though involuntarily, affording it: giving, indeed, proof heaped on proof, in the enormous, multitudinous, almost ruinously costly preparations which they are making, at the expense of their respective nations, to observe the transit of the planet Venus over the sun's disc, merely as being the most favourable known step for them in their endeavours towards getting the sun-distance number of modern science, perhaps a trifle better, in the end of 1874.

Modern Astronomers are involuntarily proving that Man, unaided by supernatural Divine Power, could not possibly have measured the Sun-distance accurately in the Age of the Great Pyramid; and yet it is recorded there!

These preparations for observing the next Venus-sun transit by modern astronomers have already (1873) been going on for several years, and nothing of their kind so costly, so scientific, so extensive, was ever seen on the face of the earth before. From Europe to America, and from the most northern nation's old Hyperborean strongholds to the most distant and the newest colonies in the Southern Hemisphere, the busy hum resounds. Steam navigation, iron ships, electric telegraphs, exquisite telescopes, both reflecting and refracting, photographic machines of enormous power, refined "regulator" clocks, and still more refined chronographs, transit instruments, equatorials, spectrosopes, altitude-azimuth circles, all these modern inventions and many others, with all the learning of the universities, and numerous officers and men both of the army and navy, are pressed into the cause; preparatory computations, too, with much printing, engraving, and publication, have been going on for years; and all will be carried out almost regardless of expense, of time, of danger, of obstacles, to the most distant parts of the earth; and where necessary, to parts, some of them
in the tropics, and some in frozen oceans; which neither Greeks nor Romans in all their days, nor even our own fathers only seventy years ago, knew anything of.

But all this accumulated destination of power, of wealth, of numbers, of risk, co-operated in too by every civilised nation, is stated to be absolutely necessary; nothing of it can be spared, nothing omitted, if we are to enrich ourselves, in the present age, with a better result for the sun-distance than mankind has yet obtained; excepting always that one result laid up in the primeval Great Pyramid; but concerning which no official man is allowed to breathe a word, even as to its very existence, in London society and all the circle of its scientific associations; associations so aristocratic in their bearing, and yet scarcely more than a century old. So the expeditions will set forth gloriously next year, the favourites of Government and of Fortune. Astronomical observatories, attending to many other phenomena of the sky, may meanwhile languish and decay, left with only worn-out instruments to carry on their now underrated duties. Nay, indeed, looking to the tax-gathering-from-the-people origination of the funds for all this Venus-transit display, there are financial reformers in the country, only too ready to remark, that while the said expeditions are spending the national wealth upon distant coasts, at home large populations may be starving for want of the necessaries of life; and the crimes, as well as calamities, arising out of ignorance uneducated, crowding in squalid residences, and the innate wickedness of human nature when left to its own devices uncorrected, will go on wholesale, making our morning papers hideous. But for all that, the happy, chosen parties will sail with their treasuries of instrumental detail; and, if the usual consequences of successful scientific researches, of the more difficult order, follow, the science of the modern world will have occasion to boast, after it is all over, of having improved its number
for expressing the sun-distance—a little; and its acquaintance with certain disturbing phenomena increasing the transcendent difficulty of the observations, and throwing new doubts over the final result—a great deal.

The Great Pyramid before Science.

What a solemn witness to all these unequal efforts of mankind is not the Great Pyramid, which has seen all human actions from the beginning; from the time when men broke away in opposition to both the Divine rule and inspired teachings of patriarchal life, and wilfully went after their own inventions!

Placed in the midst among all men, and especially those of the earliest inhabited regions of the post-diluvial earth, thus has been standing the Great Pyramid from Dispersion times; and they, the men so honoured, never knowing anything of its knowledge capacity, or suspecting its profound meaning. Yet these things, or the types and measures of many of them, so far as we have seen them here, were on its surface all the time. Any one, therefore, through all history, who should have known, if he could have known indeed, the true sun-distance, had only to compare the Great Pyramid’s height with, reasoning at the same time on its shape, in order to be enabled to perceive that the measure of that all-important physical, astronomical, metrological, and anthropological quantity was nailed up there from ancient days; and in figures more exact than any that modern observations have done more than merely approximate to as yet.

In this grand symbology, too, the Great Pyramid is not only more favourably circumstanced than all the other Pyramids of Egypt,—but none of them have any place in the question. To be privileged to enter the lists, two data are necessary,—one, the π shape, to give the 10⁹
proportion. The other, an absolute amount of vertical height, which, in the case of the Great Pyramid, is by no one now assumed as less than 5,818, or more than 5,832, and believed to be most close to 5,819, British inches.

Now, as to the \(\pi \) shape, it has already been shown, in Chapter II., that not only none of the other Pyramids of all Egypt have that, but they persist in keeping to other shapes.

While as to their vertical heights, these are all far too small; the highest amongst them (as determined by Colonel Howard-Vyse and Mr. Perring) having measured in their complete ancient condition, as follows and no more:—

<table>
<thead>
<tr>
<th>Name</th>
<th>Height (British inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Second Pyramid of Jeezeh</td>
<td>5,451</td>
</tr>
<tr>
<td>North Stone Pyramid of Dashoor</td>
<td>4,111</td>
</tr>
<tr>
<td>South Stone Pyramid of Dashoor</td>
<td>4,029</td>
</tr>
<tr>
<td>South Brick Pyramid of Dashoor</td>
<td>3,208</td>
</tr>
<tr>
<td>Chief Pyramid of Abooseir</td>
<td>2,734</td>
</tr>
<tr>
<td>Third Pyramid of Jeezeh</td>
<td>2,616</td>
</tr>
<tr>
<td>North Brick Pyramid of Dashoor</td>
<td>2,586</td>
</tr>
<tr>
<td>Chief Pyramid of Saccara</td>
<td>2,495</td>
</tr>
<tr>
<td>Middle Pyramid of Abooseir</td>
<td>2,056</td>
</tr>
<tr>
<td>Pyramid-base of Mustabat el Pharoon</td>
<td>720</td>
</tr>
<tr>
<td>and Small Pyramid of Abooseir</td>
<td>564</td>
</tr>
</tbody>
</table>

Nor has any stone building whatever been erected in any age, even up to this present hour, high enough to compete with the Great Pyramid's glory in this one particular. (See Plate XXIV., representing all the buildings of the world, in time and in height.)

But again we shall have to tell, and from facts ascertained and ascertainable in just as eminently practical a manner, that all that wonderful scientific information (more than wonderful for the age and circumstances under which it was placed there) was not introduced into the Great Pyramid solely for strengthening men in science; much less was it to promote the worldly fame of the introducer.
Science is there, but mainly to prove to these latter scientific days of the earth, that the building so designed in the beginning of the human world has now a right, a title, an authority, to speak to men of these times, and even to the most scientific of them, on another and far higher subject; or of things unseen, yet quick and powerful, piercing even to the dividing asunder of the soul and spirit, and discerning the thoughts and intents of the heart.

Postscript in 1877 A.D.

So far was written in 1873. The Venus-Transit therein alluded to, came off most successfully as to innumerable observations of it being taken in December, 1874; and what is the result now, in February, 1877, on the world's present knowledge, by modern science, of the sun's true distance from the earth?

Nothing! Yes, indeed, with one solitary exception, presently to be alluded to, nothing! And yet rooms full of computers have been working away ever since at the necessary computations; but the further they go, the more unexpected difficulties they find. The optical phenomena connected with the physical nature of the sun's disc, and the disc of the planet, offer a host of difficulties. Photography, too, it was expected was going to be of so much facile, and even hasty, assistance, and yet the British Journal of Photography, of February 9th, 1877, contains the following:—

"It is stated on good authority that the measurements of the photographs of the Venus-transit—those for instance taken by the French parties—are not progressing favourably. More than 1,000 plates are to be investigated microscopically, and at the present moment only forty-seven have been disposed of. Unforeseen difficulties are said to have arisen."

Some of these may be guessed at, from the notices at
page 182 of the Royal Astronomical Society's Anniversary Report of February, 1877, wherein it is mentioned that in the special calculations to get the means for correcting the distortion of the photographs at certain of the stations, no less than 2,800 pages of ordinary foolscap size have been closely covered with figures. One skilful measurer of the distorted photographs, kept at his task for seven months, made no less than 38,000 microscopic measures, and then his eyesight failed. Three hundred other British pictures have still to be measured in this distressing manner, and the corrections for distortion at five of their stations have still to be investigated.

Then the Tables of the Moon, after 200 years of observations of that luminary at the Royal Observatory, Greenwich,—are not yet accurate enough for the Longitudes of the Venus-Transit Stations; and finally, the earth itself is accused of no longer rotating with the full amount of equability expected by theory.

In short, those who hold the observational documents, and the powers of place, will not at present give out anything in the way of sun-distance number; nor say when their results will be ready, nor what they will cost the nation by the time they are published.

Under these circumstances it is almost needless to refer to the little, though honourable, exception mentioned above; and to relate how a notable member of the French Academy of Sciences has, by his own means alone, computed some of the observations of two of the French Venus-Transit Stations, viz. Pekin, and the Island of St. Paul in the Indian Ocean; and having from them deduced a sun-distance number, this has been declared by Monsieur l'Abbé and Chanoine Moigno, in his scientific journal Les Mondes, to be almost identical with the ancient sun-distance of the Great Pyramid.

It is useless to make anything of this just now; because the holders-back of the store-houses full of observations
from all the stations, are ready at any moment to overwhelm M. Puiseux, and declare that his one result is not to be taken as the result of the whole world of science at the Venus-Transit of December, 1874. They, the holders-back of what is wanted to be known, are the only authoritative sources of information to be looked to; and they are, in some instances at least, more occupied "in giving honour one to another," than in working disinterestedly and unselfishly at the required computations: for this is what we read at page 344 of the journal *Nature*, February 15th, 1877:

"A medal to commemorate the part taken by the Institute of France in the observation of the transit of Venus has been struck at the National Mint. It bears the representation (rather too commemorative also of the profane and indecent classic idolatries) of a female (in the utmost state of nudity) passing close before the car of Apollo (who appears much surprised thereat), with the motto in Latin, *Quo distant spatio, sidera juncta docent*. Each member of the Institute has received a silver medal, as well as the heads of the mission; the assistants received a bronze one. A medal has been cast in gold and presented to M. Dumas, the president of the Transit Commission. The expenses were defrayed by subscriptions among the members of the Institute."

The position therefore, for sun-distance information, is rather this. The Venus-Transit alluded to has taken place. More money has been spent upon it than was spent on all the previous sun-distance measurings from the foundation of the world, put together; and still, more than two years afterwards, the world's knowledge of the sun-distance is defective in the second place of figures. How many more millions of money and thousands of years will it therefore take for modern science and all its votaries to reach an accuracy in the items of, say, five or six, places of figures?
And yet far more than that will be required, if the collective science of mankind is ever to answer, with regard to the sun-distance, that question put so pointedly by the Almighty himself to Job (xxxviii. 18), touching merely the Earth-size,—

"Hast thou perceived the breadth of the Earth? Declare if thou knowest it all."
CHAPTER V.

GEOGRAPHICAL INDICATIONS IN THE GREAT PYRAMID.

After our last chapter, it may not improbably be demanded by some of my readers, to be shown a few easy proofs of practical astronomy of much more ordinary, let alone the possibilities of so transcendental, a kind, having been intended by the primeval designer of the Great Pyramid,—before they can freely admit the entirely non-accidental character of such abstruse numerical coincidences as have hitherto been given.

The request is most reasonable, and the accomplished facts of the Pyramid itself enable me to furnish the answer immediately.

Orientation of the Sides of the Great Pyramid.

To begin, the reader may be reminded, that the square base of the Great Pyramid is very truly oriented, or placed with its sides facing astronomically due north, south, east, and west; and this fact at once abolishes certain theories to the effect that all the phenomena of that Pyramid have to do with pure geometry alone; for to pure geometry, as well as to algebra and arithmetic, all azimuths or orientations are alike; whereas one most particular astronomical azimuth and direction was picked out for the sides of the base of the Great Pyramid.
In the early ages of the world the very correct orientation of a large pile must have been not a little difficult to the rude astronomy of the period. Yet with such precision had the operations been primevally performed on the Great Pyramid, that the French Academicians in A.D. 1799 were not a little astonished at the closeness. Their Citizen Nouet, "in the month Nivose of their Republican year 7," made refined astronomical observations to test the error, and found it to be only 19' 58"; but with the qualification added by M. Jomard, that as M. Nouet had only the ruined exterior of the Pyramid before him to test, the real error of the original surface might have been less. In this conclusion M. Jomard was doubtless correct; for in the similar sort of measure of the angle of the slope of the side, with the base, of the Pyramid, it was proved afterwards (and as we have already shown in Chapter II.), on the discovery of the casing-stones, that his compatriot, spite of all his modern science, had erred to a very much larger extent than the original builders.

As it was, however, then, in this particular question of astronomical orientation, all the Academician authors of the great Napoleonic compilation expressed themselves delighted with the physical and historical proof which the ancient Pyramid seemed to give them, when compared with their own modern French observations of the Polar star, "That the azimuthal direction of the earth's axis of rotation had not sensibly altered, relatively to the sides of the Great Pyramid's base, during probably 4,000 years."

Possibility of Azimuthal Change in the Crust of the Earth.

Now some alteration of that kind, one way or the other, has long been a mooted question among astronomers, though chiefly for its bearing on geography, general
physics, and geology. In its surface character and linear nature, therefore, it must be kept entirely distinct from the more perfectly astronomical phenomenon, and which few but astronomers attend very closely to—viz. the angular direction of the earth's axis in space, carrying with it the whole substance of the earth at the same time, and without disturbing the relative position of any of its parts. It is in this last angular phenomenon, that the mysterious effect of the precession of the equinoxes comes prominently into view, with its slow but ceaseless chronological changes from age to age in the apparent times and places of the risings and settings of the stars. But in the former rather geographical, telluric, and more especially surface-differential, light in which the problem was discussed by the French savants of the Revolution, it had also been clearly seen long before, and held to be a worthy cynosure of historical study, by the penetrating genius of the English Dr. Hooke.

For it was this early and ill-paid, but invaluable, Secretary of the Royal Society of London, who, in his discourse on earthquakes, about the year 1677 A.D., remarks, "Whether the axis of the earth's rotation hath and doth continually, by a slow progression, vary its position with respect to the parts of the earth; and if so, how much and which way, which must vary both the meridian lines of places, and also their particular latitudes? that it had been very desirable, if from some monuments or records in antiquity, somewhat could have been discovered of certainty and exactness; that by comparing that or them with accurate observations now made, or to be made, somewhat of certainty of information could have been procured." And he proceeds thus: "But I fear we shall find them all insufficient in accurateness to be any ways relied upon. However, if there can be found anything certain and accurately done, either as to the fixing of a meridian line on some stone building or structure now in
being, or to the positive or certain latitude of any known place, though possibly these observations or constructions were made without any regard or notion of such an hypothesis; yet some of them, compared with the present state of things, might give much light to this inquiry. Upon this account I perused Mr. Greaves' description of the Great Pyramid in Egypt, that being fabled to have been built for an astronomical observatory, as Mr. Greaves also takes notice. I perused his book, I say, hoping I should have found, among many other curious observations he there gives us concerning them, some observations perfectly made, to find whether it stands east, west, north, and south, or whether it varies from that respect of its sides to any other part or quarter of the world; as likewise how much, and which way they now stand. But to my wonder, he being an astronomical professor, I do not find that he had any regard at all to the same, but seems to be wholly taken up with one inquiry, which was about the measure or bigness of the whole and its parts; and the other matters mentioned are only by-the-bye and accidental, which shows how useful theories may be for the future to such as shall make observations; nay, though they should not be true, for that it will hint many inquiries to be taken notice of, which would otherwise not be thought of at all, or at least but little regarded, and but superficially and negligently taken notice of. I find indeed that he mentions the south and north sides thereof, but not as if he had taken any notice whether they were exactly facing the south or north, which he might easily have done. Nor do I find that he had taken the exact latitude of them; which methinks had been very proper to have been retained upon record with their other description."

Dr. Hooke, however—in mitigation of whose acerbity there is much to be said in excuse, for nature made him, so his biographer asserts, "short of stature, thin, and
crooked"—this real phenomenon, Dr. Hooke, "who seldom retired to bed till two or three o'clock in the morning, and frequently pursued his studies during the whole night," would not have been so hard upon his predecessor in difficult times if he had known, and as we may be able by-and-by to set forth, what extraordinarily useful work it was that Professor Greaves zealously engaged in when at the Great Pyramid. The Doctor's diatribes should rather have been at Greaves's successors to-be, those who were to visit the Great Pyramid in easy, intellectual, scientific times, and then and there do nothing, or mere mischief worse than nothing. Hence it seems to have remained to myself, in 1865, to attempt, at least, to determine with full modern accuracy the astronomical azimuth of the Great Pyramid; and not only upon its fiducial socket-marks, as defining the ends and directions of the sides of the base, but, still more importantly, on its internal passages.

These passages, long, white-stoned, straight, and of exquisite workmanship, evidently received much of the care of the ancient architect; and though for some deep reasons, not yet fully developed, they were not placed by him in the central vertical, and right, plane of the whole Great Pyramid, were yet placed parallel thereto, or in the selfsame natural orientation, with astonishing precision.

Popular Ideas of Astronomical Orientation.

In page 26 of George R. Gliddon's "Otia Ægyptiaca," that generally acute author does indeed fight against the idea of any astronomical skill in the ancient architect, by suggesting that all this exactness of orientation indicates, amongst the builders of the "pre-antiquity" day of the Great Pyramid, "an acquaintance with the laws of the magnet." Yet had that been all the founders were possessed of to guide them, the orientation of their great and
lasting work might have been in error by ten, or twenty, or thirty degrees or more, in place of only twenty minutes, and, perhaps, far less.

Quite recently too, or within the last six months, on the occasion of a public lecture being given on the Great Pyramid at Ramsgate, an attempt was made by a gentleman-proprietor of the neighbourhood to invalidate the whole of the Great Pyramid subject, because forsooth the lecturer had said nothing about "the Variation of the Compass;" and without that being known, he declared, "all the rest of the measures were without any value."

I fear that gentleman must have been misled, like a very worthy friend of mine, a judge too of a great city, and in his day a brilliant classical and philosophical university student,—by having purchased, as a superior means of obtaining true time accurately, a miniature sun-dial mounted on a magnetic needle.

"What can be more perfect?" said he. "Wherever you are, if only the sun shines, the gnomon of the dial is placed due north and south for you by the needle, and you have only to read off the time on the hour circle."

So then I had to explain, what I thought every child of the present scientific age knew long ago; viz. that the end of the magnetic needle marked by the maker north, only points to the real north direction of the earth and the heavens feebly, erroneously, and varyingly.

So feebly, that the smallest imperfection of the central pivot may vitiate the direction of an ordinary waistcoat-pocket compass by several degrees.

So erroneously, either from the magnetic axis of the needle, not coinciding with the shape of the needle, or from the observer having a key or a knife, or a bit of iron or magnetic and attractive rock in his pocket or the neighbourhood, that the needle may be again deflected from its proper position by whole degrees.
And so varyingly, because there are daily, monthly, yearly, and century changes going on in the magnetad elements themselves: so that not only are they different in one part of the country from another, but in the same part they differ from age to age; and in the lifetime of the Great Pyramid, the variation of the compass there may have oscillated from west to east of true north 40°, 50°, 60°, and several times over.

The more an astronomer looks into the pointings of a magnetic needle, the more full of serious uncertainties and vagaries he finds it. But the more he examines by mechanical instruments and astronomical observations into the north and south of the axis of the world or the polar point of the heavens, the more admirably certain does he find it, even to any amount of microscopic refinement.

No astronomer, therefore, in a fixed observatory ever thinks of referring to a magnetic needle for the direction of the north. The very idea, by whomsoever brought up, is "a thing to be sneezed at." And of course, in my own observations at the Great Pyramid in 1865, I was happy to throw magnetism and its rude pointings overboard, and employ exclusively an astronomical alt-azimuth instrument of very solid construction, and reading to seconds: in that way comparing the socket-defined sides of the base, and also the signal-defined axis of the entrance passage, with the azimuth of Alpha Ursae Minoris, the Pole-star, at the time of its greatest elongation west; and afterwards reducing that observed place, by the proper methods of calculation, to the vertical of the pole itself.

And with what result? Though a tender-hearted antiquary has asked, "Was it not cruel to test any primeval work of 4,000 years ago, by such exalted scientific instruments as those of the Victorian age in which we live?"

Well, it might be attended with undesired results, if
lame of the most praised-up works of the present day
would ever come to be tested by the advanced instru-
ments of precision of 4,000 years hence; but the only
effect which the trial of my Playfair astronomical instru-
ment from the Royal Observatory, Edinburgh, had at the
Great Pyramid, was to reduce the alleged error of its
ancient orientation from 19' 58" to 4' 30".*

Further Test by Latitude.

In so far, then, this last and latest result of direct obser-
vation declares with high probability,—that any relative
azimuthal change between the northern direction of the
earth's rotation axis, and a line drawn by man upon its
crust, such as Dr. Hooke and the French Academicians
speculated on, must, if anything of such change exists at
all, be confined within very narrow limits indeed.

This conclusion has its assigned reason here and thus
far, solely from observations of angular direction on the
horizontal plane of the earth's surface at the place; and
without any very distinct proof being arrived at yet,
touching—that though we find the Great Pyramid's
sides at present nearly accordant in angle with the car-
dinal points of astronomy, they were intended to be so
placed by the primeval builder for his own day.

But indication will be afforded presently respecting
another test of nearly the same thing, not by angle, but
by distance on the surface; and further, that the architect
did propose to place the Great Pyramid in the astrono-
mical latitude of 30° north, whether that exact quantity
was to be practical or theoretical; while my own astrono-
mical observations in 1865 have proved, from the results
of several nights' work, that it stands so near to 30°,
as in the latitude parallel 29° 58' 51".

* The particulars of both observations and computations may be seen
in vol. ii. of my "Life and Work at the Great Pyramid, 1867."
A sensible defalcation this, from 30°, it is true, but not all of it necessarily error; for if the original designer had wished that men should see with their bodily, rather than their mental eyes, the pole of the sky, from the foot of the Great Pyramid, at an altitude before them of 30°, he would have had to take account of the refraction of the atmosphere; and that would have necessitated the building standing not in 30°, but in 29° 58' 22". Whence we are entitled to say, that the latitude of the Great Pyramid is actually by observation between the two very limits assignable, but not to be discriminated, by theory as it is at present.

The precise middle point however between the two theoretical latitudes being 29° 59' 11", and the observed place being 29° 58' 51", there is a difference of twenty seconds which may have to be accounted for; and Dr. Hooke's question upon it would certainly be, can the earth's axis have shifted so much in 4,000 years with regard to the crust, that the latitudes of places have altered that quantity in that length of time, viz. 20" of space in 4,000 years?

Unfortunately none of the Greek, Roman, Indian, Alexandrian, or any of the older observatories of the world, had their latitudes determined in their day closely enough to furnish additional illustrations for this purpose. Even in Professor Greaves's time, two hundred and forty years ago, a whole minute of altitude was thought to be an almost superhuman refinement of measure; so that he mentions somewhat fearfully and with bated breath, how a celebrated Italian astronomer, Gaspar Bertius, had credibly informed him when in Rome, "that by repeated observations with a large instrument of Clavius' he had ascertained that the altitude of the pole there, was 41° and 46'". And yet if the spot where Bertius observed, were anywhere near either St. Peter's, or the Collegio Romano, whose latitudes have been well
measured in modern times, his result must have been no less than 7' in error.

At Greenwich, the oldest and best supported of modern European observatories, there has been a continued decrease in its observed latitude with the increase of the time. So that taking up at random the large volumes of its published observations now before me, I find the latitude successively stated as—

\[
\begin{align*}
\text{In 1776} & = 61^\circ 28' 40.0'' \\
\text{In 1834} & = 61^\circ 28' 39.0'' \\
\text{In 1856} & = 61^\circ 28' 38.2''
\end{align*}
\]

This change of 1.8'' in eighty years, implies a quicker rate of decrease than the 20'' at the Great Pyramid in 4,000 years,—if the observations were perfect; but they are not; and it is said, I believe, that small errors in both the instruments and the tables of refraction employed, may be found to explain away the apparent change.

Hence all the known practical astronomy of the modern world cannot help us in this matter; and if we apply to physical astronomy, some of its great mathematicians of the day who are supposed to be able to compute anything, and have announced long since how many millions of millions of years the solar system is going to last, these great computers also announced a few years ago that they had found the interior of the earth to be solid, and as stiff as hammered steel; so that no change of latitude could take place. But within the last year, they have concluded again that the interior of the earth is fluid, and steadied only by vortex motion of that fluid; also that in the earlier geological ages, long before man appeared on the scene, great changes of latitude did take place in those almost infinitely long periods; and that therefore some small change of the same sort may have been experienced within human history; but only a very small change, even as the Great Pyramid has already indicated.
Testimony, from the Great Pyramid's Geographical Position, against some recent Earth Theorizers.

In angular distance, then, from the equator, as well as in orientation of aspect, the land of Egypt, by the witness of the Great Pyramid, even if it has changed its latitude a very little, has certainly not changed sensibly for all ordinary, practical men at their usual avocations, in respect to the axis of the earth, during the last 4,000 years.

What therefore can mean some of our observers at home, observers too of the present day, who stand up for having, themselves during their own lifetimes, witnessed the sun at solstice rise and set in an exceedingly different direction by the naked eye from what it does now? I have looked over the papers of two such enthusiasts recently (one in England and the other in Scotland), but without being able to convince them of their self-deception.

Again, in the Rev. Bourchier Wrey Savile's work, "The Truth of the Bible," published in 1871, that usually very learned and painstaking author (and much to be commended in some subjects) implies, on page 76, that the direction of the sun at the summer solstice is now, at Stonehenge, no less than twelve degrees different from what it was at the time of the erection of that monument, which is probably not more than a third as old as the Great Pyramid. And he quotes freely from, as well as on his own part confirms, a mad-like man now dead, one Mr. Evan Hopkins (not the Cambridge mathematician and geologist Hopkins, but a Civil Engineer from Australia), in asserting "that the superficial film of our globe is moving from south to north in a spiral path, at the rate of seven furlongs in longitude west, and three furlongs in latitude north, every year; whence, he says, the presently southern part of England must have been under a tropical climate only 5,500 years ago."

This astounding assertion is further supposed, by those
parties, to be supported by a quotation from one of the Greenwich Observatory Reports in 1861, wherein Sir George B. Airy remarks that "the transit circle and collimators still present those appearances of agreement between themselves, and of change with respect to the stars, which seem explicable only on one of two suppositions—that the ground itself shifts with respect to the general earth, or that the axis of rotation changes its position." But I can venture to be professionally confident that Sir G. B. Airy did not mean to support any such assertion as Mr. Evan Hopkins's and Mr. W. B. Savile's, by that mere curiosity of transcendental refinement in one year's instrumental observation, which he was alluding to in one number of a serial document; a something of possible change, too, which is so excessively small (an angle subtending perhaps the apparent thickness of a spider's line at the distance of fifty feet), that no one can be perfectly certain that it ever exists; and which, if found at any given epoch, does not go on accumulating continually with the progress of time, so as at last to become patent to the common senses of all men.

To confirm, too, this much more sober view of the nearly solid earth we live upon, the Great Pyramid adds all its own most weighty testimony to that both of Greenwich and every public observatory with good astronomical instruments throughout Europe, by declaring the world's surface to be remarkably constant to the cardinal directions; if not indeed for ever, yet at least for a far longer time than they, the modern observatories, can directly speak to. And thus it may come to pass at last, that there will yet be monumentally proved to be more of "the truth of the Bible" bound up with both the scientific definition, and the exactly observed constancy through long ages when so defined, of astronomical orientations, and geographical directions and positions,—than has yet entered into many persons' modern philosophies.
True Primeval Astronomical Orientation, as in the Great Pyramid, opposed by all early idolatrous Structures elsewhere.

The Great Pyramid, then, as we have already shown (besides proving it a non-idolatrous, as well as primeval, monument), set a clear and recognisable scientific rule in building, of astronomically orienting its sides to the cardinal directions. This plan was followed also wherever that Pyramid's example, by overshadowing grandeur, was felt to be compulsory, as it evidently was by all sorts of buildings in the adjacent parts of Lower Egypt,—but, nowhere else.

At Thebes, for instance, the glory, as well as shame, of Upper Egypt, and far more characteristic of the Pharaonic, medizval, and most powerful period of the nation, and in Nubia further and later still, the temples and tombs are put down or founded at every possible azimuth, towards almost every quarter of the sky; and those temples and tombs are all of them undoubtedly idolatrous, Egyptologic, and speak lamentably to human theotechnic inventions.

In Mesopotamia, again, and the rebellious region of Babel, the Chaldean temples, dedicated glaringly both to false gods, and all the Sabaean hosts of heaven, are not laid out at random, or in general contempt of, or indifference to, all astronomical orientation, like the Theban temples, but in another and an opposition sort of astronomical orientation to the Great Pyramid example; for while their bases, though rectangular, are not square, they are set forth with their sides as far as possible from any cardinal point, i.e. at an angle of 45° therefrom; and steadily and persistently kept thereat from one end of the Inter-aminian country to the other.

The Rev. Canon Rawlinson of Oxford has, indeed, endeavoured to maintain that it was a matter of indifference for the astronomical observations of those Chaldean
buildings, whether they were oriented upon, or at 45° away from, the cardinal points,—but in that case the astronomical observations made there must have been of as totally different a character from those of the Great Pyramid, as from those of any of our modern meridian observatories, where the true meridian direction in which they observe is everything. And when we study the Great Pyramid itself still further, important results follow to its prestige and geographical power upon earth from new developments arising precisely out of its true and very north and south, with east and west, bearings, as well as from its regular figure.

Geographical Aptitudes of the Great Pyramid.

With the general's glance of a Napoleon Bonaparte himself, his Academician savants in Egypt, in 1799, perceived how grand, truthful, and effective a trigonometrical surveying signal the pointed shape of the Great Pyramid gratuitously presented them with; and they not only used it for that purpose, as it loomed far and wide over the country, but employed it as a grander order of signal also, to mark the zero meridian of longitude for all Egypt. In coming to this conclusion, they could hardly but have perceived something of the peculiar position of the Great Pyramid at the southern apex of the Delta-land of Egypt; and recognised that the vertical plane of the Pyramid's passages produced northward, passed through the northernmost point of Egypt's Mediterranean coast, besides forming the country's central and most commanding meridian line; while the N.E. and N.W. diagonals of the building similarly produced, enclosed the fertile Delta's either side in a symmetrical and well-balanced manner. (See Plate XX.) But the first very particular publication on this branch of the subject was by Mr. Henry Mitchell, Chief Hydrographer to the United States Coast Survey.
That gentleman having been sent, in 1868, to report on the progress of the Suez Canal, was much struck with the regularity of a certain general convex curvature along the whole of Egypt's northern coast. To his mind, and by the light of his science, it was a splendid example, on that very account, of a growing and advancing coast-line, developing in successive curves all struck one after and beyond the other from a certain central point of physical origination in the interior.

And whereabouts there, was that physical centre of natural origin and formation?

With the curvature of the northern coast on a good map before him (see Fig. 1, Plate XX.), Mr. Mitchell sought, with variations of direction and radius, until he had got all the prominent coast-points to be evenly swept by his arc; and then, looking to see where his centre was, found it upon the Great Pyramid: immediately deciding in his mind, "that that monument stands in a more important physical situation than any other building yet erected by man."

On coming to refinements, Mr. Mitchell did indeed allow that his radii were not able to distinguish between the Great Pyramid and any of its near companions on the same hill-top. But the Great Pyramid had already settled that differential matter for itself; for while it is absolutely the northernmost of all the Pyramids (in spite of one apparent exception to be explained further on), it is the only one which comes at all close—and it comes very close—to the northern cliff of the Jezzeh hill, and thence looks out with commanding gaze over the sector, or open-fan, shaped land of Lower Egypt; looking over it, too, from the land's very "centre of physical origin;" or us from over the handle of the fan, outward to the far-off curved sea-coast. All the other Pyramids are away back on the table-land, to the south of the Great one, so that they lose that grand view from the front or northern
edge; and they even appear in their menial, inferior position, behind, as in a manner the suite and following train only, of the Great building; that mysterious Great one who is the unquestioned owner there, and seems to have thoughts beyond their thoughts as he gazes over that primevally fertile and historic plain before him.

So very close was the Great Pyramid placed to the northern brink of its hill, that the edges of the cliff might have broken off, under the terrible pressure, had not the builders banked up there most firmly the immense mounds of rubbish which came from their work; and which Strabo looked so particularly for 1,850 years ago, but could not find. Here they were, however, and still are, utilised in enabling the Great Pyramid to stand on the very utmost verge of its commanding hill, within the limits of the two required latitudes, 30° and 29° 58' 23'', as well as over the centre of the land's physical and radial formation; and at the same time on the sure and proverbially wise foundation of rock.*

Now Lower Egypt being, as already described, of a sector shape, the building which stands at its centre must be, as Mr. Henry Mitchell has acutely remarked, at one and the same time both at the border thereof, and in its nominal middle; or, just as was to be that prophetic monument, pure and undefiled in its religion though in an idolatrous land, alluded to by Isaiah (ch. xix.), the monument which was fore-ordained as both "an altar to the Lord in the midst of the land of Egypt, and a pillar at the border thereof;" destined moreover to become a most special witness in the latter days, before the consummation of all things, to the same Lord, and to what He hath purposed upon mankind.

Whether the Great Pyramid will eventually succeed in

* "Certainly the rubbish has been thrown over the cliff, but not in my opinion with any idea of banking up the cliff to support the Great Pyramid."—Dr. J. A. S. Grant, Cairo, 1877.
proving itself to be really the one and only monument alluded to under those glorious terms or not, it has now undoubtedly most unique claims for representing much that is in them, both as to its circumstances of mechanical fact and surrounding chorography; while its characteristics of situation, worthy of the one and only known monument of Inspiration, by no means end there. For proceeding along the globe due north and due south of the Great Pyramid, it has been found by a good physical geographer as well as engineer, Mr. William Petrie, that there is more earth and less sea in that meridian than in any other meridian all the equator round; causing, therefore, the Great Pyramid's meridian to be as essentially marked by nature, in a general manner, across the world from Pole to Pole, as a prime meridian for all nations measuring their longitude from, or for that modern cynosure "the unification of longitude,"—as it is more minutely marked by art and defined by human work within the limits of the Lower Egyptian plain, by itself alone.

Again, taking the distribution of land and sea in parallels of latitude, there is more land-surface in the Great Pyramid's parallel of 30°, than in any other degree. And finally, on carefully summing up all the dry land habitable by man all the wide world over, the centre of the whole falls within the Great Pyramid's territory of Lower Egypt.*

Of the Mental Accompaniments of these several Facts.

It is useless for the Egyptological objectors to these growing ideas about the Great Pyramid, to go on railing and denouncing that the ancient Egyptians, the mere slaves of Pharaoh, did not know anything about the existence of America, Australia, New Zealand, or Japan, and

* See my "Equal Surface Projection," published in 1870 by Edmonston and Douglas, Edinburgh. See also Fig. 2 of Plate XX., in this book.
figured the earth in their hieroglyphics as a flat cake of bread, and therefore could not have made the above calculation rightly,—for I have never accused those profane Egyptians of having had anything to do with the design of the Great Pyramid; and I have no intention of limiting my accounts of what mathematical science may find in the measured facts of that most unique building of all the world and all time, merely to what modern Egyptologists, from their most questionable studies, may choose to tell us that the vile animal-worshippers of old Egypt either did, or much rather did not, know; for, generally speaking, ancient Egyptian knowledge of science has been rated by the world vastly too high.

The actual geographical fact, as we have stated it, is there in the Great Pyramid, and also in the world, for every one who likes to test on absolute grounds; to try its truth and application for our own times first, and then to reduce it to the days of the Pyramid, if there have been sensible changes in the distribution of sea and land on the whole, going on.

But, whatever amount of such changes may have taken place in the millions of years of the geological periods of the earth before the advent of man, there would seem to have been none of importance since then; and, indeed, for the special period of the truly human, or division into nation, time of the world (or since both the Deluge and the Dispersion), there is every reason to believe that the dry land surface spot which was central 4,000 years ago is central still, and will continue to be so until the end of man's trial on earth. And if we be further enabled before long to illustrate that the directors of the building of the Great Pyramid were not natives of Egypt, but came into Egypt out of a country having a different latitude and longitude, and went back again to that country of theirs immediately after they had built the Great Pyramid; and that there, in their own country, though no mean
architects, yet they built no second Pyramid,—will not that go far to indicate that, assisted by a higher power, they had been taught, and well knew of early time, that there was only one proper and fully appropriate spot all the wide world over, whereon to found that most deeply significant structure they had received orders to erect on a certain plan, viz. the Great Pyramid?

But if the exterior of that earth-central building, in these last days almost ruinous under the successive attacks of twenty nations, leads so abundantly, when carefully studied and scientifically measured, even in spite of all those dilapidations, to ennobling views (the like of which too were never made out in all past time for any other building of the earth, not even for a single one of the other Pyramids of Egypt, which, all of them, err utterly in angle, size, and position), what may we not expect from the Great Pyramid's better-preserved interior?

We will first, however, conclude this leading Part or Division of our book with a handy table of some of the principal and leading measures touching the "Geography and Exterior" of the Great Pyramid.

The Principal and Leading Measures connected with the Geography and Exterior of the Great Pyramid, as collected in 1877 A.D.

POSITION.

Latitude = 29° 58' 51".
Longitude = 0° 0' 0' Pyr.

Elevation of pavement base:—

<table>
<thead>
<tr>
<th>Above the neighbouring alluvial plain as now covered by sand</th>
<th>Pyr. inches</th>
</tr>
</thead>
<tbody>
<tr>
<td>Above the average water-level</td>
<td>1,500</td>
</tr>
<tr>
<td>Above the Mediterranean Sea level</td>
<td>2,580</td>
</tr>
</tbody>
</table>

Elevation of the lowest subterranean construction:—

| Above the average water-level of the country | 250 |

HEIGHTSIZE.

Present dilapidated height, vertical, about	5,130
Ancient vertical height, above pavement	5,813 01
Ancient inclined height at middle of sides, from pavement to open	7,391 56
Ancient inclined height at the corners, pavement to apex	8,687 87
Ancient vertical height of apex above the lowest subterranean chamber	7,015
BREADTH-SIZE.

Present dilapidated base-side length, about 8,950
Ancient and present base-side socket-length 9,131.06
Ancient and present base-diagonal socket-length 12,913.26
Sum of the two base-diagonals to the nearest inch 25,827

SHAPE AND MATERIAL.

Ancient angle of the casing-stones, and the whole Pyramid, at the side = 51° 51' 14.3".
Ancient angle of the whole Pyramid at the corners, or arris-lines = 41° 59' 18.7".
Casing-stone material, compact white limestone from the eastern side of the Nile, with density = 0.367 (Earth's mean density = 1).
General structural masonry material = nummulitic limestone of the Jeezeh hill, density = 0.412.

AREA, WEIGHT, ETC.

Solid cubits of masonry contained in the building = 10,340,000.
Tons (pyramid) of building material, nearly = 5,274,000.

N.B.—1 Pyramid inch = 1.001 British inch.
1 Pyramid cubit = 26.000 Pyramid inches.
" " = 26.026 British inches.
1 acre Pyramid = 0.9992 British acre.
1 ton Pyramid = 1.1499 ton avoirdupois.
PART II.
OF THE HISTORY, AND THE INTERIOR, OF THE GREAT PYRAMID.
"Who hath measured the waters in the hollow of his hand, and
meted out heaven with the span, and comprehended the dust of
the earth in a measure, and weighed the mountains in scales, and
the hills in a balance?"

"Who hath directed the spirit of the Lord, or being his coun-
sellor hath taught him?"—Isaiah xl. 12, 13.
CHAPTER VI.

AN ENTRY MADE.

THERE is little enough of hollow interior to enter into, in any of the Egyptian Pyramids, as they are generally all but solid masses of masonry; and yet what very little there is, will be found quite characteristic enough to raise up a most radical distinction of kind, as well as degree, between the Great Pyramid and every other monument, large or small, Pyramidal or otherwise, in the land of Egypt.

What the earlier of the Ancients knew about the Interior of the Great Pyramid.

The progress of profane historical knowledge with regard to what constituted the hollow interior of the Great Pyramid, from the earliest times after the very building operation itself had ceased (say 2,150 years B.C.), was both slow and peculiar. Had we now before us, in one meridional section of the monument, all that such very ancient knowledge had arrived at, with regard to what it contained, the tale would amount to little more than this—that when the Great Pyramid stood on that hill-top in the primeval age of the world in solid masonry, with the secret of its nature upon it, clothed too, complete on every side, with its polished bevelled sheet of white casing-stones, the whole structure rising from a duly levelled
area of rock-surface in four grand triangular flanks up to a single pointed summit,—that then it contained within (trending down from the north, and entering at a point about 49 feet above the ground, near the middle of that northern side) an inclined descending passage of very small bore, leading to a subterranean, excavated, rock chamber, about 100 feet vertically under the centre of the base of the whole built monument.

This subterranean chamber had been begun to be carved out, deep in the heart of the rock, with admirable skill. For the workmen, having cut their way down to the necessary depth by the passage, commenced with the chamber's ceiling, making it exquisitely smooth, though 46 feet long by 28 broad; then sinking down the walls therefrom in vertical planes, there was every promise of their having presently, at that notable 100-foot depth inside the otherwise solid limestone mountain, a rectangular hollow, or chamber, whose walls, ceiling, and floor should all be perfect, pattern planes. But when they had cut downwards from the ceiling to a depth of about 4 feet at the west end, and 13 feet at the east end, they stopped in the very midst of their work. A small, very small, bored passage was pushed on into the rock merely a few feet further towards the south, and then that was also left unfinished; a similar abortive attempt was likewise made downwards, though with still less result; and the whole floor, from one end of the chamber to the other, was left thus a lamentable scene of up-and-down and fragmentary confusion. Verily (seeing that the whole light of day was reduced down there to a mere star-like point at the end of the long entrance-passage), verily, it was the true locality of "the stones of darkness and the shadow of death." (See Plate VI. and Plate VII.)

This one item of its internal, or rather subterranean, construction, moreover, there is good reason for believing, was all that the Egyptians themselves knew of, from
within a generation after the Great Pyramid had been built, to the latest times of their nation; excepting only certain men who broke into the building, probably near the epoch of Judah's Babylonian captivity, so late as 600 B.C.; and for them, see further on to our Part IV.

That the ancient Egyptians themselves, as a people (say, from 2100 B.C., to their Theban kingdom about 1700 B.C., thence to their conquest by Persian Cambyses in 525 B.C., then by Grecian Alexander in 338 B.C., and then by Julius Cæsar in 48 B.C.), knew thus much, we may readily allow, because they could hardly have known less of the interior than their latest conquerors, the Romans; and there is proof, in the shape of good uncial letters marked in carbon, and recorded to have been seen by Signor Caviglia when he first recovered in modern times the re-entry to that part of the Pyramid, that they, the old Romans, were once inside the subterranean chamber, and did so mark its smooth ceiling.

There appears also, as it is asserted by a few modern Egyptologists of rather a sanguine turn of mind, some small probability that Pyramids with this single characteristic—viz. a descending entrance-passage and subterranean, or, if you will, call it positively a sepulchral, chamber, but of poor workmanship, were indigenous in Egypt before the erection of the Great Pyramid; which in that case, therefore, began so far in deference to some contemporary native ideas; though, as will be seen presently, the Great Monument did not care to complete them; nor to carry out the either intended or pretended sepulchral chamber to such a condition of floor state, that any stone sarcophagus could have been decently, and in order, established there.

In the undoubtedly subsequent second and third Jeezeh Pyramids, on the contrary, the subterranean rooms were finished, floors and all; and sarcophagi were introduced. Their architects, moreover, attempted to adorn those
chambers with a large amount of complication; but it was only useless and confusing complication, without any very sensible object; unless when it was to allow a second king to make himself a burial-chamber in the Pyramid cellar already occupied by a predecessor; and then it was bad. Gradually, therefore, as the researches of Colonel Howard-Vyse have shown, on the fourth, fifth, sixth, seventh, eighth, and ninth Jeezeh Pyramids (all these being, moreover, very small ones: see Plate IV.), the native Egyptians dropped nearly everything else that they had tried, or learned at the building of the Great one, except the one single, partly descending and partly horizontal, passage, with a subterranean chamber at its farther end. This chamber they then furnished with a flat, smooth floor in their own manner, and not in the Great Pyramid's manner, using it thereupon for burial purposes; and that use and purpose they kept to, so long as they practised their petty pyramid-building at all (down to, perhaps, 1800 B.C.), most religiously. (See Plate V.)

Lepsius's Law of early Egyptian Pyramid Building.

Still further, that the making of such descending passages with subterranean chambers, and using them for sepulture, is precisely what the Egyptians usually did when they were their own masters and the directors of their own works; and that they did little more even in subsequent times of increased national numbers and wealth, except it was to decorate them with images of false gods, boasting inscriptions in hieroglyphic writing, and portraits of themselves, is also testified to from quite another quarter. For all the Egyptologists of our age, French, English, German, and American, have hailed the advent, on their stage of time, of the so-called "Lepsius' Law of Egyptian Pyramid Building;" they universally declaring
that it satisfies absolutely all the observed or known phenomena. And it may do so for every known case of every other Egyptian Pyramid throughout the land, except the Great Pyramid; and there it explains nothing of what it chiefly consists in, and is indeed antagonized by it at every point.

Taking, however, the cases which the law does apply to, viz. all profane Egyptian examples, this alleged "law" of Lepsius pronounces, that the sole object of any of its Pyramids was, to form a royal tomb—subterranean as a matter of course—and that operations began, by making an inclined descending passage leading down into the subjacent rock, and there, at the end of it, cutting out an underground chamber. The scheme thus begun below, went on also growing above ground every year of the King's reign, by the placing there of a new heap or additional layer of building-stones, and piling them layer above layer over a central, square-based nucleus upon the levelled ground, vertically above the subterranean apartment. And this superincumbent mass of masonry was finally finished off, on that king's death, by his successor; who then deposited his predecessor's body, embalmed and in a grand sarcophagus, in the underground chamber; next stopped up the passage leading thereto, cased in the rude converging sides of the building with bevelled casing-stones so as to give it a smooth pyramidal form, and left it in fact a finished, Lepsius, profane-Egyptian, and Pharaonic pyramid to all posterity: * and no mean realisation either

* In Dr. Lepsius's Letter 7, March, 1843, that eminent Egyptologist says distinctly enough, with regard to the above theory,—"I discovered the riddle of pyramidal construction on which I had long been employed;" but in the letterpress attached to Frith's large photographs of Egypt (1860 ?), by Mrs. Poole and R. S. Poole, the discovery is given categorically to another person. As the passage is accompanied with a very clear description of the theory, there may be advantage in giving it entire from this opposite side; as then proving beyond all doubt how much of the whole internal arrangement of the Great Pyramid, as now known and presently to be described, this approved pyramidal theory of the most learned modern Egyptologists really accounts for;—
of once-prevailing ideas among some ancient nations, of burying their monarchs *sub montibus alta*, in impressive quiet, immovable calm, and deep in the bosom of mother earth.

Classic Antiquity on the Interior of the Great Pyramid.

There has been some scholastic question of late years as to whether Herodotus in 445 B.C., Strabo 18 A.D., Pliny 70 A.D., and others of the more mediæval ancients, or their immediate informants, were ever actually inside the Great Pyramid; for sometimes it has been maintained that the edifice was inviolably sealed, and that what they mentioned of the interior was only on the reports of tradition; while at other times it is averred that they must have seen something more accurately than through others' eyes, in order to have described so graphically as they did; describing, however, always a vast deal more about the exterior than the interior. The very utmost, indeed, that they had to say about the latter was

"The principle of their (the ancient Egyptians) pyramid construction was discovered by Mr. James Wild, the architect who accompanied the Prussian expedition. A rocky site was first chosen, and a space made smooth, except a slight eminence in the centre, to form a peg upon which the structure should be fixed. Within the rock, and usually below the level of the future base, a sepulchral chamber was excavated, with a passage, inclining downwards, leading to it from the north. Upon the rock was first raised a moderate mass of masonry, of nearly a cubic form, but having its four sides inclined inwards; upon this a similar mass was placed, and around, other such masses, generally about half as wide. At this stage the edifice could be completed by a small pyramidal structure being raised on the top, and the sides of the steps filled in, the whole being ultimately cased, and the entrance-passage, which had of course been continued through the masonry, securely closed; or else the work could be continued on the same principle. In this manner it was possible for the building of a pyramid to occupy the lifetime of its founder without there being any risk of his leaving it incomplete (to any such degree or extent as would afford a valid excuse for his successor neglecting to perform his very moderate part, of merely filling up the angles, and smoothing off generally)."

Mr. James Wild is, I believe, a Swiss by birth, and is still, in his native land, greatly interested in the Pyramid subject, as I was informed in 1876 by one of his sons, engaged then professionally in rebuilding the Hôtel de-Ville in Paris. Another son has been employed by this country as Secretary to the scientific staff on board the Challenger exploring ship.
touching a certain removable stone, and then a dark groping "usque ad," or right away to, the far subterranean chamber where M. Caviglia in A.D. 1820, as already mentioned, found blackened Roman letters upon its roof;* and where half the world has seen, since then, the unfinished, unquarried out, all up-and-down and fragmentary floor; or a room with an excellent ceiling and walls too, so far as they go, but no floor, if that be possible.

To that point, then, and through that descending passage also of the Great Pyramid, occasionally (and probably only at very long intervals) some individuals did penetrate, aided by the removable block of stone, at the top, most likely, of the long descending entrance-passage. The machinery of that sliding block, and the opportunity of sometimes working it, seemed to act as a safety-valve to the Pyramid-curiosity of early times, which was thus admitted on rare occasions to see all of the supposed interior of the greatest of all the Pyramids; and then, after stifling exertions, in a long, dark, narrow way, men saw and made acquaintance with—what? Nothing but a descending entrance passage they could scarcely creep along, and a subterranean chamber, with a floor like a quarry-hole. That subterranean chamber, which ought to have been a sepulchral one according to both ordinary Egyptian ideas, and the "Lepsius Law" of Egyptian-Pyramid building,—but was not. If consistently too with the Lepsius theory, that subterranean chamber of the Great Pyramid should have been the first thing finished, floor as well, about the whole mighty fabric, but yet it was never even pretended by its architect to be finished at all; the very chamber which ought to have contained, for a real, unmitigated, idolatrous Pharaoh, sculptured sarcophagus, mummy, paintings, and inscriptions,—but which only really held the rough, natural rock-contents

of the lower part of the room, not yet cut out of the bowels of the mountain.

In short, all the classic nations (say, from 1400 B.C. to 500 A.D.) knew nothing whatever about the now known real interior of the Great Pyramid's scientific design; and which lies altogether above, and in quite a different direction from, the unimportant subterranean, but not sepulchral, chamber which they did know; and about which we have been obliged, at starting, to say so much.

After the Classic, came the Dark Ages, the very darkest of the dark ages, when neither the aesthetics and philosophy of Greece, nor the legality and imperial rule and military power of Rome could excuse any longer men's continued adherence to idolatry. The Christian religion too had appeared in the world, but not really to reform Caesar and govern the nations, except in so far as men had already begun to mould and hypocritically pervert it to their own political purposes, in almost mockery of its real precepts and Gospel of salvation to each individual, poor, and contrite soul. So the cup of wrath was found filled to the brim by the time that six centuries after Christ had come and gone; when, another bottomless pit (Rev. ix. 2–11) of infinitely greater significance than that of the Great Pyramid, was opened, "and there came a smoke out of that pit, as the smoke of a great furnace; and the sun and the air were darkened by reason of the smoke of the pit."

"And there came out of the smoke locusts upon the earth,—in shape like unto horses prepared for battle; their faces were as the faces of men, and their teeth like the teeth of lions, and their King was the angel of the bottomless pit." No king, therefore, of the ordinary sort,
or military-heroic type, but a religious teacher of a new order, though it might be a wrong and perverse one.

So too it was, that Mohammed, or his general, with the Saracen horsemen behind him, soon after 622 A.D., swept over the Egyptian country, from Alexandria to Syene, like a destroying pestilence from God; visiting with instant death by the sword whoever they found, whether of old mythologists or debased Christians, who still worshipped "devils and idols of gold and silver and brass and wood and stone, which can neither see nor hear nor walk."

Then was lost even the little of what was once known by ancient Greece, and Rome and Egypt too, of the interior, and even the mode of limited entrance into the isolated subterranean chamber of the Great Pyramid. But that terrific thunder-storm of Divine and long fore-ordained vengeance passed away at last; the Scorpion warriors with the horse-tail standards over their scimitar-armed ranks, having put down all opposition, began to turn to arts of peace and to the enjoyment of their war-acquired wealth; while civilised human history reopened under their altered rule, for an advancing world, with a new people in power, and new ideas dominant; for they concerned little more than the force of the simple name of God, and the virtue of praying five times a day on a carpet looking toward Mecca,—a state of society in which any Alexander the Great, or Aristotle either, would have found himself out of place indeed.

The religious successors of Mohammed, the Caliphs of Bagdad, were now the chief potentates of the world, and the most civilised, and daily becoming more so; losing indeed, as the years went on, more and more of their former distinctive character and very purpose in the world,—and seeking not so much to extend the doctrines even of their own prophet, as to enjoy themselves; some few of them, too, rather intelligently and intellectually. Thus at last, in 820 A.D., came the Caliph Al
Mamoun,—a caliph with an inquiring turn of mind, like his father Haroun Al Raschid, of the "Arabian Nights," but attending to some higher things—(indeed, he was said by Gibbon to have been a prince of rare learning, "continually exhorting his subjects in excelsior vein assiduously to peruse instructive writings, and who not only commanded the volumes of Grecian sages to be translated into Arabic, but could assist with pleasure and modesty at the assemblies and disputations of the learned"). When this British-Association-for-the-advancement-of-Science genius of his day, then, coming down from Bagdad to El Fostat, an earlier Cairo, desired to enter the Great Pyramid, A.D. 820, and to behold the wonders of its interior, there was only a very indistinct rumour to guide him towards trying the northern, rather than any other, side of the monument.

But Al Mamoun, the directly Mohammed-descended ruler of the world of the "faithful," and of all that physically defined portion of it which produced their two most valued fruits, water-melons and dates,—was likewise, in a new kind of profanity then growing, flattered almost as a god in the rhapsodies of his court poets. They, inventing some new pleasure for him every day, could only not give him, turned inside out to the light of day, the Great Pyramid itself. Emulating, however, on a basis of Coptic and pre-classic, as well as pre-Mohammedan, tradition derived from the then innumerable, though degraded and again almost idolatrous, Egyptian monasteries, the enchanting tales of Bagdad,—they tried to do so; and drew gorgeous pictures of the contents of the Pyramid's interior; as well as exciting stories of the astounding history of that mighty and mysterious triangular masonic fact, in reality so patent as to its exterior in the eyes of all the Memphite land, so recluse as to its interior against both the world and time.

In describing these matters, most of the reciters seemed
only intent on putting in everything of value they could possibly think of. All the treasures of "Sheddad Ben Ad," the great antediluvian king of the earth, with all his medicines and all his sciences, they declared were there, told over and over again. Others, though, were positive that the founder-king was no other than Saurid Ibn Salhouk, a far greater one than the other; and these last gave many more minute particulars: some of which are at least interesting to us in the present day, as proving that amongst the Egypto-Arabians of more than 1,000 years ago, the Jeezeh Pyramids, headed by the grand one, enjoyed a pre-eminence of fame vastly before all the other Pyramids of Egypt put together; and that if any other is alluded to after the Great Pyramid (which has always been the notable and favourite one, and chiefly was known then as the East Pyramid), it is either the second one at Jeezeh, under the name of the West Pyramid; or the third one, distinguished as the Coloured Pyramid, in allusion to its red granite, compared with the white limestone, casings of the other two; which, moreover, from their more near, but by no means exact, equality of size, went frequently under the affectionate designation of "the pair."

But what seemed more to the purpose of Al Mamoun at the time, was the very exact report of Ibn Abd Alkokm, as to things then still to be found in each of these three Pyramids; for this was what, according to that most detailed author, the primeval King Saurid had put into them and safely locked up; though where in the scanty hollow interior of any, or all, of the Pyramids, he could have found space for so much, is more than any one now knows.

"In the Western Pyramid, thirty treasuries, filled with store of riches and utensils, and with signatures made of precious stones, and with instruments of iron, and vessels of earth, and with arms which rust not, and with glass which might be bended and yet not broken, and with
strange spells, and with several kinds of *alakakirs* (magical precious stones), single and double, and with deadly poisons, and with other things besides.

"He made also in the East Pyramid divers celestial spheres and stars, and what they severally operate in their aspects, and the perfumes which are to be used to them, and the books which treat of these matters.

"He put also into the Coloured Pyramid the commentaries of the priests in chests of black marble, and with every priest a book, in which the wonders of his profession, and of his actions, and of his nature were written; and what was done in his time, and what is and what shall be from the beginning of time to the end of it.

"He placed in every Pyramid a treasurer; the treasurer of the Westerly Pyramid was a statue of marble stone, standing upright with a lance, and upon his head a serpent wreathed. He that came near it, and stood still, the serpent bit him of one side, and wreathing round about his throat, and killing him, returned to his place. He made the treasurer of the East Pyramid an idol of black agate, his eyes open and shining, sitting on a throne with a lance; when any looked upon him, he heard on one side of him a voice which took away his sense, so that he fell prostrate upon his face, and ceased not, till he died.

"He made the treasurer of the Coloured Pyramid a statue of stone, called *albut*, sitting; he which looked towards it was drawn by the statue, till he stuck to it, and could not be separated from it till such time as he died."

Some of these features were certainly not encouraging; but then they were qualified by other tale-reciters, who described "three marble columns in the Great Pyramid, supporting the images of three birds in flames of fire made up of precious stones beyond all value and all number. Upon the first column was the figure of a dove, formed of a beautiful and priceless green stone; upon the second that of a hawk, of yellow stone; and upon the third, the
image of a cock, of red stone, whose eyes enlightened all the place. Upon moving the hawk, a gigantic door which was opposite, composed of great marble slabs, beautifully put together, and inscribed with unknown characters in letters of gold, was raised; and the same surprising connection existed between the other images and their doors."

Exciting wonders, of course, appeared beyond those strange portals; but what need we to disentomb these Arabian romances further? In Egypt they believe pretty seriously in enchantments and Jinn or Genii of marvellous proportions still; how much more then in the days of the son of Haroun Al Raschid, and when the Great Pyramid was a mystery of old, fast sealed! To ascertain, therefore, what really existed inside it then, was evidently a very definite and promising sort of labour; and why should not the young Caliph Al Mamoun undertake it?

Caliph Al Mamoun attacks the Northern Flank of the Great Pyramid.

He did so, and directed his Mohammedan workmen to begin at the middle of the northern side; precisely, says Sir Gardner Wilkinson, as the founders of the Great Pyramid had foreseen, when they placed the entrance, not in the middle of that side, but twenty-four feet and some way to the east. Hard work, therefore, was it to with reasons, quarrying with the rude instruments of them, harous time, into stone-work as solid almost, at up an e, as the side of a hill. strang long indeed began to cry out, "Open that won a bore pyramid! It could not possibly be done!" But above, th only replied, "I will have it most certainly to his followers perforce had to quarry on un by night and by day. Weeks after weeks, and o, were consumed in these toilsome exertions; ess, however, though slow, was so persevering
that they had penetrated at length to no less than one hundred feet in depth from the entrance. But by that time becoming thoroughly exhausted, and beginning again to despair of the hard and hitherto fruitless labour, some of them ventured to remember certain improving tales of an old king, who had found, on making the calculation, that all the wealth of Egypt in his time would not enable him to destroy one of the Pyramids. These murmuring disciples of the Arabian prophet were thus almost becoming openly rebellious, when one day, in the midst of their various counsel, they heard a great stone evidently fall in some hollow space within no more than a few feet on one side of them!

In the fall of that particular stone there almost seems to have been an accident that was more than an accident.

Energetically, however, they instantly pushed on in the direction of the strange noise; hammers, and fire, and vinegar being employed again and again, until, breaking through a wall surface, they burst into the hollow way, "exceeding dark, dreadful to look at, and difficult to pass," they said at first, where the sound had occurred. It was the same hollow way, or properly the Pyramid's inclined and descending entrance-passage, where the Romans of old, and if they, also Greeks, Persians, and Egyptians, must have passed up and down in the occasional visits to the subterranean chamber and finished, unquarried-out, floor. Tame and simple that entrance-passage to appear to those ancient, entered in the right way, and as the builder from above; but now it not only stood before another and another religion, but with something that never saw, viz. its chief leading secret, for the since the foundation of the building, nakedly. A large angular-fitting stone that had made with its lower flat side, a smooth and polished
the ceiling of the inclined and narrow entrance-passage, quite undistinguishable from any other part of the whole of its line, had now dropped on to the floor before their eyes; and revealed that there was just behind it, or at and in that point of the ceiling which it had covered, the end of another passage, clearly ascending therefrom and towards the south, out of this descending one! (See Plate VII.)

But that ascending passage itself was still closed, by an adamantine portcullis, or rather stopper, formed by a series of huge granite plugs of square wedge-like shape dropped, or elided down, and then jammed in immovably, from above. To break them in pieces within the confined entrance-passage space, and pull out the fragments there, was entirely out of the question; so the grim crew of Saracen Mussulmans broke away sideways or round about to the west through the smaller, ordinary masonry, and so up again (by a huge chasm still to be seen, and indeed still used by all would-be entrants into the further interior) to the newly discovered ascending passage, at a point past the terrific hardness of its lower granite obstruction. They did up there, or at an elevation above, and a position beyond the portcullis, find the passage-way still blocked, but the filling material at that part was only limestone; so, making themselves a very great hole in the masonry alongside, they there wielded their tools with energy on the long fair blocks which presented themselves to their view. But as fast as they broke up and pulled out the pieces of one of the blocks in this strange ascending passage, other blocks above it, also of a bore just to fill its full dimensions, slid down from above, and still what should be the passage for human locomotion was solid stone filling. No help, however, for the workmen. The Commander of the Faithful is present, and insists that, whatever the number of stone plugs still to come down from the mysterious reservoir, his men
shall hammer and hammer them, one after the other, and bit by bit to little pieces at the only opening where they can get at them, until they do at last come to the end of all. So the people tire, but the work goes on; and at last, yes! at last! the ascending passage, beginning just above the granite portcullis, and leading thence upward and to the south, is announced to be free from obstruction and ready for essay. Then, by Allah, they shouted, the treasures of the Great Pyramid, sealed up from the fabulous times of the mighty Ibn Salhouk, and undesecrated, as it was long supposed, by mortal eye during all the intervening thousands of years, lay full in their grasp before them.

On they rushed, that bearded crew, thirsting for the promised wealth. Up no less than 110 feet of the steep incline, crouched hands and knees and chin together, through a passage of royally polished white limestone, but only 47 inches in height and 41 in breadth, they had painfully to crawl, with their torches burning low. Then suddenly they emerge into a long tall gallery, of seven times the passage height, but all black as night and in a death-like calm (see Plate XI.); still ascending though at the strange steep angle, and leading them away farther and still more far into the very inmost heart of darkness of this imprisoning mountain of stone. In front of them, at first entering into this part of the now termed "Grand Gallery," and on the level, see another low passage; on their right hand (see Plates VII. and X.) a black, ominous-looking well's mouth, more than 140 feet deep, and not reaching water, but only lower darkness, even then; while onwards and above them, a continuation of the glorious gallery or hall of seven times, leading them up to the possession of all the treasures of the great ones of the ante-diluvian earth. Narrow, certainly, was the way—only 6 feet broad anywhere, and contracted to 3 feet at the floor—but 28 feet high, or almost above the power of
their smoky lights to illuminate; and of polished, glistering, marble-like, cyclopean stone throughout. (See Plate XI.)

That must surely, thought they, be the high-road to fortune and wealth. Up and up its long-ascending floor-line, therefore, ascending at an angle of 26°, these determined marauders, with their lurid fire-lights, had to push their dangerous and slippery way for 150 feet more; then an obstructing three-foot step to climb over; next a low doorway to bow their heads most humbly beneath (see Plate XIII.); then a hanging portcullis to pass, almost to creep, under, most submissively; then another low doorway in awful blocks of frowning red granite both on either side and above and below; but after that they leaped without further let or hindrance at once into the grand chamber, which was, and is still, the conclusion of everything forming the Great Pyramid's interior; the chamber to which, and for which, and towards which, according to every subsequent writer, in whatever other theoretical point he may differ from his fellows, the whole Great Pyramid was built. (See Plate XIV.)

And what find they there, those maddened Muslim in Caliph Al Mamoun's train? A right noble apartment, now called the King's Chamber, roughly 34 feet long, 17 broad, and 19 high, of polished red granite throughout, both walls, floor, and ceiling; in blocks squared and true, and put together with such exquisite skill that no autocrat Emperor of modern times could desire anything more solidly noble and refined.

Ay, ay, no doubt a well-built room, and a handsome one too; but what does it contain? Where is the treasure? The treasure! Yes, indeed, where are the promised silver and gold, the jewels and the arms? The plundering fanatics look wildly around them, but can see nothing, not a single dirhem anywhere. They trim their torches, and carry them again and again to every part of that red-
walled, flinty hall, but without any better success. Nought but pure, polished red granite, in mighty slabs, looks calmly upon them from every side. The room is clean, garnished too, as it were; and, according to the ideas of its founders, complete and perfectly ready for its visitors, so long expected, and not arrived yet; for the gross minds who occupy it now, find it all barren; and declare that there is nothing whatever there, in the whole extent of the apartment from one end to another, nothing except an empty stone chest without a lid.

The Caliph Al Mamoun was thunderstruck. He had arrived at the very ultimate part of the interior of the Great Pyramid he had so long desired to take possession of; and had now, on at last carrying it by storm, found absolutely nothing that he could make any use of, or saw the smallest value in. So being signally defeated, though a Commander of the Faithful, his people began muttering against him; and to exclaim too, in most virtuous phrases of repentance upon both their own waste of time, and the treason and treachery of some one.

But Al Mamoun was a Caliph of the able day of Eastern rulers for managing mankind; so he had a large sum of money secretly brought from his treasury, and buried by night in a certain spot near the end of his own quarried entrance-hole. Next day he caused the men to dig precisely there, and behold! although they were only digging in the Pyramid masonry just as they had been doing during so many previous days, yet on this day they found a treasure of gold; “and the Caliph ordered it to be counted, and lo! it amounted to the exact sum that had been incurred in the works, neither more nor less. And the Caliph was astonished, and said he could not understand how the kings of the Pyramid of old, actually before the Deluge, could have known exactly how much money he would have expended in his undertaking; and he was lost in surprise.” But
as the workmen got paid for their labour, and cared not whose gold they were paid with so long as they did get their wage, they ceased their complaints, and dispersed; while as for the Caliph, he returned to the city, a sadder and a wiser man, musing on the wonderful events that had happened; and both the Grand Gallery, and the King's Chamber, and the "stone chest without a lid" were troubled by him no more.

The poets of El Fostat did indeed tune their lutes once again, and celebrate their learned patron's discoveries in that lidless box of granite. According to some of them, a dead man with a breast-plate of gold, and an emerald vase a foot in diameter, and "a carbuncle which shone with a light like the light of day, and a sword of inestimable value and 7 spans long, with a coat of mail 12 spans in length" (all of them very unlike an Egyptian mummy of the usual Egyptological type), rewarded his exertions; though, according to others, the chest was really crammed to the brim with coined gold "in very large pieces;" while on the cover, which others again maintained was not there then, and is certainly not to be seen now, was written, they positively averred, in Arabic characters, "Abou Amad built this Pyramid in 1,000 days."

But nothing further of importance was actually done, at that time, in a cause which men began now to deem, in spite of their poets, to be absolutely worthless, and in a region more profitless to all mere sensualists than the desert itself. The way of approach, indeed, once opened, though no more traversed, by the Caliph Al Mamoun (as he presently left Egypt for his more imperial residence in Bagdad, and ended his days there in 842 A.D., about forty years before the time of our Alfred the Great), that way into the Pyramid then remained free to all; and "men did enter it," says one of the honestest chroniclers of that day, "for many years, and descended by
the slippery passage which is in it;" but with no other result than this, "that some of them came out safe, and others died."

Another, however, of those very early Mohammedan Egyptian authors aims most unsparingly, though without directly naming him, at the Caliph himself, who is indicated plainly enough to the faithful, with both moral and religious condemnation, as "one who employed three years, and considerable sums, in endeavouring to enter the Great Pyramid; and who found little or no treasure; but saw an inscription in letters of gold on the side of the chamber, declaring that "the impious violator of the tomb should experience, as his sole reward, the regret of having committed a sacrilegious action without any successful result."

But to return to something like the sober chronicles of the period, it was years after Al Mamoun's ruthless assault on the inside of the Pyramid, that there began that despoiling of its outside, which was carried on by many generations of the Abasside Viceroy's in Egypt systematically (but in an age, be it remembered, of general European darkness, when Saxon kings still ruled in England, long before the Norman Conquest), until all the white and polished blocks of the casing (except the two which Colonel Howard-Vyse was to bring to light 1,000 years afterwards) had been removed for the building of new Mussulman cities. And the grand primeval inscription on the outside of the Great Pyramid, "engraved," somewhere about the days of Job, "with an iron pen and lead in the rock for ever,"—what became of it: and what would it have told if translated by a more able linguist and impartial judge, than the idolatrous Egyptian priest who put off Herodotus with his own, the pagan priest's, grovelling ideas of what the architect, whom he most religiously hated, ought to have written?
But our present business is still to pursue whatever we can of the real history of the building and country; and then begin a painstaking description of those interior parts, which we ourselves have seen and measured, of this most ancient monument of man.
CHAPTER VII.
THE PYRAMID COFFER.

Resumption of Egyptian History.

FROM Caliph Al Mamoun’s, to our own time, is more than 1,000 years; in itself no inconsiderable portion of all human history on this globe. And if the Arabo-Egyptians had continued through all that immense interval as practically curious and wilfully destructive as in and about 820 A.D. in the service of their then ruler, what would have been left to these times of the primeval monument, in spite of its grandeur, and especially what would have remained of its one, small, contained coffer?

But such complete destruction was not to be. The few golden days of the son of Haroun Al Raschid soon passed away, and before the year A.D. 868 had come and gone, all Egyptians had far different matters to attend to and suffer under, than enter into more archaeological explorations. And yet it was out of ancient times that their newly commencing troubles came: for the day of the Lord’s controversy with the giant idols of that land of old, with those idols and idol customs still perverting more or less the minds of the inhabitants, was not ended. And that day was to be one, in its terrors of Divine vengeance,

"When the heart of Egypt shall melt in the midst of it;
When the Egyptians shall fight, every one against his brother,
And every one against his neighbour;
City against city, and kingdom against kingdom,
And the spirit of Egypt shall fail in the midst thereof."
And I will destroy the covenant thereof,
And the Egyptians will I give over into the hand of a cruel Lord,
And a fierce King shall rule over them,
Saith the Lord of Hosts." (Isaiah xix.)

"And it shall be the basest of the kingdoms,
Neither shall it exalt itself any more above the nations."
(Ezekiel xxix. 15.)

These prophecies had been uttered from 1,400 to 1,500 years previously, or in 650 and 750 B.C.; and this is how they were eventually fulfilled.

Egypt has to accomplish its Destinies.

In 868 A.D. the son of a slave named Tooloon was appointed by the Caliph of Bagdad viceroy over Egypt; but presently rebelling against his master, he made himself ruler over the land; and continued wars ensued up to his death in the midst of them.

His son, who succeeded him, had similar wars through his short reign, until he was put to death by the women of his own household. The next successor came to a similar violent end, and the next, and the next, by name Haroon; but with the addition of seeing before he died, in the year 900 A.D., according to the chroniclers, "a great tempest and earthquake" desolate the country.

Haroon reigned, say these authorities, upwards of eight years, but gave himself up to pleasure; and was put to death by his uncles; one of whom, Sheyban, then usurped the government. The Bagdad caliph thereupon invaded the country; Sheyban went forth to meet him, but his troops deserted; the city of El Fostat was taken and burnt, and the women reduced to slavery, A.D. 905.

From this time to 970 A.D., when El Kahireh, or Cairo, was founded by Gohar, close to the north of the former city El Fostat,—anarchy, bloodshed, rival and short-lived rulers, invasions, desolations and battles, form the record of almost every year; culminating in 1010 A.D., in the time of El Hakim, who, in addition to all the mere cruelties of
his predecessors, made the people pay him divine honours, and altered his name from signifying "Governing by command of God" into "Governing by his own command." But ten slaves, bribed by 500 denars each, finished the wretch's career, one midnight, when he, who had thrown off allegiance to God, was engaged on the hills to the south-east of Cairo in making some cabalistic sacrifices; to Saturn, say some; to Satan, however, say others; and they further claim him as still the special prophet of the devil-worshippers of Mount Lebanon, the Druses; who moreover expect him to come supernaturally amongst them once again, and soon.

Desolating wars then followed between the Negroes and the Saracens, both of them in turn overrunning Egypt; also between Egypt and Bagdad: battles almost every year, and in 1070 A.D., in the time of the Cairo ruler El Mustansir, came the dreadful famine still called by his name. For seven successive years the inundations of the Nile failed; the country produced no corn, and foreign armies prevented its importation from abroad. The wretched people resorted to cannibalism, and, as related by the Arab historian El Makrezeze, organized bands kidnapped unwary passengers in the almost deserted streets, catching their prey principally by means of ropes armed with hooks, and let down from the overhanging lattice windows so common still in Cairo. A pestilence followed the famine, and an invading army the pestilence.

So continues the history of Egypt up to the one brighter and better reign of Saladin of the Crusades, from 1117 A.D. to 1193 A.D.; and then the country is plunged into a night of internecine wars and misfortunes again.

In 1301 A.D., during the reign of En Nasir, as great a persecutor of Christians as El Hakim himself, comes the record of another earthquake, so severe, that it is said to have "nearly ruined Cairo, giving it the appearance of a city demolished by a siege," and under this visitation it
most probably was, that the final and complete shaking down of the remaining fragments of the half-plundered casing-stones of the Great Pyramid took place, and formed the chief mass of those hills of rubbish which we now find on each of the four base-sides of the monument. There they cover up and preserve to future ages, perhaps on every flank of the building, important proofs of the ancient structural architecture, such as Colonel Vyse did discover a portion of, when he cut into the covering of the northern side, the only one which has been penetrated yet.

But we are anticipating. From 1320 to 1398 A.D. things grew rather worse than better, and then began the line of Slave-Sultans, their whole families nothing but slaves, and recruited by continual importation of slaves through two hundred years. History presents, it is said, no other example of a sovereignty so ignoble and so lasting; and when it presents us also, on one side with a picture of a sultan burned in "a pleasure-tower" he had built on the banks of the Nile by his own guards, he, on the roof promising all sorts of concessions to them if they would not burn him, and they insisting on burning him then and there; and on another side with the picture of a sultana beaten to death by her female slaves with their wooden clogs, and her disfigured body thrown out and exposed for three days on the dustheaps outside the city—the imagination itself can hardly realise the degradation and baseness to which the kingdom had arrived.

The Acme of the Burden of Egypt.

One woe is past, and there come two more woes hereafter, says St. John (Rev. ix.); for this was the time when the four angels of the Euphrates were to be loosed at last, with their army of horsemen two hundred thousand thousand, long since prepared for an hour, and a day, and a month, and a year (nearly four hundred years actual) to
kill the third part of men. And the third part of men were killed by them, “by the fire, and by the smoke, and by the brimstone, which issued out of their mouths.”

In 1453 the Turks, first employing enormous siege guns, were, by taking Constantinople, and destroying the long-existent Greek or Lower Roman empire there, loosed for new and unrestrained destruction, on all sides. Against Europe first, but next against Egypt, which fell under their withering rule in 1517 A.D., when the last Slave-Sultan of Cairo was crucified over the gate of the common malefactors by Selim I., the Emperor of the Turks.

But was that the end of the disgraces and base sufferings of Egypt? Far from it. In place of one slave-monarch, the Turks established in Egypt what amounted to a republic of petty slave-monarchs, to rule over and fight with each other as much as they liked, so long as certain tribute, ground by pitiless tyranny from the peasant cultivators of the land, was sent to Constantinople.

Each Bey, says an acknowledged historian, was a tyrant in his own district, and they were all as tyrannical as their moral character was depraved. Frequently fighting with each other, often with their masters the Turks, against whom they were continually rebelling, Egypt suffered more under the Memlook Beys than through any period of its history. And this state of things continued up to the invasion of Egypt by Napoleon Bonaparte in 1798; when, at the battle of the Pyramids, the Memlook forces were first thinned, and afterwards almost entirely extirpated by Mohammed Ali in 1811; leaving the population of this once powerful land to be summed up, in 1834, thus:—

Muslim Egyptians (peasants and townspeople)	1,750,000
Copts, or Egyptian Christians	150,000
Osmanlios or Turks (still the governing body)	10,000
Syrians	5,000
Armenians	2,000
Jews	5,000
Various	70,000
The European Mind enters into the Great Pyramid Question.

After the terrific ordeal that Egypt had passed through in Mohammedan times, it was more wonderful perhaps that the population had not been entirely destroyed, than that the ancient Pyramids escaped almost unscathed. But they, though close at hand all the time, were yet in actual desert land, in a rocky wilderness of light yellow-ochre colour, and with graves all around them, where no man was particularly called on to venture in at any time.

Yet it was during that Turkish period, of the almost republican Memlook Beys, that modern Europe began to move, modern science to grow, modern travel to be undertaken; and Professor Greaves's visit to the Great Pyramid in 1637 A.D. was an example which soon had imitators, increasing in numbers as the centuries passed by.

Again, too, we find the natural instinct of nations singles out the Great Pyramid as being far more interesting than any other monument of the kind: while in that building again, the same empty stone chest, which had so affronted the Caliph Al Mamoun, still offered itself there in the interior, and the very farthest and crowning part of the interior too, as the chief object for explanation. Why was it in such a place of honour? Why was the whole Pyramid arranged in subservience to it? Why was it, this mere coffe-box, so unpretending and plain? Why was it empty, lidless, and utterly without inscription, continually demanded modern Europe?

Gradually the notion grew that it might be a sarcophagus; that it was a sarcophagus; and that it had been intended for "that Pharaoh who (in 1542 B.C.) drove the Israelites out of Egypt; and who, in the end, leaving his carcass in the Red Sea, never had the opportunity of being deposited in his own tomb."

But this idea was effectually quashed, for, amongst
other reasons, this cogent one,—that the Great Pyramid was not only built, but had been sealed up too in all its more special portions, long before the birth even of that Pharaoh. Nay, before the birth of Isaac and Jacob as well; which disposes likewise of the attempt to call the Great Pyramid "the tomb of Joseph," whose mortal remains being carried away by the Israelites in their exodus, left the vacancy we now see in the coffer or stone box.

Then wrote some literati of 1650 A.D., "Here was buried King Cheops, or Chemmis, but his body hath been removed hence." Whereupon Professor Greaves pointed out "that Diodorus hath left, above 1,600 years since, a memorable passage concerning Chemmis, the builder of the Great Pyramid, and Cephren, the founder of the work adjoining. "Although," saith he, "those kings intended these for their sepulchres, yet it happened that neither of them were buried there. For the people being exasperated against them by reason of the toilsomeness of these works, and for their cruelty and oppression, threatened to tear in pieces their dead bodies, and with ignominy to throw them out of their sepulchres. Whereupon both of them, dying, commanded their friends to bury them in an obscure place."

And again, both Professor Greaves and other scholars salutarily brought up, to check the then public mania for calling the coffer Cheops' coffin, the very clear account of Herodotus, that King Cheops was not buried in the Great Pyramid building above, simply because he was buried low down, and in a totally different place; viz. "in a subterranean region on an island surrounded by the waters of the Nile." And as that necessarily and hydraulically means a level into which the Nile water could naturally flow, it must have been at a depth of more than fifty feet beneath the very bottom of even the unfinished subterranean chamber, the deepest work found yet underneath the
Great Pyramid. Exactly such a locality, too, both sepulchral, and with precisely the required hydraulic conditions, has since then been discovered a long way south-east of the Pyramid building. (See Plate XV.)

The Tombic Theory.

So in later years, all the single sarcophagus propositions for the benefit of the empty stone chest having failed, their remains have been merged into a sort of general sarcophagus theory, that some one must have been buried there. And this notion finds much favour with the Egyptologists, as a school; though facts are numerously against them, even to their own knowledge. They allow, for instance, that in no other Pyramid is the sarcophagus—as they boldly call the stone chest, or granite box, of other authors—contained high up in the body of the Pyramid, far above the surface of the ground outside; that in no other case* is it perfectly devoid of adornment or inscription; that in no other case has the lid so strangely vanished; in no other case are the neighbouring walls and passages so devoid of hieratic and every other profane mythological emblem; in fact, they confess that the red granite coffer, with all that part of the Great Pyramid's chambers and ascending passages where it is found, is entirely unique and peculiar to the Great Pyramid.

Observe also with the alleged "sarcophagus," in the King's Chamber (for so is that apartment now most generally termed), that there was no ancient attempt to build the vessel up and about in solid masonry, in the most usual and truly effective manner for securing a dead body inviolate. On the contrary, there were magnificently built white-stone passages of a most lasting description, ready to lead a stranger right up to such far interior

* Excepting indeed the sarcophagus of the Second Pyramid, but which is not known to have ever been occupied by a mummy.
sarcophagus from the very entrance itself; while, more notably still, the shapely King's Chamber was intended to be ventilated in the most admirable manner by the “air channels” discovered by Colonel Howard-Vyse, in 1837 A.D.; evidently (as the actual fact almost enables us to say with security) in order that men might come there in the latter day, and look on, and deal with, that open granite chest, and live and not die.

The Exclusively Tombic Theory receives a Shake.

Meanwhile, some few good men and true in scientific researches—witness M. Jomard in the celebrated “Description de l'Égypte,” and Sir Gardner Wilkinson in his own most deservedly popular works—had begun to express occasional doubts as to whether any dead body either of a king or of any other mortal man ever was deposited in the lidless vessel of the King's Chamber.

The actual words of that most philosophic of all the Egyptologists, Sir G. Wilkinson, are: “The authority of Arab writers is not always to be relied on; and it may be doubted whether the body of the king was really deposited in the sarcophagus,” i.e. coffer, of the Great Pyramid.

Something of a metrological kind, again, was suggested by M. Jomard, to be signified by that hollow box; and had also been speculated on by Sir Isaac Newton more than a century earlier, but not followed up. Though finally, Dr. Lepsius, as not only an Egyptologist of the Pharaonic order, but one whom Gliddon states, with similar pride, “has been justly termed, by the great Letronne, the hope of Egyptian study,” showed the usual Egyptological want of power for appreciating any higher views, by planting a young palm-tree in the hollow of the ancient coffer; to act, he explained, as a German Christmas-tree, when decorated with some baubles which
he had bought in Cairo, as presents for himself and his Prussian friends, who were then engaged with him in copying hieroglyphics of the profane kind from neighbouring idolatrous tombs of old Egypt.

John Taylor's Theory.

In the midst of such scenes, illustrating, unfortunately, what is actually going on, and chiefly applauded, among the Egyptologists of the nineteenth century, comes out the late John Taylor with the result of his long and respectful researches; and suggests more or less that, "The coffer in the King's Chamber of the Great Pyramid was intended to be a standard measure of capacity and weight; primarily in exclusive idea, but ultimately for all nations; and certain nations did thence originally receive their weights and measures; so that those of them who still preserve, to some degree, with their language and history, their hereditary weights and measures, may yet trace their prehistoric connection substantially with that one primeval, standard, metrological centre for all the future world, the Great Pyramid."

Take, for instance, our own case. When the British farmer measures the wheat which the bounty of Providence has afforded him as the increase of his land, in what terms does he measure it? In quarters.

Quarters! Quarters of what?

The existing British farmer does not know; for there is no capacity measure now on the Statute-book above the quarter; but, from old custom, he calls his largest corn measure a quarter.

Whereupon John Taylor adds in effect: "The quarter corn measures of the British farmer are fourth parts or quarters of the contents of the coffer in the King's Chamber of the Great Pyramid; and the true value, in size, of its particular corn measure, has not sensibly deteriorated
during all the varied revolutions of mankind in the last 4,040 years!"

This is a statement requiring full examination.

The first part of the problem, too, should be both short and simple; for it is, merely to determine the cubical contents of the vessel known successively, from Caliph Al Mamoun’s day to our own, as “the sarcophagus,” “the empty box,” “the lidless stone chest,” or more philosophically and safely, so as not to entangle ourselves with any theory, “the coffer,” in the King’s Chamber of the Great Pyramid.

From Colonel Howard-Vyse’s important work are drawn forth and arranged, in the following table, the

Modern Measures of the Great Pyramid Coffin up to A.D. 1864.

<table>
<thead>
<tr>
<th>Authors</th>
<th>Date</th>
<th>Material as named</th>
<th>Exterior: Length</th>
<th>Exterior: Breadth</th>
<th>Exterior: Depth</th>
<th>Interior: Length</th>
<th>Interior: Breadth</th>
<th>Interior: Depth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bellonius</td>
<td>1653</td>
<td>Black marble</td>
<td>144''</td>
<td>73''</td>
<td>70''</td>
<td>77''</td>
<td>76''</td>
<td>76''</td>
</tr>
<tr>
<td>P. Alpinus</td>
<td>1651</td>
<td>Black marble</td>
<td>164''</td>
<td>90''</td>
<td>64''</td>
<td>84''</td>
<td>47''</td>
<td>Breast-high</td>
</tr>
<tr>
<td>Sandyus</td>
<td>1810</td>
<td>Black marble</td>
<td>102</td>
<td>60''</td>
<td></td>
<td>77''</td>
<td>66''</td>
<td>70''</td>
</tr>
<tr>
<td>De Villamont</td>
<td>1818</td>
<td>Thebais marble</td>
<td>86''</td>
<td>37''</td>
<td>40''</td>
<td></td>
<td>86''</td>
<td>40''</td>
</tr>
<tr>
<td>Prof. Greques</td>
<td>1838</td>
<td>Hard porphyry</td>
<td>96</td>
<td>40''</td>
<td>40''</td>
<td>73''</td>
<td>59''</td>
<td></td>
</tr>
<tr>
<td>De Monconys</td>
<td>1847</td>
<td>Granite</td>
<td>90''</td>
<td>48''</td>
<td>48''</td>
<td></td>
<td>84''</td>
<td>48''</td>
</tr>
<tr>
<td>M. Thevenot</td>
<td>1855</td>
<td>Marble</td>
<td>36''</td>
<td>39''</td>
<td>39''</td>
<td>77''</td>
<td>66''</td>
<td>74''</td>
</tr>
<tr>
<td>M. Lebrun</td>
<td>1874</td>
<td>Like porphyry</td>
<td>96''</td>
<td>37''</td>
<td>37''</td>
<td></td>
<td>72''</td>
<td>59''</td>
</tr>
<tr>
<td>M. Mallett</td>
<td>1839</td>
<td>Thebais marble</td>
<td>96''</td>
<td>42''</td>
<td>42''</td>
<td></td>
<td>72''</td>
<td>59''</td>
</tr>
<tr>
<td>De Carveti</td>
<td>1893</td>
<td>Granite</td>
<td>96''</td>
<td>36''</td>
<td>36''</td>
<td></td>
<td>72''</td>
<td>59''</td>
</tr>
<tr>
<td>Lusae</td>
<td>1899</td>
<td>Granite</td>
<td>96''</td>
<td>36''</td>
<td>36''</td>
<td></td>
<td>72''</td>
<td>59''</td>
</tr>
<tr>
<td>Egmont</td>
<td>1709</td>
<td>Granite</td>
<td>96''</td>
<td>42''</td>
<td>42''</td>
<td></td>
<td>72''</td>
<td>59''</td>
</tr>
<tr>
<td>Pére Sicard</td>
<td>1715</td>
<td>Thebais marble</td>
<td>96''</td>
<td>42''</td>
<td>42''</td>
<td></td>
<td>72''</td>
<td>59''</td>
</tr>
<tr>
<td>Dr. Shaw</td>
<td>1721</td>
<td>Granite</td>
<td>96''</td>
<td>36''</td>
<td>36''</td>
<td></td>
<td>72''</td>
<td>59''</td>
</tr>
<tr>
<td>Dr. Perry</td>
<td>1743</td>
<td>Granite</td>
<td>96''</td>
<td>36''</td>
<td>36''</td>
<td></td>
<td>72''</td>
<td>59''</td>
</tr>
<tr>
<td>M. Denon</td>
<td>1799</td>
<td>Granite</td>
<td>90''</td>
<td>39' 0</td>
<td></td>
<td></td>
<td>78' 0</td>
<td>78' 0</td>
</tr>
<tr>
<td>M. Jomard and</td>
<td></td>
<td>Granite</td>
<td>90' 0</td>
<td>39' 0</td>
<td></td>
<td></td>
<td>78' 0</td>
<td>78' 0</td>
</tr>
<tr>
<td>Eg. Fr. Ac.</td>
<td>1799</td>
<td>Granite</td>
<td>90 0</td>
<td>39' 0</td>
<td></td>
<td></td>
<td>78' 0</td>
<td>78' 0</td>
</tr>
<tr>
<td>Dr. Clarke</td>
<td>1801</td>
<td>Granite</td>
<td>90' 0</td>
<td>39' 0</td>
<td></td>
<td></td>
<td>78' 0</td>
<td>78' 0</td>
</tr>
<tr>
<td>Mr. Hamilton</td>
<td>1801</td>
<td>Granite</td>
<td>90' 0</td>
<td>39' 0</td>
<td></td>
<td></td>
<td>78' 0</td>
<td>78' 0</td>
</tr>
<tr>
<td>Dr. Whitman</td>
<td>1801</td>
<td>Granite</td>
<td>90' 0</td>
<td>39' 0</td>
<td></td>
<td></td>
<td>78' 0</td>
<td>78' 0</td>
</tr>
<tr>
<td>Dr. Wilson</td>
<td>1801</td>
<td>Granite</td>
<td>90' 0</td>
<td>39' 0</td>
<td></td>
<td></td>
<td>78' 0</td>
<td>78' 0</td>
</tr>
<tr>
<td>M. Cavigdes</td>
<td>1817</td>
<td>Granite</td>
<td>90' 0</td>
<td>39' 0</td>
<td></td>
<td></td>
<td>78' 0</td>
<td>78' 0</td>
</tr>
<tr>
<td>Dr. Richardson</td>
<td>1817</td>
<td>Granite</td>
<td>90' 0</td>
<td>39' 0</td>
<td></td>
<td></td>
<td>78' 0</td>
<td>78' 0</td>
</tr>
<tr>
<td>Sir G. Wilkinson</td>
<td>1831</td>
<td>Granite</td>
<td>90' 0</td>
<td>39' 0</td>
<td></td>
<td></td>
<td>78' 0</td>
<td>78' 0</td>
</tr>
<tr>
<td>Howard-Vyse</td>
<td>1837</td>
<td>Granite</td>
<td>90' 0</td>
<td>39' 0</td>
<td></td>
<td></td>
<td>78' 0</td>
<td>78' 0</td>
</tr>
</tbody>
</table>

N.B.—A note of interrogation after any of the interior measures indicates that they have been obtained by applying to the exterior measures the "thickness" as given by the observer; such thickness being supposed to apply to the sides, and not to the bottom.

Chief measures which have been taken between 1550 A.D. and 1840 A.D., some of the principal authors being con-
sulted in their original writings. Their measures, generally given in feet, or feet and inches,* or mètres, are all here set down in British inches, to give a clearer view of the progress of knowledge in this particular matter. And now, our only bounds to exactness will be, the capability of these educated men of Europe to apply accurate measure to a regularly formed and exquisitely prepared specimen of ancient mechanical art.

Reflections on the Numbers as given above.

Look at them, then. Surely the list is not a little appalling. An ordinary carpenter amongst us talks of sixteenths of an inch quite fluently, and sometimes undertakes to make a special piece of cabinet work "fit to half a sixteenth:" but our learned travellers commit errors of many whole inches; and this when they are measuring the one and only internal object which they found to measure in the whole interior of the Great Pyramid.

My own part here must be very gently performed; for I have my measures to produce by-and-by, none of them perfectly exact; and yet even I feel compelled to say, that out of the twenty-five quoted authors no less than twenty-two must be discharged summarily as quite incompetent, whatever their mental attainments otherwise, to talk before the world about either size or proportion in any important practical matter.

Professor Greaves in 1638, the French Academicians in 1799, and Colonel Howard-Vyse in 1837, are therefore the only three names that deserve to live as coffer measurers, in the course of 250 years of legions of educated European visitors. Of these three parties thus provision-

* The feet of all authors, when not otherwise particularised, have been here assumed as English feet, and in some cases may require a correction on that account, but not to any extent sufficient to explain the chief anomalies observed.
ally accepted, the foremost position might have been expected for the Academicians of Paris. Professor Greaves lived before the day of European science proper. While Colonel Howard-Vyse did not lay himself out for very refined measurements, but rather went through what he felt himself obliged to undertake in that direction, in the same fearless, thorough-going, and artless manner in which the Duke of Wellington was accustomed to review a picture exhibition in London; beginning with No. 1 in the catalogue, and going through with the whole of them conscientiously to the very last on the list.

The Colonel's measures, therefore, are respectable and solidly trustworthy with regard to large quantities, but not much more.

With the French Academicians it is quite another thing; they were the men, and the successors of the men, who had been for generations measuring arcs of the meridian, and exhausting all the refinements of microscopic bisections and levers of contact in determining the precise length of standard scales. Their measures, therefore, ought to be true to the thousandth, and even the ten-thousandth part of an inch: and perhaps they are so in giving the length and breadth of the coffer; but, alas! in their statements of the depth, both inside and out, there seems to have been some incomprehensible mistake committed, amounting to nearly three whole inches.

Under such circumstances, and after having failed to obtain any satisfactory explanation from the Perpetual Secretary of the Academy in Paris, I have been compelled to discharge the French Academy, also, from the list of fully trustworthy competitors for usefulness and fame in Pyramid-coffer metrology. Only two names, therefore, are left—Howard-Vyse, who has been already characterized, and Greaves, in whom we have most fortunately a host indeed.
Of Professor Greaves, the Oxford Astronomer in 1637.

He lived, no doubt, before the full birth of European science, but on the edge of an horizon which is eventful in scientific history. Immediately behind him were, if not the dark ages, the scholastic periods of profitless verbal disquisitions; and in front, to be revealed after his death, were the germs of the mechanical and physical natural philosophy which have since then changed the face of the world. There is no better a life-point that can be taken than Greaves's, whereby to judge what Europe has gained by the exercise of civil and religious liberty, coupled with the study of nature direct, through two and a half centuries of unrestricted opportunity. When as much more time has passed over the world as now separates us from Greaves's age, then—say many of the safest interpreters of the sacred prophecies—a further Divine step in the development of the Christian dispensation will have commenced.

Now almost every other visitor, too, both before and since, paid vastly more attention to the exterior than the interior of the coffer; but Professor Greaves, fortunately for our present inquiry, attended chiefly to the interior, and wrote of it most particularly, thus:—"It is in length on the west side, six feet, and four hundred and eighty-eight parts of the English foot, divided into a thousand parts" (that is, 6 feet, and 488 of 1,000 parts of a foot); "in breadth at the north end, two feet, and two hundred and eighteen parts of the foot divided into a thousand parts" (that is, 2 feet, and 218 of 1,000 parts of the English foot). "The depth is 2 feet and 860 of 1,000 parts of the English foot."

And he defends his practice in this instance by adding, so characteristically for his pre-Newtonian day in science: "In the reiteration of these numbers, if any shall be offended either with the novelty or tediousness of express-
ing them so often, I may justify myself by the example of Ulug Beg, nephew of Timurlane the Great (for so is his name, and not Tamerlane), and Emperor of the Moguls, or Tatars (whom we term amiss Tartars). For I find in his astronomical tables (the most accurate of any in the East), made about two hundred years since, the same course observed by him when he writes of the Grecian, Arabian, and Persian epochs, as also those of Cataia and Turkistan. He expresseth the numbers at large, as I have done; then in figures, such as we call Arabian, ———, which manner I judge worthy of imitation, in all such numbers as are radical, and of more than ordinary use."

Greaves's and Vyse's Coffer Capacity Determinations.

Hence we have for the cubical contents of the coffer in English inches, reduced from Greaves's original full measures, in 1838—

\[77.856 \times 26.616 \times 34.320 = 71,118. \]

And by Howard-Vyse's measures, just as taken in 1837—

\[78.0 \times 26.5 \times 34.5 = 71,311. \]

Several small corrections may possibly be applicable to these mere numbers as rudely read off; but for the present we may provisionally accept for a first approximation the simple mean of the above statements, or 71,214 cubic inches, as the apparent capacity contents of the coffer of the King's Chamber.

Wherefore now, what proportion does that number bear to the capacity of four modern English corn quarters, in terms of which British wheat is measured and sold at this very hour?

Referring to the almanac for the Act of Parliament on the subject, we find that one gallon is declared to be equal to 277.274 cubic inches; which quantity being multi-
plied for bushels, quarters, and four quarters, yields 70,982.144 English cubic inches. Whence the degree of agreement between a quarter modern British, and a fourth part of the ancient coffer, or granite box, and possible type of a both primeval and prophetic corn-measure in the Great Pyramid, is at this present time as 17,746 : 17,804.

Qualities of the Coffer’s “Quarter” Measure.

A sufficiently fair amount of agreement is this, between the things compared (viz. the Pyramid coffer on one side divided into four from the measures of modern savants; and on the other, the old Anglo-Saxon corn-measure, after being too often “adjusted” by Acts of Parliament, since those halcyon days of rest when Edgar “the peaceable” reigned over England at Winchester, 958—975 A.D.),—sufficiently near, I repeat, to allow all friends of worthy old John Taylor to say that the Great Pyramid, with its coffer of four British corn-quarter capacity, is still capable of fulfilling the purpose of one of the Greek interpretations of its now world-famous name, in measuring out,

\[\pi u p o s, \]
corn.

To nations in a primitive condition, the first application of capacity measures would, with little doubt, be in the exchange of corn; and through whatever subsequent stage of power, luxury, or refinement they may pass, the measuring of the staff of life will probably still keep up a permanent importance over every other object of measuring or weighing, even though it be of drugs, or silver, or gold,—in perfect accordance so far with our Lord’s Prayer, where the only material supplication is, “Give us day by day our daily bread.”

Yet is it to be also remarked, that if any given means for measuring corn were devised by a very superior intelligence, they should eventually be found applicable also, so far as principles of accuracy go, to many of the
more precise purposes to which the after progress of mankind may introduce them.

Thus, the moon, with its frequently recurring variations and phases, serves man in the savage, and did serve him in the primitive and patriarchal, state, as a coarse method of chronicling time month by month. In a more developed and civilised condition, some of the larger cycles of lunations enable him to speak exactly of many years at a time, and approximate to some eclipses. In a still further advanced condition, the moon's subsidiary features of movement enable the educated mariner in the midst of the broad surface of ocean, assisted by data from the astronomer and mathematician on shore, to measure his precise longitude. And finally, amongst the ablest minds of the present day, the theory of those movements and the computation of their nature, form an arena where every man may measure off his own intellectual height at the base of an infinite cliff which he may never hope to stand on the summit of.

In exact proportion, therefore, as man has become able to profit by God's moon, which he, man, originally believed was merely intended to slightly moderate for him the darkness of night, so has the divinely appointed luminary been found capable of more and more applications; and whenever any difficulty has occurred, it has never been any want of perfect accuracy in the lunar machinery itself, but merely in the power of man to interpret the working of it.

Is there, then, anything approaching to the same suggestive principle connected with the coffer "corn-measure" of the Great Pyramid?

That will probably come out as we proceed with our grand research.
CHAPTER VIII.

SUBSTANCE AND SHAPE.

Granite the True Material of the Coffer.

A reference to the third column of the coffer table on page 116 of the last chapter will show that travellers have assigned the coffer to almost every mineral, from black marble to red granite, and porphyry of a colour which no one has ventured to name. Yet John Taylor concluded for porphyry, and called the vessel "the Porphyry Coffer," as I did also for a time, and in my first book before going to Egypt, doubting then, if anything so well known and distinctly marked as red granite would ever have been called black marble; and having been further at that period so distinctly assured about the coffer, by a railway engineer who had been much in Egypt, that "it is undoubtedly porphyry:" an assertion which he backed up by describing some of the differences in character between the material of the coffer, as witnessed by himself, and the indubitable red granite walls of the chamber.

This granite he traced to the quarries of Syene, 550 miles up the river from the Pyramid; for nearer than that, there is not a particle of granite rock on the banks of the Nile, or within many days' journey from them on either side: but there, at the cataracts of the Nile above
Syene, it abounds; and Syene was in fact a storehouse of granite (of the syenitic variety, but still eminently to be called granite rather than by any other mineral name equally understood by the public at large) for every dynasty that sat on the throne of Egypt subsequently to the building of the Great Pyramid.

Porphyry may not improbably be also found at Syene, amongst the veins and extravasations of granite and basalt which there abound: but the most celebrated Egyptian quarries of porphyry, both red and green, were much nearer the Red Sea than the Nile, or at and about the Gebel Dokkan and Mount Porphorytes; therefore in much closer geographical proximity to, and, perhaps, geological connection with, the granite mountains of Sinai than the plutonic beds of Philæ and Syene.

Nevertheless, I having at last visited Egypt in 1864-5, after the publication of the first edition of this book, spent almost whole days and weeks in this King's Chamber of the Great Pyramid, until all sense of novelty and needless mystery in small things had worn away; and then decided, without the smallest hesitation, for the material of the coffer being syenitic granite; exceedingly like, but perhaps a little harder as well as darker than, the constructive blocks of the walls of the King's Chamber containing it.

Granite in the Dark, and Semi-dark, Ages now gone by.

In either case the hard granite is wonderfully distinct, naturally, from the soft limestone of the rest of the Great Pyramid's structure; and it is not a little important to be able in that monument to detect for certain whenever the primeval architect abandoned the use of the limestone he had at hand, and adopted the granite procured with utmost toil and expense from a distance; whether it came from Syene, as modern Egyptologists
usually determine, or from Sinai, as Professor Greaves would rather infer.

Recent travellers have indeed abundantly perceived the cartouches or ovals of both King Cheops and King Chephren, or of Shofo and Nou-Shofo, of the Jeezeh Pyramids, on certain quarried rocks in the Sinaitic peninsula, near Wadee Maghara; but the "works" with which these inscriptions were connected are generally supposed to have been iron and copper mines and emerald pits; and the following original note by Professor Greaves, evidently written long before the day of mineralogy, may be useful for a different purpose. The passage runs as follows:—

"I conceive it" (the material of the coffer) "to be of that sort of porphyry which Pliny calls leucostictos, and describes thus:—'Rubet porphyrites in雌dem Ægypto, ex eo candidis intervenientibus punctis leucostictos appellatur. Quantislibet molibus credendis sufficiunt lapidicinoo.' Of this kind of marble there were, and still are, an infinite quantity of columns in Egypt. But Venetian, a man very curious, who accompanied me thither, imagined that this sort of marble came from Mount Sinai, where he had lived amongst the rocks, which he affirmed to be speckled with party colours of black and white and red, like this; and to confirm his assertion, he alleged that he had seen a great column left imperfect amongst the cliffs almost as big as that huge and admirable pillar standing to the south of Alexandria. Which opinion of his doth well correspond with the tradition of Aristides, who reports that in Arabia there is a quarry of excellent porphyry."

Sad confusion here between granite and porphyry in the seventeenth century: while in the "unheroic eighteenth century" Anglo-Saxon ignorance of granite culminated. No fresh granite was then being worked anywhere direct from nature, and the monuments of antiquity composed of it were first suspected, and then alleged, to be factitious; as thus stated by a Mediterranean traveller in 1702:—"The
column of Pompey at Alexandria. Some think it of a kind of marble, but others incline rather to believe that 'twas built of melted stone cast in moulds upon the place. The latter opinion seems most probable, for there is not the least piece of that stone to be found (naturally) in any part of the world, and the pillar is so prodigiously big and high that it could hardly be erected without a miracle. I know 'tis alleged by those who believe the story of the Rhodian colossus, that the ancients had the advantage of admirable machines to raise such bulky pieces; but I should reckon myself extremely obliged to those gentlemen if they would show me any probable reason why, among so great a variety of Egyptian monuments of antiquity, there is not one of marble; and by what unaccountable accident the stone called granite, which was then so common, is now grown so scarce that the most curious inquiries into the works of nature cannot find the least fragment of it, that was not employed in ancient structures.

"And even though I should suppose, with my adversaries, that the quarries out of which this stone was dug were by degrees so entirely exhausted that there is not the least footprint of 'em left, and that Nature herself has lost so much of ancient vigour and fecundity that she is not able to produce new ones, I may still be allowed to ask why granite was only used in obelisks or columns of a prodigious bigness; for if it were really a sort of (natural) stone or marble, I see no reason why we might not find small pieces of it, as well as of porphyry and other precious kinds of marble.

"These reflections, in my opinion, may serve to confirm the hypothesis of those who believe that all these admirable monuments were actually cast in a mould; and if they would take the pains to view this column attentively, they would soon be convinced by the testimony of their own eyes that 'tis only a kind of cement composed of sand and
calcined stone, not unlike to mortar or lime, which grows hard by degrees."

Another century of modern civilisation rolled on, and then we find the celebrated traveller Dr. Clarke has burst his way to light, for he is then quite convinced that granite is a natural substance, and that hand specimens of it may be found by those who will search from country to country through the world; but yet so seldom met with, that he has all this further trouble in explaining to London society, of seventy years ago, what common rock material it is he is talking about: — "By Greaves's Thebaick marble is to be understood that most beautiful variety of granite called by Italian lapidaries granito rosso (see 'Forbes's Travels,' p. 226, London, 1776), which is composed essentially of feldspar, of quartz, and of mica. It is often called Oriental granite, and sometimes Egyptian granite; but it differs in no respect from European granite, except that feldspar enters more largely as a constituent into the mass than is usual with the granite of Europe. The author has seen granite of the same kind, and of equal beauty, in fragments, upon the shores of the Hebrides, particularly at Icolmkill."

Sixty more years of modern civilisation passed away. Macdonald at Aberdeen had by that time taught his countrymen how to work in polished granite, both red and grey, far and wide over Scotland. From tombstones to brooches, and from banks and insurance offices to kettle-holders and earrings, cut granite (poured forth since then without any stint both by the cold, pale Queen of the North and her blushing sister of Peterhead) is now used on every side; until all society, and the children too, talk as glibly in these our days about the once awfully mysterious tri-speckled stone, "as maids of thirteen do of puppy-dogs." And yet the thing, in Nature, is not plain to all our educated gentlemen even yet.

When, for instance, my wife and I were living through
several months in a tomb of the eastern cliff of the Great Pyramid hill in 1865, a Cambridge man, with a most respectable name in science, and a sage-looking, experienced head of iron-grey hair, called upon us and remarked (to the lady too, who knows a great deal more about minerals than I do), "What a fine granite cavern you are living in!" Granite, indeed! poor man! when the petrified nummulites were staring at him all the time out of the nought but limestone on every side! And other travellers within the last few years have confidently talked of having seen granite in the entrance-passage of the Great Pyramid, granite in the subterranean chamber, granite forming the casing-stone heaps outside, granite, in fact, anywhere and everywhere; and basalt dykes in the Pyramid hill too, though in a country of pure nummulitic limestone.

They, however, being free and independent writers, cannot be easily interfered with; but will my readers at least excuse me for insisting upon it, that for any would-be pyramidist scholar it is a most awful mistake to say granite, when he means limestone, or vice versa; and to see limestone, where the primeval architect went to infinite pains to place granite. To talk thus interchangeably of the two is, indeed, over and above saying the thing that is not in mineralogy, over and above too taking hard for soft, and soft for hard; Neptunian for Plutonian; repletion with traces of organic existence for nought but crystals that never had a breath of life in them,—it is also on the part of such individual a depriving himself of the only absolutely positive feature that he can, or should, speak to in all Pyramid inquiry; as thus:—

Questions of angle, line, and measure of weight are all questions of degree of approximation only; or of limits of approach to a something which may never be actually touched, or even defined. But if white nummulitic lime-
stone cannot be distinguished absolutely from red granite, without our being told authoritatively, by university scholars, that one of those substances glides so insensibly into the other, that no man can say with confidence where one begins and the other ends—the age for interpreting the long-secret interior of the Great Pyramid has not yet arrived.

But I will not consent to any such state of mind afflicting the readers of this present edition of 1877; and would rather, with them, as one amongst friends and often betters than myself, request their attention (before further discussing the coffer in the King's Chamber) to a prevailing feature of the manner in which the Great Pyramid makes its chief mechanical use of this triple rock, of strong colours and strange traditions, granite.

There is granite in the Great Pyramid, and granite in various small Pyramids; yet so far from their being therefore alike, it is on that very account, or by that very means, that most difference may be detected both in their designs and even in the very minds of their designers.

Take the third Pyramid as an example; the Egyptological world hailed it as the "Coloured Pyramid;" coloured, forsooth, because its casing-stones more than half-way up were of red granite. That that little third Pyramid was therefore more expensive than the Great one, all its friends admit, and even boast of: but what else did it gain thereby? Lasting power, is the general idea; because granite is so proverbially hard. But, alas! granite, besides being hard, is also so very brittle on account chiefly of its tri-crystallization, and is so largely expansible by heat, that under the influence of a hot sun by day and cold sky by night, it loosens and crushes minutely the materials of its own surface to little pieces, film by film, and age after age—until now, after 3,000 years, those hard granitic casing-stones of the third Pyramid are
rounded along their edges into pudding shapes, which can hardly indicate the angle they were originally bevelled to, within a handful of degrees. Yet the softer, and fair, white limestone which was chosen for the casing-stones of the Great Pyramid (a variety of limestone found in the Mokattam hill on the east side of the Nile), and which was begun to be exposed to the weather before the third Pyramid or its builders were born, has, joined to that softness, so much tenacity, smallness of heat expansion, and strong tendency to varnish itself with a brownish iron oxide exudation, that it has in some instances preserved the original angle of the casing-stones within a minute of a degree, and their original surface within the hundredth of an inch.

But because the Great Pyramid architect found limestone to answer his purpose for casing-stones, did he therefore use it everywhere? No, certainly not. He knew it to be too soft to keep its size and figure in places where men do tend to congregate; and where strains and wear and tear may accumulate, and have to be strenuously resisted. In and towards the centre, therefore, of the whole mass of the Great Pyramid, where strains do increase and the treasure was supposed to be kept, and where Caliph Al Mamoun in one age, and middle-class passengers from Australian steamers in another, rush in to see what they can get by force,—there its architect began to use granite in place of limestone. And in that deep and solemn interior, where he did so use it, there was no sun to shine and heat up by day, no sky to radiate cold at night; but only darkness and a uniform temperature from year to year, and century to century.

There was, therefore, no tendency in granite to separate its component crystals there; but very great necessity for its hardness to resist the continual treading, or hammering and mischief-working by the countless visitors of these latter days. For the granite portion of the Great
Pyramid (excepting only the portcullis, or stopper, blocks at the lower end of the first ascending passage) begins in the so-called ante-chamber apartment; through which those visitors must all pass, in order to reach that further and final King's Chamber wherein the employment of granite culminates: and wherein is to be seen standing loose and movable, except for its immense weight, on the open, level, granite floor, that Pyramid coffer, or long and high granite box, which is still awaiting our further and higher examination.

Why of that Size?

If we grant, temporarily, for argument's sake, that the long rectangular granite box, or coffer, in the King's Chamber of the Great Pyramid was intended by the precise, measured, amount of its cubic contents to typify, as Mr. Taylor has suggested, a grand and universal standard of capacity measure—can any reason in either nature or science be shown, why it should have been made of that particular size and no other?

In a later age the designer of such a metrological vessel would have been hampered by custom, confined by law, or led by precedent. But in the primeval day of the foundation of the Great Pyramid, who was there then to control its architect; or from whom could that truly original genius have copied anything; or lastly, what was there to prevent his making the coffer therein of any size he pleased?

Of Scientific References for Capacity Measure.

This affair of the wherefore of the coffer's precise size is no doubt a difficult question, for there is no ready explanation lying on the surface; and if we attempt to consider it from a theoretical point of view, as to what
should regulate a system of capacity and weight measure adapted to intellectual and religious man both living upon this earth-ball, and in worship of, and obedience to, God his Creator,—we are met by an alarming degree of backwardness of all the schools in developing the perfections and peculiar refinements of which this subject is evidently capable.

None of the modern nations indeed have hitherto shown any very particular care for the teachings of science, or extensive acquaintance with nature either, when ordering for themselves the size of their several standards of capacity measure; and seem generally to think the affair either a vulgar and publican matter, or one ruled altogether by their own more scientific proceedings in linear measure. Thus, the late eminent Francis Baily, in his report on the standard scale of Great Britain,* says, after a magnificent introduction in favour of the importance of permanent standard measures, "such measures are usually divided into those of length, capacity, and weight; but as the two latter may in all cases be deduced from the former, it will be necessary to consider only measures of length;" and measures of length are accordingly, or rather unfortunately, the only ones which he cares to take notice of in that very large and learned paper.

French Metrical Reference for Capacity Measure.

Not very dissimilarly, too, did the French philosophers act when establishing their metrical system; for after having scorned—in the cause and for the sake of accuracy—to adopt a short natural unit for linear reference, such as the second’s pendulum, lest in applying it to long distances errors should creep in by continued multiplication; and having insisted on taking there a long—that

is, a 90-degree earth meridian length of natural unit; and obtaining, what they required in practice subsequently, by continued subdivision,—they went the very reverse way to work in deducing for themselves their new units of capacity and weight.

To procure these upon a parallel natural system to their “linear” principles, they ought evidently, for the one, to have subdivided the capacity of the shell of the earth, or of \(\frac{1}{2} \) or \(\frac{1}{3} \) or \(\frac{1}{6} \) thereof; and for the other, to have similarly divided the weight or mass of all the matter, whatever it is, that fills or occupies that shell of the earth, and gives it on the whole a general mean specific gravity, or “mean density;” which “terrestrial mean density” must be better adapted than anything else accessible to man, to be his grand density unit for the physics of universal matter. But the sœcants attempted neither the one nor the other.

They did not even employ their mètre itself in the large, in this part of their metrology, and necessarily adopt thereby a good sensible size for their capacity and weight standards; but, as every one knows, they took the 1-10th part of the mètre only, cubed, for the capacity measure, calling it a litre; and filled the 1-1,000th part of that with water for their ridiculous little unit of weight measure, the gramma, about 15 of our grains. A something so small is this gramma weight, that a poor country-man wishing to weigh his daily loaf therewith, can hardly see or feel it: while the learned doctors themselves, in speaking of, and recommending, their little invention as a universal standard of weight measure to the practical world, have to break through all their artificial scheme of nomenclature; and, while presenting their mètre pure and simple, and their litre also, are obliged to multiply their grammae by 1,000; introducing that multiplied quantity wrongly into the unit’s place, but with the ancient Greek name for 1,000 prefixed, as kilo-gramme. But “kilogramme” is too long a word for a unit in constant
use by the people; so they, the people, have themselves shortened it into "kilo;" and then who is to know, by that word alone, whether they are not speaking of kilo-mètres or kilo-litres, as well as kilo-grammes; and who is to justify to children how the adopted "kilo" necessarily and naturally signifies, not only a thousand of anything, but also stands for a single example of a certain weight measure?

The French Academicians had, no doubt, for themselves in their closets, a something in their little mite of a "gramme" which could be referred,—through the mètre, when outrageously minified, and water when in a curious condition very difficult to keep it to, viz. its maximum density at a temperature a little above freezing—to that one physical fluid element, though only one, of all the elements, or chemical compounds of elements, contained in the whole earth. But if there was such extraordinary mental satisfaction previously felt at the mètre, a linear measure, being a neat commensurable fraction of a linear length, typifying the whole earth, why should there not be mental satisfaction also, when a capacity measure in some way gives us a neat commensurable fraction of the capacity of the same whole earth-globe on which we live; or at all events reminds us of its shape and capacity power: and when a weight measure gives us a similar proportion of what is even more important in nature, viz. the density of all the matter, whatever it is, filling that whole capacity space?

There may, indeed, be some remarkable difficulties in the way of introducing this reference; seeing that it has not been accomplished yet, even by the latest and greatest philosophers who have had the matter before them. Is it worth while, then, to examine the Great Pyramid of 4,040 years ago, to ascertain if a practical solution was made and enshrined there? in a material or substance undoubtedly are perennis and older than
Abraham, though only recently brought to the light of human life and thought?

Not altogether fair, perhaps, to expect it; but somehow, from the unique and unprecedented character amongst human works which the whole of this gigantic mass of pure masonry of the Great Pyramid, unvitiated by any idolatrous design, is taking, on being submitted to the searching examination of the science learning of modern times,—we have begun to look for high things from every part of it.

Previous Attempts to account for the Coffer’s Capacity-size.

On this branch of the subject the estimable John Taylor had ventured some ideas, but up to the time of his lamented decease had not reached anything very definite, or capable either of inspiring confidence in others, or showing direct connection with the rest of the Great Pyramid theory.

Still less can be said for the very wild and foundationless theories of Mr. Joseph Jopling (who never saw the Great Pyramid), Hekekeyan Bey (an Armenian in Cairo, but who, though living in sight of the Great Pyramid, had never been into the interior of it), and M. Dufeu of Paris (who has done little more than introduce Hekekeyan Bey’s views to European readers). Little indeed, then, can be urged for any yet published hypotheses, as to why the Coffer of the Great Pyramid was made of the shape and size we find it now; and indeed one reason of all their failures could not but be, the very imperfect knowledge those earlier authors had of the size and shape to be explained.

Let us therefore attend more painstakingly to getting up these necessary preliminary data. And immediately we begin this task, some very unexpected matters of detail present themselves.
The Ledge Anomaly of the Coffer.

How astounded, for instance, was not I, on first visiting the Coffer in January, 1865, to find that, though sure enough that remarkable vessel was still in the King's Chamber—and that no fine-art Egyptological thieves (whether Earls of Belmore or plebeian Belzonis) had carried it off to sell to a distant museum—yet there was actually a ledge for a lid, cut out of, or into, the substance of the top of the sides of what had been styled proverbially for ages the "lidless box, or open chest, of stone!" (See Plate XIV.)

Compared with this discovery, it was nothing that the vessel was chipped and chipped again on every possible edge; that the south-eastern corner was broken away by fresh hammer fractures to an extent of eight or ten inches more than it was in the days of Colonel Howard-Vyse. But that ledge cut out, when was that introduced?

It has no existence in the French Academy's drawing of 1799, and which I had unfortunately followed in my first book of 1864; but it is found, as I afterwards discovered, in "Perring's Views of the Pyramids" in 1840. Was the ledge then introduced by modern workers within that short interval of time?

Those who bow down and almost worship the infallibility of great Scientific Societies, and especially of the French Academy, are bound to conclude so. But I have not that ultra respect for any merely human institute, and simply consider that in this matter, as well as the three extra inches of depth already spoken of, the Associated savants, although they were such, must have made a mistake. Wherefore, as I unwittingly tended to spread their ledge error in 1864, it is my duty now to set forth exactly how I found the Coffer in 1865.

The following is, consequently, an extract from my book, "Life and Work at the Great Pyramid," published
in 1867, and now revised, in order to introduce some still later and further observations by Dr. J. A. S. Grant, of Cairo, and Mr. Waynman Dixon, C.E.

THE COFFER, MEASURED IN BRITISH INCHES,

March 20—23, 25, 1865.

This vessel, the sole contents of the dark King's Chamber, and termed, according to various writers, stone box, granite chest, lidless vessel, porphyry vase, black marble sarcophagus, and coffer—is composed, as to its material, of a darkish variety of red, and possibly syenitic, granite. And there is no difficulty in seeing this; for although the ancient polished sides have long since acquired a deep chocolate hue, there are such numerous chips effected on all the edges in recent years, that the component crystals, quartz, mica, and felspar, may be seen (by the light of a good candle) even brilliantly.

The vessel is chipped around, or along, every line and edge of bottom, sides, and top; and at its south-east corner, the extra accumulation of chippings extends to a breaking away of nearly half its height from the top downwards. It is, moreover, tilted up at its south end by a black jasper pebble, about 1 1/2 inch high (such pebbles are found abundantly on the desert hills outside and west of the Great Pyramid), recently pushed in underneath the south-west corner. The vessel is therefore in a state of strain, aggravated by the depth to which the vertical sides have been broken down as above; and great care must be taken in outside measures, not to be misled by the space between some parts of the bottom and the floor, itself also of polished red granite.

As for the under surface of the bottom of the coffer (speculated on by some persons as containing a long inscription), I felt it, near the south end, with my hand, and tried to look under it also when a piece of magnesium wire was burning there, without being sensible of any approach to hieroglyphics or engraving. But as to the inner, or upper surface, of the bottom, and also the vertical sides of the vessel, both inside and out—all the ancient surfaces there are plainly enough polished smooth, and are without any carving, inscription, design, or any intentional line or lines; they are also all of them simple, plain, and flat (sensibly to common observation); excepting only the top margin, which is cut into in a manner implying that a sarcophagus lid once fitted on, sliding into its place from the west, and fixable by three steady pins, entering from the lid into holes on that side.

The west side of the coffer is therefore lowered all over its top surface, except at the north and south ends, by the amount of depth of such ledge cut-out, or 1 1/2 inch; and the other, or east, north, and south sides are, or should be, lowered to the same depth on their inner edges, and to a distance from inside to out of 1 1/3 inch. But the fulness of this arrangement cannot be seen now, because in some places both ledge and top of sides are broken away together; and in others, though much of the inner baseline of the ledge remains—thanks to its protected position—the upper and true surface of the coffer's side has all been chipped away. In fact, it is only over a short length near the north-east corner of the coffer that the chippers have left any portion of its original top edge. And a cast of that corner recently taken by Mr. Waynman Dixon shows, as com-
pared with my photograph (and also with the frontispiece to vol. i. of my "Life and Work"), that a further portion of the side's top surface, indeed an awfully large conchoidal-shaped slice, has disappeared since 1865.

The whole question, therefore, of the full depth of the coffer rests on one very small portion of the north-east wall, so to speak, of the coffer—a portion, too, which becomes smaller and smaller every year that we live.

Only at that north-east corner, too, is there an opportunity of measuring the vertical depth between the ancient top surface of a side and the bottom surface of the ledge; and it was, by repeated measure, found by me \(\approx 1\cdot68 \) to \(1\cdot70 \) and \(1\cdot75 \); say mean \(= 1\cdot72 \) inch.

The sides of the ledge depression appeared to me to have been vertical, or without any dovetailing; and the horizontal base-breadth of such cut-out—measuring from within, to, or towards the "without" of the coffer—and restoring the sides to their original completeness before the chipping away of the edges—is—

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>On and near Western portion of Northern side</td>
<td>(= 1\cdot65)</td>
</tr>
<tr>
<td>"</td>
<td>Middle</td>
</tr>
<tr>
<td>"</td>
<td>Eastern</td>
</tr>
<tr>
<td>"</td>
<td>Northern part of Eastern side</td>
</tr>
<tr>
<td>"</td>
<td>Southern</td>
</tr>
<tr>
<td>"</td>
<td>Eastern and Western parts of Southern side</td>
</tr>
</tbody>
</table>

Mean \(= 1\cdot63 \) in.

But this appearance of the coffer's ledge having been rectangular, has been, since my visit, successfully shown by Dr. Grant and Mr. W. Dixon to be a mistake. For although everywhere else all the overhangings of an acute ledge have been broken away to beyond the vertical, yet there is a small part left near the north-east corner, which speaks unmistakably to an acute-angled shape; not by any means so sharply acute as that of the sarcophagus of the Second Pyramid, but decidedly and intentionally on the acute side of rectangular.

Along the western side are three fixing-pin holes, \(1\cdot2 \) deep, and \(0\cdot84 \) in diameter, save where they are broken larger, as is chiefly the case with the middle and southern one. The three holes have their centres at the following distances from the north end: viz. \(16\cdot0 \), \(45\cdot3 \), and \(75\cdot1 \) respectively.

It is inconceivable how the French Academicians could have pictured the coffer, as they did, without representing anything of this ledge cut-out, or of the fixing-pin holes; unless they looked upon these traces as a comparatively modern attempt to convert the original pure coffer into a sarcophagus, and which they were therefore bound to overlook in their description of the original vessel. But we are to note both states.

OUTSIDE OF COFFER: MINUTER DETAILS OF ITS FIGURE.

The planes forming the four external vertical sides of the coffer, which have never yet been questioned by any other measurer, appeared to me to be far from true; excepting the east one, whose errors are under \(0\cdot02 \), or perhaps \(0\cdot01 \); while the north, west, and south sides are so decidedly concave as to have central depressions of \(0\cdot3 \) and \(0\cdot5 \) inches; or more particularly—...
At North side, central hollow or depression of coffer’s side (measured from a horizontal straight-edge touching the side at either end, and in a horizontal plane), or the quantity of central depression, near bottom, say d.
Central depression, near middle of height $= 0.20$
" top $= 0.12$
Mean $= 0.19$ in.

At West side, central depression, near bottom $= 0.26$ in.
$= 0.20$ in.
Mean $= 0.20$ in.

At South side, central depression, near bottom $= 0.28$
$= 0.18$
Mean $= 0.19$ in.

Again, when the straight-edge is applied vertically to the sides, east side comes out true, but the others concave—
On North side, the maxima of such vertical depression or d'. $= 0.20$ and 0.28
On West side, d', at South end $= 0.00$
$= 0.20$
And on South side, d', at different distances from East to West $= 0.08$, 0.12, and 0.04 in.

EXTERNAL MEASURES OF THE COFFER.

The corners and edges of the coffer are so much chipped, that the steel claws I had had prepared for the sliding-rods, to adapt them from inside to outside measures, were found not long enough to span these modern fractures and reach the original polished surfaces. A method was therefore adopted, of making up the sides of the coffer with straight-edges projecting beyond it at either end; and then measuring between such straight-edges and on either side, or end, of the coffer.

LENGTH OF COFFER OUTSIDE, MEASURED WITH BAR 100 A.

<table>
<thead>
<tr>
<th>On East side, near bottom</th>
<th>1st Measure</th>
<th>2nd Measure</th>
<th>3rd Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 inches under top</td>
<td>90.5</td>
<td>90.3</td>
<td>90.5</td>
</tr>
<tr>
<td>above top</td>
<td>90.20</td>
<td>..</td>
<td>..</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>On West side, near bottom</th>
<th>1st Measure</th>
<th>2nd Measure</th>
<th>3rd Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>near top</td>
<td>89.2</td>
<td>89.2</td>
<td>89.2</td>
</tr>
<tr>
<td>above top</td>
<td>90.05</td>
<td>..</td>
<td>..</td>
</tr>
</tbody>
</table>

Mean length $= 90.01$
The above mean, however, represents only the mean length of the edges of the two sides, not of the whole coffer, on account of the concavity of the two external ends; wherefore, if we desire to state the mean length for the mean of each end surface, we must subtract two-thirds of the mean central concavity, as previously determined; i.e. = 0·17 for the north end, and similarly 0·13 for the south end; so that, then, the mean length for mean of each end of coffer = 89·71 British inches.

N.B.—An anomaly in the West side, near the bottom.

Breadth of Coffer, outside.

<table>
<thead>
<tr>
<th>At North end, near bottom</th>
<th>1st Measure</th>
<th>2nd Measure</th>
<th>3rd Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>near top</td>
<td>39·05</td>
<td>39·1</td>
<td>39·2</td>
</tr>
<tr>
<td>over top</td>
<td>38·7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>At South end, near bottom</td>
<td>38·8</td>
<td>38·7</td>
<td></td>
</tr>
<tr>
<td>near top</td>
<td>38·6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>over top</td>
<td>38·5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mean breadth of mean sides = 38·65 British inches.

Concluded breadth

| Correction for curvature of West side | 0·7 |

Mean height

| Height of coffer outside, eliminating the stone under bottom, and the sarcophagus ledge of 1·72; i.e. measuring from coffer-bottom to extreme ancient top of sides, is— At North end, eastern part of it = 41·3 Same repeated = 41·3 At North end, north-eastern part of it = 41·22 At other parts, no original top left. Mean height = 41·27 British inches 41·23 Pyramid inches. |
their circumferences, on account of
a slight hollowing away of their
central areas; say = 10

Concluded capacity-computation
height = 41.17 British inches.

= 41.13 Pyramid inches.

SIDES, THICKNESS OF.

For this purpose two vertical straight-edges higher than the sides were
placed opposite each other, in contact with the inside and outside surfaces
of any flank of the coffer, and the distance across was measured over the
top edge of the coffer; finding at successive parts of the coffer circum-
ference, bearing from centre—

South-south-west thickness = 6.0
South
South-south-east ". . . . = 6.0
East-south-east ". . . . = 5.95
East
East-north-east ". . . . = 5.96
North-north-east ". . . . = 8.10
North
North-north-west ". . . . = 8.95
West-north-west ". . . . = 8.10
West
West-south-west ". . . . = 5.95

Mean thickness of vertical sides = 5.99 B. in.

The above measures were repeated on March 28th, and proved sensibly
true for this method of measurement over the top edge of the coffer; but
if calipered lower down, it is probable that a slightly increased thickness
would have been found there.

BOTTOM OF THE COFFER, THICKNESS OF.

By difference of heights of two straight-edges of equal length, applied,
one inside and one outside—the outside one being further propped up,
where required, by a third straight-edge inserted under the bottom—there
was found—

Under South-west corner, thickness of bottom . . = 7.0
" East side " " " = 6.6
" East-north-east " " " = 6.87
" East-north-east again " " " = 6.90
" North end " " " = 6.90
" North-north-west " " " = 8.85
" North-north-east " " " = 6.80
" West-north-west " " " = 7.20
" West " " " = 6.90
" South-south-west " " " = 7.15

Mean thickness of bottom around the edges (the thick-
ness of bottom in the centre cannot at present be
satisfactorily or easily measured) . . = 6.92 B. in.
INTERNAL MEASURES OF THE COFFER.

The inside surfaces of the coffers seem very true and flat over the greater part of their extent; but betray, on examination by straight-edges, a slight convergence at the bottom towards the centre.

INSIDE LENGTH OF COFFER, BY SLIDER 70.

(Correction + 0.13 added to all the readings for length of this Slider.)

<table>
<thead>
<tr>
<th>Distance between East and West sides of the North and South ends.</th>
<th>Level at which observations were taken.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Close to Eastern side.</td>
<td>4 to 8 inches under top.</td>
</tr>
<tr>
<td>At § breadth from East</td>
<td>Broken at S.-E. corner</td>
</tr>
<tr>
<td>Half-way between E.&W.</td>
<td>78°06</td>
</tr>
<tr>
<td>At §ds breadth from East</td>
<td>78°05</td>
</tr>
<tr>
<td>Close to West side.</td>
<td>78°03</td>
</tr>
<tr>
<td>Mean at each level</td>
<td></td>
</tr>
</tbody>
</table>

Mean of the whole, or the inside | = 77°93 British inches.
length of coffers | = 77°86 Pyramid inches.

INSIDE BREADTH OF COFFER.

(By Slider 25, not requiring any correction.)

<table>
<thead>
<tr>
<th>Distance between North and South ends, along the East and West sides.</th>
<th>Level at which observations were taken.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Close to North end.</td>
<td>Near top.</td>
</tr>
<tr>
<td>At § length from N. end.</td>
<td>26°68</td>
</tr>
<tr>
<td>Near middle of length.</td>
<td>26°60</td>
</tr>
<tr>
<td>At §ds length from N. end.</td>
<td>26°64</td>
</tr>
<tr>
<td>Close to South end.</td>
<td>26°67</td>
</tr>
<tr>
<td>Mean at each level</td>
<td>26°67</td>
</tr>
</tbody>
</table>

Mean of the whole, or the inside; | = 26°73 British inches.
breadth of coffers | = 26°70 Pyramid inches.

INSIDE DEPTH OF COFFER.

The measure of this element is taken from the inside bottom of the coffers,—which is apparently smooth and flat,—up in the shortest line to the level of the original top surface of the north, east, and south sides; and of the west side also, presumably, before it was cut down to the level of the ledge which runs round the inner edges of the north, east, and south sides, and all across the west side's top.
Now, the depth of that ledge was before ascertained = 1·72 inches below the original top; a block of wood was therefore prepared of that thickness, and placed on the west side, and also on the base-surface of the ledge wherever found on the other sides, to support one end of a straight-edge, whose other end rested on some part or parts of the original top of the coffer's sides, which are still visible at and about the north-east corner.

Inside Depth from Original Top of North, East, and South Sides.

(By Slider 25, not requiring any correction.)

<table>
<thead>
<tr>
<th>Part of Length where observations were taken.</th>
<th>Part of breadth where observations were taken.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0·6 inches south of inner N. end</td>
<td>Near East side.</td>
</tr>
<tr>
<td>0·6 inches south of inner N. end</td>
<td>Near middle.</td>
</tr>
<tr>
<td>0·6 inches south of inner N. end</td>
<td>Near West side.</td>
</tr>
<tr>
<td>0·6 inches south of inner N. end</td>
<td>Mean at each part of breadth.</td>
</tr>
<tr>
<td>3·0 do. do.</td>
<td>34·30</td>
</tr>
<tr>
<td>3·0 do. do.</td>
<td>34·28</td>
</tr>
<tr>
<td>3·0 do. do.</td>
<td>34·26</td>
</tr>
<tr>
<td>3·0 do. do.</td>
<td>34·28</td>
</tr>
<tr>
<td>3·0 do. do.</td>
<td>34·28</td>
</tr>
<tr>
<td>5·0 do. do.</td>
<td>34·42</td>
</tr>
<tr>
<td>5·0 do. do.</td>
<td>34·41</td>
</tr>
<tr>
<td>5·0 do. do.</td>
<td>34·28</td>
</tr>
<tr>
<td>5·0 do. do.</td>
<td>34·37</td>
</tr>
<tr>
<td>10·0 do. do.</td>
<td>34·40</td>
</tr>
<tr>
<td>10·0 do. do.</td>
<td>34·38</td>
</tr>
<tr>
<td>10·0 do. do.</td>
<td>34·28</td>
</tr>
<tr>
<td>10·0 do. do.</td>
<td>34·35</td>
</tr>
<tr>
<td>24·0 do. do.</td>
<td>34·36</td>
</tr>
<tr>
<td>24·0 do. do.</td>
<td>34·38</td>
</tr>
<tr>
<td>24·0 do. do.</td>
<td>34·26</td>
</tr>
<tr>
<td>24·0 do. do.</td>
<td>34·33</td>
</tr>
<tr>
<td>Mean at each part of breadth</td>
<td>34·38</td>
</tr>
<tr>
<td>Mean at each part of breadth</td>
<td>34·36</td>
</tr>
<tr>
<td>Mean at each part of breadth</td>
<td>34·29</td>
</tr>
<tr>
<td>Mean at each part of breadth</td>
<td>34·34</td>
</tr>
</tbody>
</table>

General mean, or the inside depth

= 34·34 British inches.

General mean, or the inside depth

= 34·31 Pyramid inches.

Coff er, Further Inside Measures of.

Diagonals.

Diagonals inside the north end: from either low corner at bottom, up to a measured height of 30·0 inches, i.e. the greatest height quite free from fractures: then—

From low North-east to 30· high North-west = 39·71 British inches,

and from low North-west to 30· high North-east = 39·70

Diagonals inside West side: from either corner below, up to a height of 30 inches measured at the sides—

or from low South-west to 30· high North-west = 83·19 British inches,

and from low North-west to 30· high South-west = 83·13

Cubical Diagonals.

From low South-west to 30· inches high North-east = 87·13 British inches.

South-east
North-west = 87·05
North-east
South-west = 87·06
North-west
South-east temporarily supplied = 87·11

These cubical diagonals give sensibly less than the diagonals computed from the lengths and breadths: on account, apparently, of the extreme points of the corners of the bottom not being perfectly worked out to the exact intersections of the general planes of the entire sides. But they seem abundantly sufficient to prove general rectangularity of figure, in all the main part of the coffer's interior.
The Sarcophagus Theory of the Coffin.

With all this additional information, then, touching the actual size of the coffin, let us take up once again that vexed question of "why of that size?" and on our so doing we must, of course, let the opposition Egyptological sarcophagus theory be heard over again, especially when it has something to say touching shape as well as size.

The inside dimensions of the coffin being by our own measures (roughly) 6.5 feet long, 2.2 feet wide, and almost 3 feet deep, are at least long enough and broad enough for a coffin; and if rather deeper than convenient or necessary, I will not object to that, as there is now proved to be a ledge cut into the top of the vessel, and quite suitable for a lid.

As there is a ledge, an intention at some time to put on a lid may or must be inferred; but it is still to be proved whether a lid ever was put on by the Architect of the Great Pyramid, and especially for sarcophagus purposes; because, first, with a sarcophagus lid of the ordinary style and thickness fastened into that ledge, the coffin could not have passed through the closely fitting doorway of the room; it would have been several inches too high. Second, a sarcophagus lid fastened into that ledge would have betokened the accomplishment of the last rites to the dead; and they would have included among all Eastern nations, but more especially the contemporary profane Egyptians, the engraving the deceased's name, titles, deeds, and history on the coffin, both inside and out. But there is nothing of the kind there; so the Great Pyramid coffin remains still the smooth-sided, vacant, lidless chest of Caliph Al Mamoun's Arab tale; quite capable of having been made at any time into a sarcophagus; but never completely so converted, whatever may have been the reason why or wherefore.

Considering, however, the coffin's approximate shape,
size, and situation, I am quite ready to allow it to be " a blind sarcophagus;" viz. a deceiving blind to the eyes of the Pharaonic and idolatrous Egyptian workmen, as well as a symbol sarcophagus to others, reminding them of death, judgment, and eternity (as well taught by William Simpson, artist, archæologist, and traveller); but without thereby interfering one iota with its further more exact objects and intentions.

And what are they?

Only look at the beginning of them, as the vessel tells them off itself in number and measure, and see features thereby which cannot be accidental; features which have never been heard of in any other, or mere, sarcophagus; and which no Egyptologist, not even Lepsius himself, has ever attempted to publish as his "law of Egyptian sarcophagus construction."

Taking the coffer measures, for instance, as of the whole vessel before the ledge was cut out, from the previous pages, in Pyramid inches; then—

Coffer interior = 77·85 × 26·70 × 34·31 = 71,317·
Coffer exterior = 89·62 × 38·61 × 41·13 = 142,316·

that is, within the limits of accuracy of the modern measures, the volume of the exterior is double that of the interior; and the simplest even relation between them is that of capacity.

Again, the mean thickness of the sides of the coffer being assumed, from the measures, in Pyramid inches 5·952, and of the bottom 6·866, we have (from a formula first prepared by the ingenious Mr. Henry Perigal)—

\[
\begin{align*}
\text{Coffer's bottom} &= 89·62 \times 38·61 \times 6·866 = 23,758· \\
\text{Coffer's sides} &= 2 (89·62 \times 26·70) \times 34·31 \times 5·952 = 47,508· \\
&= 71,266·
\end{align*}
\]

or again, we find a duplicity of the one quantity against the other; and the only apparent simple relation between
the two, and of the sum of both, with the interior of the vessel, is that of capacity.

If now, then, we may justifiably say, that though the coffer is probably what John Taylor did not think it, viz. a blind sarcophagus and a symbolical coffin, it is also most positively what he did consider it (though we say so by means of mensuration proof which he never lived to see)—viz. a vessel at whose birth the requirements both of, and for, capacity measure presided and governed:—then in that case, what is its precise capacity?

What shall we consider the Capacity of the Coffer proved to be?

Now, for the coffer's length and breadth elements; we can quote plenty of measures, but depth is a weak point; because, as already explained, every particle of the original top of the sides is cut or broken away, except some little patches near the north-east corner. Those were in place in 1865, but who will guarantee that they are there still, when men will hammer that exquisite gift inherited from primeval time, merely in the ignorant notion of sending their friends at home a chip of "Cheops' coffin?" When the last of those small pieces of the ancient top, which I mapped so carefully in "Life and Work," has disappeared (and Mr. Waynman Dixon's cast shows that some of them are already gone), then comes the deluge among future coffer measures; a veritable chaos of uncertainty as to depth, in the midst of which French Academicians might put on their three additional inches again, and upset all the geometrical duplications and equalities which have just been obtained by means of our having had, in 1865, a trace of the true height. But at this point of the discussion there comes in a strange use of the ledge cut out, though that feature has hitherto been thought of only for a lid and nothing else.
No lid has ever been seen by any historical individual; but every man of the present age may test the truth of the following mechanical adaptation: viz. the ledge, though acutely angled, is cut out with precisely such a base-breadth and depth that a frame made to fit it flush with the ancient top of the sides would, when let down in vertical plane, and diagonally inside the coffer, just form the diagonal of said coffer’s interior, and the frame’s height at that moment would exactly measure the coffer’s depth. Hence the breadth of the ledge, continued across the coffer from west to east, would continue to give us an outstanding test of the coffer’s original depth, long after young cadets going out to India, and large holiday parties from Cairo, shall have knocked away every particle of the original top of the sides.

In this case also, of course—just as it usually is in all matters of so-called exact measuring—no two human measures ever agree exactly; and all that finite man can hope for is, to come within moderately close limits. So then must it be with the coffer’s cubic contents.

Taking the ledge breadth (from my “Antiquity of Intellectual Man,” p. 300) as 34.282 Pyramid inches, then the coffer’s cubic contents in cubic Pyramid inches are:

1. By interior length and breadth, and by depth from ledge-breadth: \(\approx 71,268 \) Py.
2. By interior of coffer, by all direct measures: \(\approx 71,317 \) Py.
3. By half the exterior volume directly measured: \(\approx 71,160 \) Py.
4. By sum of bottom and sides directly measured: \(\approx 71,266 \) Py.

Here then we have a vessel whose cubic contents are not only something excessively near to 71,250 Py. cubic Pyramid inches, but it was pretty evidently intended to be both of that quantity within some minute fraction, and to carry a check and a witness thereto down through all fair accidents, even through all historic ages, to distant time. While that precise quantity, and the care for that quantity, of just so many cubic inches expressed in Great
Pyramid measure, are so impossible for the Egyptologists to explain on any sarcophagus theory of their own, pure and simple, or profanely ornate either,—that we must now strive to ascertain, on methods both absolutely new to Egyptology, and which must have been totally unknown to all the Pharaonic slaves and idolatrous serfs of old Egypt, what the Great Pyramid itself may have to add to this, its own preliminary setting forth of "a symbolical sarcophagus, but one adapted also to something further and higher connected with capacity measure."
CHAPTER IX.

DENSITY AND TEMPERATURE.

THOUGH there be no inscriptions, yet is there much instruction on the interior walls of the Great Pyramid; and as the coffer, when taken merely by itself, has proved, thus far, too hard a riddle for our full interpretation, let us try something of the teaching of the walls which precede, as well as those which surround, it.

Ante-chamber Symbolisms.

In order to enter the Great Pyramid's so-called King's Chamber, we have to pass, from the Grand Gallery, through the "Ante-chamber;" very appropriately so called, because it is a little room which must be passed through before the King's Chamber can be entered or the coffer seen; and in passing through it, the attentive eye may note many more complicated forms there, than in any other part of the Great Pyramid. Amongst these notanda are certain vertical lines above the southern or further doorway.

Previous travellers have contradicted each other so abundantly about the number of these lines, that I was rather surprised to perceive them instantly to be not only confined to the number four, but these distinct, regular, parallel, extending the whole way evenly from ceiling to
door-top,* and no less than 107·4 inches long, 2·8 inches deep, and 3·8 inches broad, each; with six-inch spaces between, and with similar six-inch spaces also between the outer side of each outermost line, and the bounding of the ante-room’s South wall containing them.

Hence the lines were subservient to the spaces, and the whole arrangement appeared to me, not so much, though it is to a certain extent, a system of four lines, as an example of surface divided into five portions or spaces.

As the doorway is only 42 inches high, and the dividing lines of the wall above it are apparently drawn down to the doorway’s (now broken) top, a man of ordinary height standing in the ante-room and looking southward (the direction he desires to go, in order to reach the King’s Chamber), cannot fail (if he has a candle with him, for otherwise everything is in darkness here) to see this space divided into five. And when he bows his head very low, as he must do to pass under the southern doorway of only 42 inches high, he bends his head submissively under that symbol of division into five; and should remember, that five is the first and most characteristic of the Pyramid numbers. (See Plates XII. and XIII.)

*That is to say, as nearly as a huge fracture of that lower corner of the granite block forming the doorway allowed me easily to judge in 1865: for within the limits of that fracture, Dr. Grant claims to have recently found proofs that the lower ends of the lines did not quite go through to the passage below, but ended in a short, curved bevel.
But after that, rising up in the midst of the King's Chamber beyond—what should any and every beholder witness there?

According to that usually most correct of travellers, Professor Greaves, he says of the King's Chamber that every one may see there "from the top of it descending to the bottom, there are but six ranges of stone, all which, being respectively sized to an equal height, very gracefully in one and the same altitude run round the room."

Well, that is not the accomplishment of a division into five, so let us try an older traveller, Sandys, of a curt and epigrammatic style, and writing in 1610. Says he, of the selfsame King's Chamber, "A right royal apartment, and so large that eight floors it, eight roofs it; eight stones flagge the ends and sixteen the sides."

Worse and worse.

Says Dr. Pocock in 1743, "Six tiers of stones of equal breadth compose the sides;" which account M. Fourmont, on the part of Bourbon France, confirms in 1755 by laying down that "the walls are composed of six equal ranges." The still more famous traveller, Dr. Clarke, makes Cambridge in 1801 support Oxford in 1639, by particularising that "there are only six ranges of stone from the floor to the roof;" while, finally, that usually infallible author on Egypt, Mr. Lane, with his clever and industrious relatives, the Pooles, almost natives of Cairo, seem to set a seal for ever on the mistake by declaring, "Number of courses in the walls of the King's Chamber, six."

What could have blinded all these men, and sent them following each other helpless down one and the same too easy rut of simple, ridiculous error? Dr. Richardson, in 1817, was more original, if error apparently there must be; for he chose a new and hitherto untrodden line of it for himself, sententiously writing of the room, "Lined all around with broad flat stones,
smooth and highly polished, each stone ascending from the floor to the ceiling." But having once begun this new mis-description, he soon has followers; and we find Lord Lindsay, in 1838, writing, "A noble apartment, cased with enormous slabs of granite 20 feet high" (or a little more than the whole height of the room); and Sir William R. Wilde with his companion signing himself M. R. I. A., in 1837, equally write down, as observed by themselves, "An oblong apartment, the sides of which are formed of enormous blocks of granite reaching from the floor to the ceiling."

And yet, will it be credited that the walls of this chamber are divided into five horizontal courses, neither more nor less, almost four feet high each; and that these courses are most easy to count, as they must have been undoubtedly most expensive for the architect to construct; because every course is the same height as every other, except the lowest, which is less than the others by nearly 1/10th part, if measured from the floor; but is the same height if measured from the base of its own granite component blocks, which descend in the wall to beneath the floor's level?* (See Plate XIV.)

The really Pyramid Number of the King's Chamber's Wall-courses, and of Stones in them.

Neither was I the first person to find out that the courses in the walls of the King's Chamber were five only, for the same thing had been noted by Lord Egmont in 1709, and Dr. Shaw in 1731, and perhaps by some others earlier or later; though no one previously to myself

* Full particulars of my measures of this room in whole and part, and parts compared against whole, are contained in my "Life and Work at the Great Pyramid," vol. ii.; but are too long to introduce here. I have given there also the immediately succeeding measures of a young engineer—sent, I believe, by a rich man, for the salutary purpose to me, and useful to the public, of tripping me up if he could, but finally and involuntarily confirming my measures both of number and size of courses and room.
had, so far as I am aware, either fought against the world for the correctness of his observation, or connected the number with both the teaching of the architect in the ante-chamber, and the quinary character of the Pyramid's first arithmetic.

Yet, quinary though it be for some purposes, it is decimal for others, as shown here in almost juxta-position; first, by the tenth part, nearly, taken off the height of the lower course, by the manner of introduction of the floor; and then by the 10×10 number of stones, exactly, of which the walls of this beautiful chamber are composed. This latter circumstance was only recently announced, though on my publication of 1867, by Mr. Flinders Petrie; and does him all the more credit because, when I came to test the statement, there was one joint line, by mistake, too many in the middle course of the south wall in my engraved plate of the chamber, though the printed numbers were correct.

Since then again, Dr. Grant, Mr. Waynman Dixon, and other gentlemen have been out to the Great Pyramid specially to test this matter; and when from the floor upwards they had counted the stones of four courses, and found them 93, did they not rejoice to think what a huge error they would presently have against my statement in the second edition of this book! They did rejoice over the prospect—they have confessed that; but when they came to count the stones of the fifth and topmost course, they beheld, to their utter astonishment, that there were only seven there; that seven making up the exact hundred, as well as signifying something further in that room touching 5.7, even as we shall presently find.

A marked portion of the King's Chamber, and the Coffer, are mutually commensurable in Pyramid Numbers.

But the tenth part, nearly, taken off the visible height of the lower granite course of the chamber's walls; what
was that for? Its first effect was to make that course, within the fraction of an inch, the same height as the coffer; and the second was, more exactly, to make the capacity, or cubic contents of that lowest course of the room, so decreased, equal to fifty times the cubic contents of the coffer, already shown to be 71,250 cubic Pyramid inches. Two separate sets of measured numbers in Pyramid inches for the length, breadth, and height, of that lowest chamber-course giving as follows, when divided by the coffer's contents—

\[
\frac{412.14 \times 206.09 \times 41.9}{71,250} = \frac{3,558,899}{71,250} = 49.95
\]

And

\[
\frac{412 \times 206 \times 42}{71,250} = \frac{3,564,624}{71,250} = 50.03
\]

Hence, close as was the connection of the several parts of the coffer with each other by the tie of capacity, equally close is the connection of the coffer with the adjusted course of the granite room in which it stands, and by capacity measure also. While, if the multiple before was 2, and is 50 now,—is not 50 twice 25, or double the number of inches in the cubit of the Great Pyramid, the significant \(5 \times 5\) ?

Commensurabilities between the King's Chamber and the structural Masonry-courses of the whole Pyramid.

Neither did the fives and the tens of this chamber, on being examined, end here; for having been greatly struck outside the monument on contemplating the grandeur of the horizontal courses of masonry of which the whole Pyramid is built, I began next to study them by measure. Not at all equal to each other are they in their successive heights; but, whatever height or thickness of stones any
one course is begun with, it is kept on at that thickness precisely, right through the whole Pyramid at that level (i.e. if we may judge of the unknown interior of the stratum by the four external edges thereof); though too the area of the horizontal section may amount to whole acres.

To secure this equality of thickness for a course,—in fact, just as with the equal height of the granite courses in the King's Chamber walls, but on a far larger scale,—it was plain that immense arrangements must have been instituted beforehand, with the masons of many quarries; and such arrangements imply method, mind, and, above all, intention. Wherefore, having measured the thickness of every component course of the Great Pyramid, one day in April, 1865, when ascending to the summit, and another day in descending, I compared and confirmed those figures with my own photographs of the building placed under a compound microscope; and also with similar numbers obtained from still more careful measures by the French Academicians in 1799 and 1800; and then began to sum up the courses' successive thicknesses to give the whole height of any particular number of courses.

On reaching in this manner the 50th course, lo! the total height of that stratum, or 1,690 inches, gave the hypsometrical level of the floor of the King's Chamber as well as it has yet been ascertained directly by all the best authorities. So that the level of the 50th course of construction of the whole Pyramid is the level also of that granite floor, whereon is resting the coffer, a vessel with commensurable capacity proportions between its inside and out, and its walls and floor, in a room with 5 courses, composed of 100 stones, and with a capacity proportion (the coffer) of 50, to the lowest of those courses; which lowest course has further been made 5 inches less in height than any of the others of its fellows.

Any person could hardly but see, then, that the so-called, in the dark ages, King's Chamber, should rather have been
termed the chamber of the standard of 50. Can we also say, with reference to our present inquiry,—of 50 Pyramid inches employed in capacity measure?

But what is a length of 50 Pyramid inches in the eye of Nature; and how ought that length to be employed for the highest order of capacity-measure purposes?

Fifty Pyramid inches form the one ten-millionth of the earth's axis of rotation; or decidedly the proper fraction to begin with for capacity measure, when we have already chosen one ten-millionth of the semi-axis for linear measure. The reason being, that in measuring distances, say amongst the spheres of heaven, men measure them from centre to centre, and therefore have only to take account of the radii of each; but in dealing with either their capacity or weight, we must take each sphere in its entirety, or from side to side, that is, by its diameter rather than radius.

More Symbolical Hints from the Ante-chamber.

Such is the answer to the first part of the question; and a hint how to deal with the second part may be gathered from some of the hitherto incomprehensible things in the little ante-chamber to this our grander chamber. Little indeed is the ante-chamber, when it measures only 65·2 inches in utmost breadth from east to west, 116·3 long from north to south, and 149·4 high; but it has a sort of granite wainscot on either side of it, full of detail; and was to me so complicated and troublesome a matter as to occupy three entire days in measuring. (See Plate XII.)

On the east side, this wainscot is only 103·1 inches high, and is flat and level on the top; but on the west side it is 111·8 inches high, and has three semi-cylindrical cross hollows of 9 inches radius, cut down into it, and also back through its whole thickness of 8·5 to 11·7 inches to the wall. Each of those semi-cylindrical hollows stands over a broad, shallow, vertical, flat groove 21·6 inches wide, 3·2
inches deep, running from top to bottom of the wainscot, leaving a pilaster-like separation between them; and this groove and pilaster part of the arrangement is precisely repeated on the east side, within its compass of height.

These three grand, flat, vertical grooves, then, on either side of the narrow ante-chamber, have been pronounced long since by Egyptologists to be part of a vertically sliding portcullis system for the defence of the door of the King's Chamber. There are no blocks now to slide up and down in these grooves, nor have such things ever been seen there: but the gentlemen point triumphantly to a fourth groove, of a different order, existing to the north of all the others, indeed near the north-beginning of the ante-chamber; and with its portcullis block, they say, still suspended, and ready for work.

The Granite Leaf.

That alleged portcullis block, however, contains many peculiarities which modern Egyptologists have never explained; and as it was first carefully described by Professor Greaves under the appellation of "the granite leaf," (from the so-called "leaf" or "slat," or sliding door over the water-way of a lock-gate in an English navigation canal), we had better keep to that name.

Its groove, instead of being 21.6 inches broad, like the others, is only 17.1 broad; and in place of being like them cut down to, and even several inches into, the floor, terminates 43.7 inches above that basal plane; so that the leaf's block, or rather blocks—for it is in two pieces, one above the other—stand on solid stone, and could not be immediately lowered to act as a portcullis, though an Emperor should desire it. Nor would they make a good portcullis if they were to be forcibly pushed, or chiselled down in their vertical plane, seeing that there are 21 inches free end space between the leaf and the north entering wall
and doorway, where a man might worm himself in, in front of that face of it; and 57½ inches above the leaf's utmost top, where several men might clamber over; and where I myself sat on a ladder, day after day, with lamps and measuring-rods, but in respectful silence and often in absolute solitude, thinking over what it might mean.

The granite leaf is, therefore, even by the few data already given, a something which needs a vast deal more than a simple portcullis notion to explain it. And so do likewise the three broader empty pairs of grooves to the south of it, remarkable with their semi-cylindrical hollows on the west side of the chamber. Various ideas as to their uses have been given out from time to time, but none commended themselves to my mind at the place, more than that of the three dimensions necessary to express capacity contents—the three hollow curves, too, reminding of the curved shell of the earth's surface; and the granite leaf with its double block (implying double power to its specific gravity) leading one also to think of the earth's interior, or capacity, contents, which are, when taken in the whole, of almost exactly double the mean density, or specific gravity, of that granite.

Earth's Mean Density already approximately indicated, but required more exactly.

Here, then, from every side—from the coffer, the King's Chamber, the Pyramid courses, and the ante-chamber trappings of stone—many of the very, and most scientific, and suitable items necessary for preparing earth reference capacity and weight measures were gradually cropping up in 1865 A.D., before earnest and attentive study of the actual Pyramid facts, to a quiet onlooker, measuring-rod in hand. But no mere linear measuring-rod can supply the further radical idea required for weight, if it is to have an earth-globe reference. The something else called for
in this instance, in order to be true to the grandeur of the beginning made in the Pyramid system for length, could be no other than the mean density of the whole world; and this quantity is not yet by any means so intimately understood by every one, that it would be generally and instantly recognised the moment it should haply be seen, under some symbolical figure or numerical equivalent, in the Great Pyramid.

Although, too, the earth's mean density has been for long a subject of paramount interest throughout other most important and varied branches of natural philosophy, besides astronomy, and not only in this country, but the whole world over, yet it has been practically, diligently, successfully, studied by hardly any other nation than ourselves; and what we have done in the cause has been confined to very late times indeed.

The first special move, always excepting Sir Isaac Newton's most sagacious guess in the absence of any experiment,* seems to have been made by Dr. Maskelyne in 1772; and hence came the celebrated experiment on the attraction of the plumb-line by Mount Schihallion, in Scotland; and whose ultimate computation gave for the concluded density of the whole earth 4·8; but with some suspicions that it might be still more. And finally, amongst such mountain determinations, came that of the Ordnance Survey in 1855 on the hill of Arthur's Seat, near Edinburgh; which observations yielded, when put through the necessary computations, as they were most splendidly, by Captain Ross Clarke, R.E., the number 5·316.

* Sir Isaac's words are:—"Unde cum terra communis suprema quasi duplo gravior sit quam aqua, et paulo inferius in fodinis quasi triplo vel quadruplo aut etiam quinquituplo gravior reperietur; verisimilis est quod copia materiis totius in terra quasi quintuplo vel sextuplo major sit quam si tota ex aqua constaret." A rudely correct approach this to the density of the whole earth, but by means of such a decided over-estimate of the mean density of the average materials of "mines or quarries," that it did not carry much conviction with it.
Another species of experiment, not far removed in its nature from the above, was tried in 1826 by Mr. (now Sir) George B. Airy, Astronomer Royal, Dr. Whewell, and the Rev. Richard Sheepshanks, by means of pendulum observations, at the top and bottom of a deep mine in Cornwall; but the proceeding at that time failed. Subsequently, in 1855, the case was taken up again by Sir G. B. Airy and his Greenwich assistants, in a mine near Newcastle. They were reinforced by the then new invention of sympathetic electric control between clocks at the top and bottom of the mine, and had much better, though still unexpectedly large, results—the mean density of the earth coming out, for them, 6.565.

Natural Philosophy and Closet Determination of the Earth’s Mean Density.

The subject being thus so excessively difficult to obtain a close numerical result upon, even by the best modern astronomy, good service was done to the world in the course of the last century, when the Rev. John Mitchell proposed a different and a direct manner of trying the experiment, actually between the several parts of one and the same piece of apparatus. He died, indeed, before he himself could practise his acute suggestion; but it was taken up after his death by the celebrated Cavendish, and worked very successfully in 1798, with a final result of 5.450.

Nearly forty years after Cavendish’s great work, his experiment was repeated by Professor Reich, of Freyberg, in Saxony, with a result of 5.44; and then came the grander repetition by the late Francis Baily, representing therein the Royal Astronomical Society of London, and, in fact, the British Government and the British nation.

With exquisite care did that well-versed and methodical observer proceed to his task; and yet his observations did not prosper.
Week after week, and month after month, unceasing measures were recorded; but only to show that some disturbing element was at work, overpowering the attraction of the larger on the smaller balls.

What could it be?

Professor Reich was applied to, and requested to state how he had contrived to get the much greater degree of accordance with each other, that his published observations showed.

"Ah!" he explained, "he had had to reject all his earlier observations until he had guarded against variations of temperature by putting the whole apparatus into a cellar, and only looking at it with a telescope through a small hole in the door."

Then it was remembered that a very similar plan had been adopted by Cavendish; who had furthermore left this note behind him for his successor's attention—"that even still, or after all the precautions which he did take, minute variations and small exchanges of temperature between the large and small balls were the chief obstacles to full accuracy."

Mr. Baily therefore adopted yet further, and very peculiar, means to prevent sudden changes of temperature in his observing-room; and then only did the anomalies vanish, and the real observations begin.

The full story of them, and all the particulars of every numerical entry, and the whole of the steps of calculation, are to be found in the Memoirs of the Royal Astronomical Society, and constitute one of the most interesting volumes* of that important series; and its final result for the earth's mean density was announced as

\[6.675, \text{ probable error } \pm 0.0038 \]

The Ordnance Survey's Arthur's Seat experiment gave the same earth's mean density as

\[6.316, \text{ probable error } \pm 0.064 \]

* The fourteenth volume.
And Sir George B. Airy's mine experiment declared still the same earth's same mean density to be

\[6.595, \text{ probable error } \pm 0.018 \]

From which mutually conflicting data, it will be seen that modern science, whatever it implies, by "probable error," about its extreme accuracy to \(\pm 0.3 \) or less, cannot really be certain in this transcendentally difficult, but infinitely important, physical inquiry respecting the earth's mean density to nearer than about \(\frac{1}{10} \)th of the whole quantity.

Earth's Density Number in the Great Pyramid.

Now the Pyramid's earth's mean density comes out, if at all, most simply, and to an accuracy at once of three places of figures, certain; from,—the cubic contents of the coffer in Pyramid inches, divided by the 10th part of 50 inches cubed. Whence, trusting to my measures, it is:—71,250 divided by 12,500; the quotient being 5.70; a number which modern science may confirm, at some future day, and does meanwhile include near the very centre of its best results thus far. While the grand 5.7 of the seven stones forming the 5th and topmost course of the walls of this King's Chamber, crown the conclusion on every side.

Of Temperature Corrections, and how effected.

Some further questions, however, modern science already asks of Pyramidists, in order to ascertain whether, and how, certain precautions, which she thinks necessary in all her own important work, were taken, and still remain effective, in those primeval operations of the so long sealed-up interior of the Great Pyramid.

For instance, if the coffer has to be considered as to its weight contents in water (and water filling is so frequently an operation connecting capacity and weight measures), strict attention is necessary to temperature, an element
usually supposed to be only amenable to the thermometers of the last 200 years; yet the smallest errors on the score of uncertainties of temperature (and we may say almost the same for variations of barometric pressure), in the ancient work, would have introduced unnumbered perplexities.

These perplexities, nevertheless, are far from being found in the Great Pyramid’s Coffer. Not because the Pyramid architect either had, or left behind, any very superior mercurial thermometers; but because he employed a method overriding thermometers, and beginning now to be found preferable even by the highest science of our own day, its multitudes of most excellent thermometers, and barometers too of every kind, notwithstanding.

Thus the latest conclusion of the best geodesists, in conducting their modern standard-scale experiments, is expressed in the maxim, “Have us little to do with variations of temperature as possible;” for temperature is an insidious influence whose actions and reactions men will hardly ever hear the last of, if once they let it begin to move, vary, or be higher in one place than in another, or at one time than another. We have seen too, already, how this feature went close to the annihilation of the Cavendish experiment and its repetitions; and that the only source of safety was, not any attempt by power of fine thermometers to observe the temperature differences, and compute the corrections; but, to cut down the variations of temperature themselves.

Hence that retreating into cellars, and closing of doors, and only looking in through small holes with telescopes, already described. Quite similarly too, in every astronomical observatory, where uniformity of clock-rate is prized, it has been the last, and practically the best, thing to that end yet found out,—that after the clockmaker has done everything which his art can do, in decreasing the disturbing effects which follow changes of temperature, by
applying a so-called, and in truth very considerably effective, "temperature compensation pendulum,"—there is always a further improvement that can be effected in the going of the clock, by superadding certain influences of mass, simply to lessen the amount of heat-changes for such pendulum to try its compensating powers upon.

Thus, at the great observatory of Pulkova, near St. Petersburg, where they value an insight into small fractions of a second perhaps more than anywhere else in the wide world, the very able Russian astronomers have placed their chief clock in the "subterraneans," or cellars, of the observatory. Something of the same sort is now practised at the Royal Observatory, Greenwich; while the Paris Observatory has beat them all by placing its clock no less than 95 feet under the surface of the ground, in the very peculiar "caves" which exist there.

Now, at the Royal Observatory, Edinburgh, there have been observations taken for many years of several large and very long-stemmed thermometers, whose bulbs have been let into the rock at various measured depths; and it is found that, notwithstanding the possibly disturbing effect of rain-water soaking down through fissures, there is such an astonishing power in a mass of stony matter to decrease temperature-variations, that at the surface of the ground—

<table>
<thead>
<tr>
<th>Depth</th>
<th>Temperature Variation</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 inches</td>
<td>50°</td>
</tr>
<tr>
<td>3 feet</td>
<td>30°</td>
</tr>
<tr>
<td>6 feet</td>
<td>16°</td>
</tr>
<tr>
<td>12 feet</td>
<td>10°</td>
</tr>
<tr>
<td>24 feet</td>
<td>5°</td>
</tr>
<tr>
<td>95 feet</td>
<td>1°</td>
</tr>
</tbody>
</table>

At 95 feet, then, from the surface, in the case of the Paris Observatory, how very slight and innocuous to the most refined observation must be the variation of season-temperature! But how much more slightly affected still, and how admirably suited to a scientific observing-room, must not the King's Chamber in the Great Pyramid be,
seeing that it is shielded from the outside summer heat and winter cold, by a thickness of nowhere less than 180 feet of solid masonry!

There is not, in truth, in any country of Europe, there never has been erected, and it does not look much as if there ever will be erected, by any nation under the sun, a scientific observing-room for closet experiments that can at all be compared in the very leading requisite for such an institution, with the King's Chamber of the Great Pyramid.

When Francis Baily closed those remarkable observations of his on the "mean density of the earth," he predicted that they were not likely to be repeated until the slow progress of science in general, and an improved knowledge of the theory of the "torsion pendulum," in particular, should have given the men of a future day some reasonable hope of securing, by renewed experiment, a sensibly more accurate result. But had he been aware of the unique temperature qualifications of that central chamber of the ancient Great Pyramid, where too the mean density of the earth is already represented and turned to account for man in the size of the interior of the granite coffer as compared with the cube of 50 inches,—would he not have been off the very next week to repeat his experiments there: and to have seen with his own eyes, before he died, that mysterious and primal-founded science temple, of the south to us, but central for all mankind?

Absolute Temperature of the King's Chamber in the Great Pyramid.

All the knowledge and advance, then, of the present day, so far from improving on, or altering with advantage, cannot too much commend, copy, and adhere to, the uniformity arrangements for rendering constant the tempera-
ture of the Great Pyramid's coffer chamber. But what is
the degree of temperature so rendered constant?

It is apparently a very characteristic degree, and one
which possesses otherwise some singular recommendations.
In the Great Pyramid, as before observed, there is a grand
tendency for numbers, things, and principles going by
"fives;" and this seems carried out even in its tempera-
ture, for it may be described, first of all, as a temperature
of one-fifth; that is, one-fifth the distance between the
freezing and boiling points of water, above the former.

Observed Temperatures at, and near, the Great Pyramid.

The first grounds for this belief are certain approximate
observations by M. Jomard, in the "Description de l'Égypte;" and which indicate 68° Fahr. as nearly the
original temperature of the King's Chamber of the Great
Pyramid, if under both ventilation and other intended
normal circumstances of its foundation. And 68° Fahr.
is precisely a temperature of one-fifth.

There is more, too, in the temperature numbers result-
ing for the Pyramid, than the mere accident of the mean
earth-surface temperature of its particular parallel of lati-
tude; for that quantity would in truth seem to be very
sensibly higher, if observed at the level of the generally
inhabited country thereabout, than this pyramidal quantity
of one-fifth. Not only, for instance, did M. Jomard actually
find it so, for he measured 25° Cent. = 77° Fahr. for the
lower part of the "well" of the Great Pyramid, and also
for several of the tombs in the open, sun-stricken plain in
the neighbourhood; but my own much more numerous
observations in 1864-5 on the temperature of wells in and
about the city of Cairo (in winter and spring, and at a depth
sufficient to give as near an annual average as possible)
yielded on a mean of 12 of them, 69.9 Fahr. A quantity
which is also the identical result for the mean annual
atmospheric temperature of the same city, as obtained by the Austrian Meteorological Society from five years of ordinary air observation.

Hence if the Great Pyramid was devised originally to stand, both in a latitude of 30° (see p. 70) and in a temperature of one-fifth, it was necessary that it should be mounted upon just such a hill as that whercon it does stand (and more particularly the King's Chamber level of it), in a sensibly cooler stratum of the atmosphere than the plains below; reducing thereby 69° 9 to 68° Fahr.

Thirty-seven years too after M. Jomard had measured in the King's Chamber the extra temperature of 71·6 Fahr. (i.e. 3·6 extra according to this subsequent theory), Colonel Howard-Vyse cleared out the two ventilating channels; and reported, without having heard any idea that the temperature had been theoretically too high—that instantly, upon the channels being opened, the ventilation re-established itself, and with a feeling to those in the chamber of most agreeable coolness.

But no sooner had he left, than the Arabs most perversely stopped up the ventilating channels again; while steam-navigation and the overland route poured in day after day, and year after year, continually increasing crowds of some decorous, but more uproarious, visitors; rushing with their candles and torches, and frantic and various, but always heat-making, amusements, into the King's Chamber's granite hall far oftener than into any other part of the Great Pyramid; so that in 1865 I found its temperature more deranged than ever, or risen to no less than 75·2 Fahr. On one occasion indeed, it was so much as 75·7; and that was immediately after a large party with extra lights, from some vulgar steamer, had had their whirling dances over, as they derisively declared, old Cheops' tombstone; and had indulged to the full their ignorant cursing of his ancient name, to the vocal music of their own passionate shouting, and the painful thunder
of the primeval coffer being banged with a big stone swung by Arab arms; while the temperature was only 74° at the same moment in the Queen's Chamber below, and 73° at the dry-well mouth lower down still in the Pyramid. Temperature numbers which evidently indicate an abnormal heat-elevating force at that instant in the King's Chamber. And no wonder; at least to any one who should have looked in through the smoke and stifling dust upon any of those mad and multitudinous scenes of lurid-lighted revelry, indulged in by so many big pipe-smoking, tobacco-stinking, European gentlemen, a few ladies, and demon-like Arabs of every degree—black, brown, and grey—howling all of them for baksheesh. Lamentable scenes surely to be beheld in such a chamber, in the present educated and advanced age of the world; scenes that would have utterly shocked poor Caliph Al Mamoun, who had involuntarily, 1,000 years ago, prepared the arena for them; yet scenes which disturbed there my quiet days of measuring, and photographing by magnesium light, at intervals of every two or three hours, in the year of grace 1865. Scenes too, which the Consuls would give no assistance in endeavouring to keep down. "Egypt," they said, "in the present day, is every man's land, and every one is his own master when he comes out into the desert here; while in nothing is each man so tenacious as his perfect right to the Great Pyramid. The modern Pharaoh would be pulled from his throne, if he attempted to interfere."

Temperature and Pressure Data for the Coffer's Weight and Capacity Measure.

At the present moment, therefore, the coffer is no more of its right, or original, temperature, than its right and original size, when so much of it has been broken bodily away by the hammering of the representative men of modern moneyed society and their attendant
trains. But the barometric pressure in the chamber happily defies such power of disturbance, and keeps, by the law of the atmosphere over all that region, expressively close to 30·000 Pyramid inches. Wherefore we correct our temperature observations slightly by theory, take the mean pressure as observed, and then have quite enough to justify us in this, our first inquiry, for assuming as the original coffer and King's Chamber temperature of 4,040 years ago (and also what their temperature would be again were the ventilating channels reopened, and a strict prohibition issued in Scottish Covenantanter phrase, against "promiscuous dancing" by all travellers, whether educated or ignorant; and also against that vice of the savage, learnt so readily by civilised Anglo-Saxon men from the mongrel American Indian, viz. smoking burning tobacco* over Cheops' totally mistaken gravestone)—we have, I say, and may quote, the number 68°0 Fahr., or the temperature of one-fifth.

* If from old America came the vice of smoking, it may be from new America only will ever come the efficient cure for it; and the following is already the manner in which the truly per-fervidum ingenium of its newest free and independent citizens has begun to treat the subject, at least in its opium variety:

Advertisement from a San Francisco Paper, 1875.

"The people of the city and county of San Francisco do ordain as follows:—

"Section 1. No person shall, in the city and county of San Francisco, keep or maintain, or become an inmate of, or visit, or shall in any way contribute to the support of any place, house, or room, where opium is smoked, or where persons assemble for the purpose of smoking opium, or inhaling the fumes of opium.

"Any person who shall violate any of the provisions of this section shall be deemed guilty of a misdemeanor, and, upon conviction thereof, shall be punished by a fine of not less than fifty dollars and not exceeding five hundred dollars, or by imprisonment in the County Jail for a period not less than ten days, nor more than six months, or by both such fine and imprisonment.

"And the Clerk is hereby directed to advertise this order, as required by law.

"In Board of Supervisors, San Francisco, November 15, 1875.

"Absent.—Supervisor Deering.

"Jno. A. Russell, Clerk."
Wherefore at that temperature, and the atmospheric pressure previously mentioned, the coffer's 71,250 cubic Pyramid inches of capacity, filled with pure water, form the grand, earth-commensurable, weight standard of the ancient Great Pyramid.

What numerical weight, in our reckoning of tons or pounds, that will amount to, and what subdivisions of its grand earth standard the Pyramid system permits, we propose to take up further on,—after having devoted one more chapter to examining certain of our foundational Pyramid data of lengths and angles more rigidly than ever; and especially by the method of comparing, through the agency of several recent discoveries, the interior, against the exterior, of this most remarkable, most abused, but already most largely evident Monument of innumerable examples of number, weight, and measure, as well as of some funereal, and more religious, associations.
CHAPTER X.

CONFIRMATIONS.

In the several theoretical conclusions arrived at thus far in this second division of our book, the interior measures of the Great Pyramid finally made use of in the research (as those for the size and shape of the coffer) had been taken almost entirely by myself; and were so preferred, simply because they had been observed with more care, and had been printed at far greater length and with more fulness of detail, than to be found anywhere else. Now when some of the remarkable commensurability results derived from those observations, and ascertained long since (i.e. eight or nine years ago), were quoted rather recently in a London drawing-room as deserving serious attention,—the kindly speaker was confronted by a Cambridge mathematician, who rose with authority amongst the guests, and sententiously remarked, "So this man you tell us of, made his own observations! Then what can his theoretical deductions be worth?" Wherefore the previous speaker was held to be utterly extinguished by every one present (forgetful that the argument against John Taylor in his day was, that he never observed at all, but only worked from the records of others), and the Great Pyramid was that evening, and within that drawing-room, handed back to the Egyptologists as nothing but an ordinary, profane, Egyptian tomb, intended for that and nothing else.
Whether so-called pure mathematicians of College upbringing have reason to be suspicious of each other, or are coming, in these days, to accept a moral insinuation, in place of a geometrical or arithmetical demonstration, I know not; but a very different rule of conduct has been for long observed among astronomers. Indeed, the efforts of such men as Francis Baily, Sir John Herschel, Professor De Morgan, and many others of the leading spirits of their time during the last forty years, have been largely directed to encourage, and almost oblige, every astronomer in a public observatory to do something more than merely observe; more too than compute his own observations only; for they taught that he should further apply them to theory, or theory to them; and discover, if he could, anything further that they were capable, in that combination, of disclosing.

No doubt the observations should first, wherever possible, be published pure and simple; though that costs money, which is not always forthcoming even in Government establishments, out of London; and afterwards, or separately, should appear any theoretical discoveries that either the observer or any one else may have been able to educce out of them. But that was exactly what I had done in the case of my Pyramid observations of 1865. For, by immense proportional sacrifices out of a small income on the part of my wife and self, I had published the original observations in 1867 in vol. ii. of my "Life and Work," in as full detail as though it had been both a Government expedition, and its printing paid for out of the national purse. And this self-taxation was especially to satisfy all those intellectualists who might wish to do the computing and theorizing for themselves; while only in vol. iii. of "Life and Work," and subsequently in my "Antiquity of Intellectual Man," did I begin to try what I myself could make out of this new and extended supply of raw material for testing John Taylor's Pyramid theory.
And yet five years afterwards a stay-at-home mathematician, without pretending that any better, or essentially contradictory, observations had been made by any one else, either before or since, and without having looked into anything of the subject,—could openly ridicule the possibility of there being any value in my deductions, merely because I had previously had the toil of making, and the expense of printing, the observations as well!

But fortunately, since the date of publication of my volumes in 1867 and '68, several free and independent spirits, often quite unknown to me, have discussed some of the measures contained in them much more minutely than I had done myself; and have made discoveries which had never entered into my head even to conceive of. Such new men in the field are, Mr. William Petrie, late Chemical Engineer; Mr. St. John Vincent Day, C.E.; the Rev. Joseph T. Goodsir; Captain U. A. Tracey, R.A.; Mr. James Simpson, Commercial Bank, Edinburgh; Mr. W. Flinders Petrie; Mr. Henry Mitchell, Hydrographer U.S. Coast Survey; the Rev. Alex. Mackay, L.L.D., Edinburgh; Charles Casey, Esq., of Carlow; the Rev. F. R. A. Glover, M.A., London; Professor Hamilton L. Smith (Professor of Astronomy in Hobart College, Geneva, New York, U.S.); W. C. Pierrepont, of Pierre Pont Manor, New York, U.S.; Captain B. W. Tracey, R.N., London; Mr. Cockburn Muir, Civil Engineer, London; Mr. Sydney Hall, Civil Engineer, London; the Rev. C. W. Hickson, M.A., Bristol; and the Rev. Henry Morton, South Shields; the several parties being mentioned here according to the dates of their researches becoming known to me; and I proceed now to give some* of the results of their examinations.

* It may be proper, on account of some recent critiques, to say, that because I have mentioned these gentlemen's names with honour, I do not, therefore, homologate everything which they have written both on the Great Pyramid subject and anything else; but I shall endeavour, to the best of my ability, to point out in the course of this book wherever they have apparently made real discoveries of valuable Pyramid truth.
The New School of Pyramid Theorists in the King's Chamber.

Of all parts of the Great Pyramid amenable to accurate linear measure, there are none presenting such advantages therefore as the King's Chamber, far in its interior; because the said Chamber is—1. Equable in temperature; 2. Unvisited by wind, sand, or other such natural disturbances of the outside of the building; 3. Of simple rectangular figure (excepting an infinitesimal angle of convergence, and a rather larger angle of inclination, observed as yet only by myself, and not altogether to my own satisfaction); 4. Erected in polished, dense, hard, red granite; and, 5. It exhibits the longest lines of any part of the Pyramid, both in that hard material, and in a horizontal position; with vertical end-pieces too, in rectangular emplacement, or exactly as most suitable to the modern refinements of "end-measure." (See Plates XIII. and XIV.)

M. Jomard speaks of his English predecessor, Professor Greaves, having inscribed, or cut, the length of his standard foot-measure on the walls of that chamber. But I could not find any trace of such a thing; and rather suspect that Jomard must have been misled by some figurative expression of Greaves's; who wisely considered, that a printed statement of the measured length of that chamber (so constant in its size from age to age), in terms of his foot-measure, would be a better record to posterity of what the length of that standard must have been, than any attempt to cut one length of it there and then bodily into the hard granite by smoky candlelight, with imperfect tools, and while Mohammedan Memlook soldiers were looking on with impatience and hatred of everything done by Christian hands.

The Mensuration Data at the Disposal of the New Theorists.

Certain it is that I could not find any corporeal record of that foot-measure in the King's Chamber; nor can the
Heads of Houses in Oxford find Greaves's iron measuring-rod itself, though they have the wooden box for it, safe enough. But the libraries of Europe contain innumerable copies of the book record, to the effect that the length of the King's Chamber in the Great Pyramid, as measured by Greaves, amounted to 34·380 of his feet, i.e. 412·56 of his British inches, in 1637.

Now this is a quantity well worthy of remembrance, viz. this 412·56 inches of Greaves: for—

By Col. Howard-Vyse, in 1837, that chamber's length was stated to be, in his honest but rough manner. 411·00
By Mr. Lane, in or near 1838, in the same sort of manner. 412·50
By Messrs. Aiton and Inglis in 1866, similarly, from 411·7 to 412·1

But by myself in 1865 it was given as follows, with particular care to reduce my inches to standard British Government inches of the present, and also long-past, historical day:—

<table>
<thead>
<tr>
<th>Date</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>March, 11th</td>
<td>412·6</td>
</tr>
<tr>
<td>Do. do.</td>
<td>412·57</td>
</tr>
<tr>
<td>Do. do.</td>
<td>412·7</td>
</tr>
<tr>
<td>16th March,</td>
<td>412·4</td>
</tr>
<tr>
<td>Do. do.</td>
<td>412·5</td>
</tr>
<tr>
<td>North side,</td>
<td>412·5</td>
</tr>
<tr>
<td>Mean of both</td>
<td>412·60</td>
</tr>
<tr>
<td>Mean of north</td>
<td>412·47</td>
</tr>
<tr>
<td>Mean LENGTH</td>
<td>412·54 British inches</td>
</tr>
<tr>
<td>Probable true</td>
<td>412·132</td>
</tr>
<tr>
<td>Breadth of</td>
<td>206·4</td>
</tr>
<tr>
<td>near east end,</td>
<td></td>
</tr>
<tr>
<td>Do. second</td>
<td>206·2</td>
</tr>
<tr>
<td>Near west end</td>
<td>206·3</td>
</tr>
<tr>
<td>Mean BREADTH</td>
<td>206·30 British inches</td>
</tr>
<tr>
<td>Probable true</td>
<td>206·066</td>
</tr>
<tr>
<td>Height of</td>
<td>230·3</td>
</tr>
<tr>
<td>near north-east</td>
<td></td>
</tr>
<tr>
<td>angle of room</td>
<td></td>
</tr>
<tr>
<td>North side</td>
<td>220·7</td>
</tr>
</tbody>
</table>
North-west angle = 229.2
South-west = 229.9
South side = 229.5
South-east angle = 230.8
North-east angle repeated = 230.8

The mean height here = 230.1, but is certainly smaller than it should be; for so many of the floor stones, from which the heights necessarily had to be measured, were disturbed and to some extent risen up (like the drawing of a tooth), as though in consequence of earthquake disturbance. Hence the true quantity must be much nearer the greater, than the smaller, limit of the measured heights, and should probably be called = 230.70 British inches.

Probable true "FIRST HEIGHT"
The above, "the FIRST HEIGHT," or that from floor to ceiling, is so called to distinguish it from "the second height," or that of the granite walls themselves. Walls fully measurable now only in the N.W. corner of the room, where three of the floor-blocks are taken out, and show the wall there reaching down 5.0 inches beneath the floor-level. This 5.0 inches completes the regularity of height for all the five courses of granite blocks forming the walls of the room; for each of the four upper courses certainly measures 47.1 British inches, nearly, in height; and the first, or lowest of the five, though measuring only 42.1 from the floor, yet measures 47.1, if we add on the 5 inches observed at the only place where we can look under the floor-level. All this justifies us in announcing as the "SECOND HEIGHT" of the King's Chamber, or the height of the four walls of it, pure and simple, in themselves (see Plate XIV.) as near to 235.50 British inches.

And as lying between 235.20 and 235.50 Do. do.

Diagonals of floor:
From south-west to north-east corner = 462.0
North-west to south-east = 461.3

Mean measured floor diagonal = 461.65 British inches.

Diagonals of east wall:
Low north-east to high south-east corner = 309.2
Low south-east to high north-east corner,
subtracting 1.6 inches for hole in low south-east corner = 310.0

= 309.6 British inches.
= 309.3 Pyramid do.
Diagonal of west wall:
Low south-west to high north-east corner = 310·4
Subtract 1·0 for a sunken floor-stone south-west = 1·0
(The other diagonal not measurable on account of a large and deep hole in floor in north-west corner of chamber, whereby men entering have gone on excavating at some time to underneath that part of the floor whereon the coffer stands.)

= 309·4 British inches.
= 309·1 Pyramid do.

Mr. James Simpson’s Sums of the Squares.

With these measures before him, and paying more attention to those of them taken from rectangular sides than the more difficult practical case of the corners and diagonals, Mr. James Simpson, adopting what he thought the most probable numbers for length, breadth, and height, computed the several diagonals, and prepared the following theoretical measures of the room in Pyramid inches:

<table>
<thead>
<tr>
<th>King’s Chamber Lines</th>
<th>Simpson’s First Numbers</th>
<th>Fitzpi’s Smyth’s Original Measures</th>
<th>The latter Measures corrected by Simpson’s Proportions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>{ Breadth }</td>
<td>206·10</td>
<td>206·09</td>
<td>206·066</td>
</tr>
<tr>
<td>{ First height }</td>
<td>230·42</td>
<td>230·47</td>
<td>230·389</td>
</tr>
<tr>
<td>{ Length }</td>
<td>412·20</td>
<td>412·13</td>
<td>412·132</td>
</tr>
<tr>
<td>Diagonals of { End }</td>
<td>309·14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>{ Floor }</td>
<td>460·84</td>
<td></td>
<td></td>
</tr>
<tr>
<td>{ Side }</td>
<td>472·22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solid diagonal</td>
<td>516·24</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The differences between Mr. Simpson’s adopted linear numbers and my pure measures in the first division, it will be seen, amount to not more than 0·07 of an inch, or within the error of an average single measure by me, and much within those of some observers; indicating therefore that we may take his numbers as expressing well the true constructed and measured dimensions of the apartment inter se, such as the breadth being exactly half of the
length, and the height exactly half of the floor diagonal (as discovered also independently by Professor Hamilton L. Smith), if indeed a good and locally conclusive reason can be shown for them; and this is what Mr. Simpson does most effectively in a series of commensurabilities of squares in very Pyramid numbers.

Take, says he, half of the breadth, or 103·05, as a special unit of division; and test and divide therewith each of the above-recorded quantities as below; and then, squaring the results, you will have for the—

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
<th>Square</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breadth</td>
<td>2·000</td>
<td>4</td>
</tr>
<tr>
<td>First height</td>
<td>2·236</td>
<td>5</td>
</tr>
<tr>
<td>Length</td>
<td>4·000</td>
<td>16</td>
</tr>
</tbody>
</table>

Or sum of squares for linear dimensions of K. Ch. = 25 a Pyramid number.

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
<th>Square</th>
</tr>
</thead>
<tbody>
<tr>
<td>For the end diagonal</td>
<td>3·000</td>
<td>9</td>
</tr>
<tr>
<td>Floor do.</td>
<td>4·472</td>
<td>20</td>
</tr>
<tr>
<td>Side do.</td>
<td>4·582</td>
<td>21</td>
</tr>
</tbody>
</table>

Or sum of squares for part diagonals of K. Ch. = 50 a Pyramid number.

Solid diagonal = 5·000 whose square = 25 a Pyramid number.

And the sum of the three Pyramid numbers = 100 a Pyramid number.

And this is in the chamber whose walls have now been doubly proved to be composed of just 100 blocks of well-cut, squared, highly polished and evenly heighted, though very differently lengthed, granite.

The manner in which the long fractions of some of the simple divisions clear themselves off, on taking the squares, is especially to be noted; and from a further theoretical consideration of his own (which I trust he will be induced to publish), Mr. Simpson considers that a more exact expression for the original size and proportions of the room should be in Pyramid inches—

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breadth of King's Chamber</td>
<td>206·0659</td>
</tr>
<tr>
<td>Height (the First height, or floor to ceiling)</td>
<td>230·3886</td>
</tr>
<tr>
<td>Length</td>
<td>412·1317</td>
</tr>
<tr>
<td>Diagonal of end of King's Chamber</td>
<td>309·0988</td>
</tr>
<tr>
<td>Do. floor</td>
<td>460·7773</td>
</tr>
<tr>
<td>Do. side</td>
<td>472·1562</td>
</tr>
</tbody>
</table>
The King's Chamber reacts on the Exterior of the Great Pyramid.

If we now multiply the chamber's length (its chief line and the best measured line, too, of the whole Great Pyramid), by the special Pyramid numbers 5×5, and find it to yield $10303.29 + \&c.$, or the same row of ciphers with the decimal point differently placed, as Mr. Simpson's touchstone line of Pyramid commensurability, we may then ask further whether that larger, absolute quantity of length so implied, has any particular value or meaning outside that King's Chamber wherein it is now found.

Then comes the remarkable answer, that the area of the square base of the Great Pyramid is equal to the area of a circle whose diameter $= 10303.30$, within ± 0.01 of the same Pyramid inches. (See Plate XVII., Equality of Areas, No. 1.) Thus bringing up again, though in a slightly different shape, viz. areas instead of circumferences, that practical squaring of the circle, which was one of the chief objects of the Great Pyramid's external figure; and establishing thus a simple, but most intellectual, relation between the apparent utter diversities of a small, long-shaped, rectangular room on one side, and the square-based, sharp-pointed, mighty Great Pyramid on the other.

Again, considering Pyramid inches in the King's Chamber to signify Pyramid cubits outside the building, the following results came out correct to six places of figures:—Take the length of the King's Chamber 412.132 to express the diameter of a circle. Compute, by the best methods of modern science, the area of that circle; throw
that area into a square shape, and find the length of a side of such square. The answer will be 365.242 Pyramid cubits; a quantity which not only represents the mean of all the measures of the length of the Great Pyramid's base-side (see Chap. III., p. 40), but defines the number of mean solar days in a mean solar tropical year.* (See Plate XVIII.)

Next consider the same King's Chamber's measured quantity (and measured, be it remembered, before this theory came out), viz. 412.132, as the side of a square; find its area, and throw that (by modern science as before) into a circular shape. The radius of such a circle will be found = 232.520; or, in Pyramid cubits, the vertical height of the Great Pyramid according to the mean of all the measures; and also very close, taken as in Pyramid inches, to the mean of the two heights, viz. those "first and second"—heights, which the architect found it necessary to introduce into the King's Chamber to enable it to typify all he required.

The above calculations may be easily performed either by arithmetic direct, or by logarithms, but including always the precisely true value of \(\pi \) (see our "Key the First," p. xv); and the following is how the Pyramid architect further exhibits that \(\pi \) quantity in one and the

* The following may serve as an example of a practical mode of performing this little calculation, with the usual tables of logarithms to seven places:

\[
\begin{align*}
412.132 & \text{ assumed the diameter of a circle } \quad = \log. 2.6150363 \\
\text{Find its area, 1st, by squaring } \quad = & \times 2 \\
& \quad = 5.2300726 \\
\text{2nd, by adding } \log. \frac{\pi}{4} = & \quad = 9.8960399 \\
\log. \text{area of assumed circle and also of the square sought} \quad = & \quad = 5.1251625 \\
\text{Find side of said square by } \sqrt{ } \quad = \div 2 \\
365.242 + \&c. & \quad = \text{Nat. number of Log. } \quad = 2.6625312
\end{align*}
\]
same King's Chamber:—Take the circuit of either of the principal walls of the chamber in their entirety of granite, i.e. north or south wall, and divide by the length; the result is π, equably with modern mathematics.

Taking therefore, for this purpose, as the height of the room, the "Second Height," and within the limits assigned by Mr. Simpson, viz. 235·243; the circuit of either north or south wall is—

\[412·132 + 235·243 + 412·132 + 235·243 = 1294·750 \]

and \[1294·750 \div 412·132 = 3·14159 \] &c. = π,

or equals, we may now say in words without stint, "the Key of Knowledge of the Great Pyramid."

Ante-chamber Symbolisms.

We have by no means finished with these most accurate numbers of the King’s Chamber yet,—but it may be agreeable to many readers to see from another side how gradually, though surely, those numbers we have dealt with, were led up to by settled intentions and deliberate arrangements of the architect, long beforehand.

To reach the King’s Chamber of the Great Pyramid we have to pass through the Ante-chamber, and we have already gathered some useful hints from there, yet far from all that it was capable of giving.

One of our gatherings, p. 158, was from the three curved hollows in the higher, or western, granite wainscot. There are no such hollows on the eastern side, and it is moreover cut off at top to an absolutely lower level than what the western hollows descend to.

Why was the east wainscot so cut down; evidently also by the original builders?

The architect is dead, but you may still virtually question him, in such a building of number, weight, and measure, by ascertaining how much? *What height,* for instance, was the eastern wainscot cut down to?
So asked Captain U. A. Tracey, R.A., now several years ago; and my measures in "Life and Work" answered his studious examination of them at Gibraltar, with 103.0; since assumed = 103.033 Pyramid inches.

Why, said he, that is half of the King's Chamber breadth. Then examining further, he recognised that the floor of the ante-chamber was recorded by me as partly in granite and partly in limestone; that the length of the former portion, given in four different places as between 102.5 and 103.6, must be intended, though roughly (as all features of this ante-chamber are rough and approximative only) for 103.033 also; and in that case here were two similar lengths of granite placed in rectangular position to each other. That, he added, indicates square measure; but what is the equal of such a square?

The length of the whole ante-chamber was then looked for, and found in my measures, thus, in Pyramid inches:—

\[
\begin{align*}
116.2 & \\
116.7 & \\
116.1 & \\
116.2 & \\
116.2 & \\
116.2 & \\
\hline
\text{Mean} = 116.27 \text{ or } 116.26
\end{align*}
\]

This 116.26 being made up of 103.03 of granite, and 13.23 of limestone; and 116.260, Captain Tracey pointed out, is the diameter of a circle having precisely equal area (up to its last figure at least) to a square of 103.033 in the side. Or, as the Abbé and Chanoine Moigno neatly expressed it, in "Les Mondes" (where he had previously called 116.26 = 2r, and 1103.03 = c).

\[\pi r^2 = c^2.\]

And the good man appended to that, "Who could pretend now that the diversity of the materials forming the floor, and their relations and differences of length, were a brute accident on the part of the ancient architect of 4,000
years ago?" And still less when the following additional features are produced by these numbers, 103·03 and 116·26, in their Pyramid positions there:—

1. \[103.03 \times 5 \text{ (Pyramid number)} = 516.156\]; or is the length in Pyramid inches of the cubic diagonal of the King's Chamber.

2. \[103.03 \times 50 \text{ (the number of masonry courses of the Pyramid the chamber stands upon)} = 5161.65\]; or is in Pyramid inches the length of the side of a square of equal area to a triangle of the shape and size of the Great Pyramid's vertical meridian section.

3. \[116.26 \times 2 = 232.520\]; or is, in Pyramid inches, the mean, nearly, of the First and Second Heights of the King's Chamber.

4. \[116.26 \times \pi = 365.242 + \text{ &c.}\]; or shows the number of mean solar days in a mean solar tropical year.

5. \[116.26 \times \pi \times 5 \times 6 = 9131.05\]; or is, in Pyramid inches, the length of a side of the base of the Great Pyramid from a mean of all the measures.

6. \[116.26 \times 50 = 5813.0\]; or is, in Pyramid inches, the ancient vertical height of the Great Pyramid, from a mean of all the measures.

Hence the uses of the east wainscot of ante-chamber, in being lower than the west wainscot, have been most remarkable. But can any use or object be assigned to the west wainscot being of the particular height it has been found to be by measure, viz. 111.8 Pyramid inches?

Being so signal a feature of the chamber, and executed expensively and solidly,—though, as usual with the ante-chamber, not with microscopic refinement of work,—we may be sure that the architect intended something by it; and this is what Professor H. L. Smith has drawn forth:—

Divide the height by 100; and call the original quantity, now 1.118, possibly 1.11803; then,

\[
\text{Breadth of King's Chamber} \times 1.11803 = \text{Height of the same.}
\]

Now that height is a very peculiar quantity, as already set forth in Mr. Simpson's sums of the squares; and all the more to be attended to now that the realities of the Great Pyramid are coming to be appreciated, for hitherto the King's Chamber has been carelessly described, by too many of our educated travellers, as merely a double cube; a simple notion which I believe they derived from Greek
architecture. But the designer of the Great Pyramid here sets up a notice, that if the breadth of the King's Chamber = 1, then the height thereof is to be equal to 1.11803. Let us try it in numbers:—

\[206.066 \times 1.11803 = 230.389 \]

or the exact quantity attained in Mr. Simpson's researches, to within the possibilities of measure.

Yet there may be those who object to this one case only, of a number not being taken at once as it measures in Pyramid inches, but after division by 100! The objection is not of much force, seeing that the number chosen is a round and even Pyramid number, almost an ante-chamber number, and that the ante-chamber has many purposes to serve, both theoretical and practical, all of which can only be included in some such manner. But there is more direct justification than this, in that we find the division by 100 used again in this room, and touching height also.

The measured height of the whole ante-chamber, floor to ceiling, is 149.3 or .4 Pyramid inches; and why?

Because that number represents the length of base-side of Great Pyramid plus the vertical height thereof, divided by 100; as thus:

\[\frac{9131 + 5813}{100} = 91.31 + 58.13 = 149.44. \]

Nor is this a mere chance coincidence in whole sums, for two remarkably pertinent reasons.

First. Professor H. L. Smith has shown that the whole distance is appropriately divided by the centre of the lower, and regularly formed, component of the granite leaf, so as to represent from there, upward to the ceiling, 91.3 Pyramid inches, = Pyramid base-side ÷ 100; and from the same centre downwards to the floor, 58.1 nearly, or the Pyramid vertical height ÷ 100.
The latter measure, as recorded by me, was indeed too short by nearly half an inch; but that was presently found to be already explained by Plate XI., vol. ii. of "Life and Work" (which involuntarily shows for the date of its publication when Pyramid theory had not advanced to any of these refinements), that the stone in the floor under the leaf has been disturbed by pressure or dislocated by modern or mediæval earthquake shocks, so that it is at least 0.3 of an inch, at present, above its fellows.

Second. In angular confirmation of the above, the venerable and still acute-minded Mr. W. C. Pierrepont (of Pierrepont Manor, Jefferson County, N.Y.) has pointed out, that if a model of a meridian section of the Great Pyramid be conceived to stand on the flooring of the ante-chamber and its passages, and to touch with its apex the ceiling of the ante-chamber, vertically over the centre of the granite leaf, then,

North foot of such pyramidal section rests on the great step at the head of the grand gallery, exactly there where the ramp-line continued comes through; and

South foot of such pyramidal section rests on the granite floor of the passage leading from the ante-chamber onwards to the King's Chamber; and is defined there to within a tenth of an inch by a "joint" line in the granite; the only joint line too in that passage, but duly chronicled in "Life and Work," vol. ii., in 1867.

From that joint-line in the floor, then, the vertical angle to the ceiling of ante-chamber immediately over the singular and most important, granite leaf's centre = 51° 51', or the Great Pyramid's angle of side rise; and from the same joint-line to the centre of the lower stone of the granite leaf (which divides the whole height, into base-side and vertical height = 100) the angle is 26° 18' nearly, or the angle of all the inclined passages of the Pyramid; and concerning which angle, there will be much more to be said by-and-by.
Inches in the Granite Leaf.

That granite leaf therefore in the ante-chamber, besides being so strange a structure in itself (standing all across the room between the floor and the ceiling), is hedged about, as it were, with important symbols connected with the scientific theory of the Great Pyramid; and now we come to a still more essential and explanatory part which it has been found to serve therein.

Some objectors to the Pyramid scientific theory have said, "We do not admit the reality of your Pyramid inches with its original builders, when you can only get such inches by subdividing immense lengths. But show us a single such inch, and then we may believe."

Whereupon Captain U. A. Tracey, R.A., has pointed out that such single inch is actually marked, and in a Pyramid manner, on, or rather by means of, the above granite leaf in the ante-chamber; and it comes about thus:—

In that small apartment its grand symbol on the south wall is the already-mentioned illustration of a division into five: and if the symbol had virtue enough to extend into and dominate some features in the next or King's Chamber (as in illustrating its now undoubted number of five wall-courses), why should it not typify something in its own chamber as well? But what is there, in the ante-chamber, divided into five? "The sacred, or the Great Pyramid's own scientific, cubit," answers Captain Tracey; "for here it is so divided in the shape of this projecting boss on the granite leaf, just five inches broad. And further, that fifth part of that cubit of the Great Pyramid's symbolical design is divided before our eyes into five again; for the thickness of this remarkable boss is 1-5th of its breadth. So there you have the division of the peculiar Pyramid cubit into 5 x 5 inches."

This boss on the granite leaf (see Plate XII.) is another of my mere re-discoverings of things at the place, which
are to be seen, though denied or overlooked by most visitors: for the boss is marked, but not sufficiently noted or measured, in that excellent, yet unwieldy and seldom consulted, folio of enormous plates, "Perring's," or rather perhaps to be called "Vyse and Perring's," views of the Pyramids, published in 1840.

But this most unique yet modest boss was not described and pictured by me with proper correctness even in "Life and Work," I having made it there much too high, too accurately rectangular at its lowest corner line, too sharply and neatly defined all round, and the workmanship fine instead of, as it is, rather rough; and as I am enabled now to say positively, having been kindly furnished by Mr. Waynman Dixon with a cast of it in Portland cement taken by him in the Great Pyramid in 1872; and still another cast of it in plaster was obligingly sent to me by Dr. J. A. S. Grant, of Cairo, in 1874. The one inch thickness however, and five inches breadth, of the thickest and central part being fairly measurable along the best line of the cast-boss for measuring, viz. its steep, though not absolutely rectangular, lower edge,—they remain untouched and perfectly suitable for Captain Tracey's analogy, which is further supported as follows:—The boss, a flat bas-relief one inch thick or high from the stone, is on the north side of the upper of the two granite stones forming that "granite leaf" which crosses the ante-chamber near its northern end. (Compare Chapter IX., pages 157, 158.) Excepting the presently broken, or boulder-line, state of the upper surface of the top stone, the formation of the whole leaf is regular, rectangular, and symmetrical; and the working of it masterly, though rough; i.e. hammer-dressed, but very finely for that method, and sensibly smoother than the walls of the ante-chamber. (See Plate XVI., for Dr. Grant's orders of surfaces.) Why then is the boss not even approximately in the middle of the granite leaf, or in the centre between
the two sides of the very narrow apartment? (41.21 inches broad between the granite wainscots.)

My measures of 1865, if they can be trusted here, show that the boss is just one inch away on one side of the centre; and as it will be elsewhere shown that it was a Great Pyramid method to indicate a small, but important, quantity by an eccentricity to that amount in some far grander architectural feature,—we cannot but accept this measured eccentricity of the boss as an additional Pyramid memorial of the very thing which is being called for by the sceptical just now; viz. one single, little inch memorialised by the builders of the most colossal piece of architecture in the world throughout all human time. (See Plate XXIV.) All the more decidedly too, when, as Mr. St. John Vincent Day has since then shown, that very eccentric position of the boss, by the amount of just one inch, has enabled the distance from its centre to the eastern end of the leaf itself in its well-cut groove in the granite wainscot to be, within the limits of mensuration errors, just a whole Pyramid cubit = 25.025 British inches, or something very near to it indeed.* So that we have tied up here the whole cubit, its fifth part and its twenty-fifth part or inch unit; which, though so small, like the needle in a haystack, yet is it also securely monumentalised in this vast building: clearly, too, and in a manner which has lasted up to this very day.

Thus much does the granite leaf for linear measure; but it indicates a beginning of capacity and cubic measure

* My measures say, p. 100, vol. ii. of "Life and Work"—

<table>
<thead>
<tr>
<th>Description</th>
<th>British Inches</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centre of boss to east side of ante-chamber room</td>
<td>= 21.5</td>
</tr>
<tr>
<td>Centre of boss to west side of ante-chamber room</td>
<td>= 19.5</td>
</tr>
<tr>
<td>P. 93, vol. ii., depth of groove in east wall</td>
<td>= 4.0</td>
</tr>
<tr>
<td>Whole distance from centre of boss to east end of granite leaf in its groove</td>
<td>= 25.5</td>
</tr>
</tbody>
</table>

But again, on p. 93, and also p. 95, the grooved breadth of the room is given in British inches at (its ungrooved breadth, or
also; for Captain Tracey again shows that the lower stone of the granite leaf (in this ante-chamber, which thus proves itself to be a veritable synopsis or microcosm of the whole Great Pyramid), that this lower stone, I say, which is fairly dressed, rectangular, and the one on which the upper stone with its divisions of the cubit rests, expresses a notable division of the capacity measure of the coffer.

the breadth between the two wainscots, and in so far, all the visible breadth of the granite leaf, being nearly 41·2 inches).

<table>
<thead>
<tr>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>48·1</td>
</tr>
<tr>
<td>48·0</td>
</tr>
<tr>
<td>48·1</td>
</tr>
</tbody>
</table>

Mean = 48·067

Half = 24·034

Further measures of the boss on the granite leaf, in a letter from Dr. J. A. S. Grant, Cairo, Dec. 6, 1874, describing a long and hard-working night spent in measuring inside the Great Pyramid, in company with the Rev. F. R. A. Glover and Mr. Beecher:

"Then we measured the boss, and found it to jut out from its stone one inch; and also to be removed from the centre of the breadth of its stone exactly one inch; measurements which corroborate former measurements."

A still further and more particular account of the cubit of the granite leaf is given by Dr. J. A. S. Grant thus, in a later letter of 1874:

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breadth of granite leaf from east to west</td>
<td>48·00</td>
</tr>
<tr>
<td>Depth of the two grooves for it in the walls east and west</td>
<td>6·5</td>
</tr>
<tr>
<td>Half of the above</td>
<td>3·41·5</td>
</tr>
<tr>
<td>Excentricity of boss; i.e. Distance of centre of boss to the west of centre of granite leaf</td>
<td>20·75</td>
</tr>
<tr>
<td>Depth of groove in east wall</td>
<td>3·25</td>
</tr>
<tr>
<td>Distance of centre of boss from east end of granite leaf within the groove in east wall</td>
<td>25·00</td>
</tr>
</tbody>
</table>

* My ante-chamber measures, as condensed on p. 37 of the 13th vol. of the "Edinburgh Astronomical Obs.:"

| Granite leaf, thickness north to south, on east side | 15·4 |
| west side | 15·0 |
For it presents us, within the walls of the ante-chamber, with a fourth part of that coffer vessel; or with the veritable "corn quarter" of old, and which is still the British quarter corn-measure both by name and fact and practical size.

π in the Granite Leaf.

The above conclusion for the lower stone of the leaf has been tested by various persons, and found to come very close to the numbers recorded; but quite recently a new idea was sent to me by the Rev. C. W. Hickson, to the purport that the whole granite leaf contained, of cubic inches, a number equal to π multiplied by 10,000. I tried it upon my own measures, and was rashly about to condemn the notion utterly, when looking again at the latest and most particular letter I had had from Egypt touching the granite leaf,—there was a view expressed there which seemed, involuntarily to the writer of it, to meet this case completely.

With any straight-sided rectangular solid, we have merely to multiply together breadth, thickness, and height,

- Height of lower stone: \(27.5\) to \(28.0\)
- Height of upper stone, from its straight, level base under the boss, to its curved, or curvilinear, or broken and boulder form above it: \(18.0\) to \(23.5\) inches.
- Breadth east to west, between the open walls: \(41.21 \pm 0.01\) between the leaf's grooves: \(48.05 \pm 0.01\)

Further measures of granite leaf by Mr. Waynman Dixon, announced in December, 1875:

- Visible breadth of leaf between walls north of it: \(41.0\)
- Visible breadth of leaf between walls south of it: \(41.5\)
- Real breadth of leaf, or of space between groove ends, at top: \(48.9\)
- Thickness of leaf, north to south: \(15.0\)
- Thickness of groove-hollows, north to south, at top: \(16.25\)
- Distance from centre of boss to east wall-face: \(21.5\)
- Distance from centre of boss to west wall-face: \(19.5\)

The difference of thickness between the leaf's general thickness and the grooves, which was thought in "Life and Work" to be filled with cement, —is considered by Mr. Dixon to be filled by an extra edge thickness of the granite leaf itself.
in linear inches, to obtain the contents in cubical inches. Now the granite leaf is a straight-sided, rectangular solid in everything except the top, which top is irregular, curvilinear, and I had always supposed, broken: therefore the original cubic contents could only be obtained by assuming a height large enough to include at least the highest fragment remaining; and that would be, measuring upwards from the bottom of the lowest stone, to the top of the upper of the two stones composing the leaf, 51·3 inches: the breadth of the sub-aerial, or visible part of the leaf, being without any doubt 41·2 inches, and the thickness 15·7 inches.

But the multiplication of these quantities gives a number so much greater than \(\pi \), leaving it in the second place of figures, that the theorem cannot be maintained for a moment by them.

If indeed we next take the smallest height of the leaf, which is near to 45·8, the mean of that and the other gives 48·55, possibly inclining to 48·57, and then between these two quantities, the expected 10,000 \(\pi \) comes out most plainly as 31415·9, &c.

But have we any right to use a mean of the greatest and least heights of the curvilinear summit of the granite leaf, in our inquiry as to how many cubic inches the architect originally intended it to represent?

Not the slightest, if that curvilinear summit is the result of modern breakages; and I having expressed a belief that it was broken mediævally, if not recently, in "Life and Work," in 1867, think myself now specially called on to publish, that a totally opposite view was communicated to me by a practical engineer in December, 1875; and as the matter is one where the practised eye of an engineer is of the utmost importance, and as that eye had been employed again and again in scrutinising the granite leaf, I am quite ready in that particular to bow to its conclusions.
The engineer was Mr. Waynman Dixon, and the actual words of his letter are as follows:

"The more I see of this remarkable stone or leaf, the more I am convinced that the upper irregular part is in its original condition, not broken away by specimen-mongers or Arabs."

In that case, the leaving an original, natural, indefinite surface on the top of a solid, whose other sides were worked by man in accurate rectangular planes, may be taken to indicate an intention of exhibiting the naturally and externally indefinite end of the fractional number π; at the same time that the nearest practical amount of it in whole inches, when multiplied by 10,000, was formally shown by the mean height of the boulder-surface side, combined with the simple measures of the other sides.

The 35th Pyramid Masonry Course.

But I must now confine myself to only one case more, making a new use of the ante-chamber length, 116.26 Pyramid inches, to identify that chamber with the very vitals of construction of the whole Great Pyramid.

The manner in which the Pyramid mass is built in horizontal courses of squared stone extending, each at its own thickness, through and through the whole building, has already been mentioned at p. 155; and I may now add, that the thicknesses of these courses rapidly diminish in ascending, so that from about 50 inches at the base they dwindle down to about 27 inches at the 35th course; but there they immediately and suddenly thicken, so that the 36th course begins with a 50-inch thickness once again. (See Plate VII.)

Now this is a tremendously important fact, for that thick, 36th, course of masonry is conspicuous on every side of the Great Pyramid. The French measures of the courses in 1799, showed it accurately; travellers with an
educated eye, may see it miles off; even my smallest photographs placed under a microscope invariably show it; and the extra amount of weight which the builders had to raise in the 36th course as compared with the 35th was, on that account, about 40,000 tons. What then was the extraordinarily important thing completed in these first 35 courses that the builders crowned them so majestically; honoured them, in fact, with a diadem of stone (whose 50-inch white escarpment shines afar on every side), and marked them to all future time by the weight and size of the 36th, 37th, and other higher courses of extra thick masonry immediately above them? Whether the courses of the once-existing, and then outside, casing-stones corresponded with these inner structural courses is not now known; but ever since the casing-stones were removed, or for 1,000 years past, the world has had the opportunity of seeing the sudden leap in thickness which the courses take after the first 35,—and no one ever guessed the reason until Professor Hamilton L. Smith, of Hobart College, Geneva, New York, produced, if not all the reasons, at least a sufficient one, and probably a chief one, as thus:—

35 in itself, as made up of 7 times 5, is an important Pyramid number; while the 35 courses attain a vertical height above the base of the Great Pyramid of 1162.6 Pyramid inches,* or ten times the length of the ante-chamber.

But what then?

Simply and completely this, that at that point of height, in the middle of any side, the horizontal distance to the vertical axis of the Pyramid is 3652.42, &c., Pyramid inches. That is, when divided by 10,—the number of days

* Of three sets of measures of the heights of the masonry courses of the Great Pyramid given in "Life and Work," vol. ii., the best is that by M. Le Père and Colonel Coutelle; for, the one of them an architect and the other an engineer, they made themselves a special measuring apparatus for the occasion, and gave great attention to its use. Now Le Père and Coutelle's result for 35 courses is almost exactly 1162.6 Pyramid inches; the other two results are smaller, but may be safely put on one side for the present.
in the year; a grand physical fact which the profane Egyptians did not then know, nor any other men at that time on earth by their own knowledge. While, further, without any division at all, two straight lines are given to show the proportion of the circumference of a circle to its diameter; for $3652.42 \div 1162.60 = 3.14159$, &c., $= \pi$.

And finally, 11626.02, or ten times the height of the 35th course, or 100 times the length of the ante-chamber, represents the mean distance of the Sun from the Earth, in terms of that grand natural quantity Divinely set before the consideration of Job (see our Chap. IV., p. 62), "the breadth of the earth;" or its measure from pole to pole.

Nor is this the only instance of the ante-chamber's numbers, in Pyramid inches, distinguishing themselves in the proportions of the sizes and distances of those orbs of the solar system which most concern man. For the selfsame three curved hollows of the western granite wainscot, over and above the geometrical hint obtained from them on p. 158,—do also remind of something touching the celebrated problem of "the three bodies;" i.e. sun, earth, and moon in physical astronomy.

That grand branch of science does not, indeed, usually take account of size, only of mass (weight) reduced ideally to a point, of any celestial orb;—though the space throughout which such mass is distributed, must be everything in the daily practical question of man's life on his Divinely appointed terrestrial abode. Hence, although Mr. Chambers has collected in his "Astronomy" some very curious commensurabilities between the distances and diameters of Sun and planets, by the number of "108 nearly,"—they have not yet been much attended to in scientific society,—though they are facts in the celestial arrangements of the present period of universal time, and of extreme anthropological importance. They seem, moreover, to be alluded to in the ante-chamber by
the exact length of the remarkable vertical groovings of its south wall, shown on p. 150, to be close to 107·4 Pyramid inches long. Or they may be obtained still more accurately by the mean of the heights, corrected by theory on pp. 176 and 183, viz. 103·033 and 111·803, of the two granite wainscots; making 107·418.

A Representative Antagonist of the Modern Scientific Theory of the Great Pyramid.

But now, after so many confirmations, both large and small, furnished by the Great Pyramid itself (and there are more still, and of a higher class, to appear in our fourth and fifth parts), the reader may be possibly inclined to ask, "Who are the parties who still refuse to allow the force of any of these things; and persist in saying, that they see in the Great Pyramid merely a burial monument of those idolatrous Egyptians, who knew no accurate astronomy, and delighted in nothing so much as grovelling worship to animal-headed gods of their own invention, and idolatrous architectural memorialisation of bulls and goats, crocodiles, beetles, and almost every bestial thing?"

One of these unhappy recusants has, by printing a book, lately offered himself for description. He is an Oxford graduate and an Anglican clergyman, a country vicar, and a chaplain to Royalty. His book is a large octavo of travel in Egypt, already in a second edition; written throughout cleverly, fluently, scholarly, but in an outrageously rationalistic view of the most ultra-Broad Churchism; even to the extent of his holding the Biblical history of man, in all its miraculous features and limits of chronology, to be utterly false. The religions of Christ and Moses this author perversely maintains to have been in no way differently originated from those of Egypt, Greece, and Rome. They were each and all, with him, merely the best product, "the summa philosophia," of the
wisest men of their time, acting by their human wisdom alone, and composing systems of religion suitable to "the politics" of their own respective ages: as, too, he would now have the ablest men amongst us try to do again for these troubled and most unhinged times in which we live—times wanting, he says, a new religion, because, as he avers, that of Christ is no longer effective.

This, then, was the author who, starting for his Egyptian tour at six hours' notice only, tells us that he took no scientific instruments with him; and says, moreover, that he did not want them, as he has methods of philosophical observation overriding all science.

Thus, as to the almost endless series of mathematical and physical problems, in exact number, weight, and measure, contained in the Great Pyramid, this Oxonian graduate merely leant against the monument, with his hands in his pockets, and looking upward along its sides, declares that he got a far better notion of it in that way, than if he had made any number of instrumental and scientific observations; for, by that simple method of merely taking a look, he perceived with the greatest certainty then, there, and at once, that in place of there being any truth in all the unique numbers and mysteriously deep scientific things published about the Great Monument by the Scottish Astronomer Royal,—the whole edifice throughout all its building was nothing but an ordinary development of ordinary human nature in history. The Egyptians, he says, built the Great Pyramid at the time, and in the manner, they did, merely because they could not help it: it was the only way that occurred to them to build it, and there was no thinking spent upon it.

To argue with such a man would evidently be most hopeless; and I do not grieve over his aspersions of the Great Pyramid's science, for he has the same remarks ready for all science, and particularly for that of Cambridge. Gifted by nature with splendid parts for the
study of classical languages, but little or none for mathematics, this individual would, in and by himself alone, have probably acted a distinguished part in the world of literature, and would have modestly avoided exposing himself in science. But when he went to the Oxford University, and found that his classics alone were enough to gain for him there all the gross enjoyments of moneyed life, then that evil principle of egotism, or selfish pride, which enters so copiously into all large and wealthy human institutions, generally in proportion to their size, numbers, and wealth, induced him, as a privileged member of the great Oxford Corporation, actually to boast of his ignorance of, and perfect incapacity for, numbers of every kind and degree; and led him on all sorts of occasions to be even provokingly voluble in expressing his contempt for them.*

Hence, when such a one went to the Great Pyramid, and declared immediately, on his own mere ipse dixit, and without making any metrical examination whatever, that it did not contain anything to admire or respect out of the ordinary line of unthinking vulgar work—no matter what any one else had painfully and laboriously proved—the only parallel to it that I know, is that of the starving Red Indian smoking his pipe unconcernedly and most contemptuously near the mouth of a great anthracite coal mine in full and profitable steam-working in Pennsylvania. "Indian," said the missionary, "do you understand all this wonderful proceeding now going on in the country you used to hunt over?" "Yes," answers the Red-skin, "I do; Pale-face puts fire under big kettle, and up comes coal; Indian's plan better, he lie in the sun."

Enough, therefore, now, to conclude by remarking,

* That such a result need not be brought about, and is not, on every mind that enters Oxford, I need point to no more decisive and instructive proof than an admirable little book, entitled "Number: a Link between Divine Intelligence and Human," by the Rev. Charles Girdlestone, M.A., late Fellow of Balliol College, Oxford. London: Longmans & Co.
that if opposite extremes sometimes meet, they partly seem to do so in several of the opinions of the Oxford clergyman and the Scottish Astronomer Royal, though always with a difference. They both hold that the Egyptians spent no thought on the design of the Great Pyramid, and built it because they could not do otherwise at that time; but in the reasons why,—the Astronomer puts in for the first, because others than Egyptians supplied the high and noble thought; and for the second, because an influence went forth by Divine inspiration which compelled the idolatrous and wilfully Cainite Egyptians to perform a prescribed task for the sacred and prophetic purposes of the very God whom they had rebelled against.

While if the clergyman—treading lamentably close in his ideas to what another clergyman deduced years ago, from the prophecies, was to be the religion of the final and chief Antichrist, in the days shortly to come*—considers that a new religion will soon take the place of that of Christ as hitherto taught by the Churches out of the New Testament, so does the Astronomer too. But with the addition, on the part of the latter, that the new religion will not be any invention of a few clever Oxford men, strong in human school learning; but, after the overthrow which will take place of all enemies, the establishment of a larger and more glorious phase of Christianity itself; to be inaugurated by the Divine Founder thereof, in perfect conformity to God's intentions from the beginning of the world, and explanatory of some of the deeper things in the Scriptures long since Divinely confided to man.

The Astronomer, however, asks no one to take his mere opinion. If the facts which he has to unfold, work no conviction; neither will, nor should, all the words of persuasion which he could possibly utter.

PART III.

NATIONAL WEIGHTS AND MEASURES, AND ALSO THOSE OF THE GREAT PYRAMID.

ISAIAH XLIII. 9.
CHAPTER XI.

BRITISH METROLOGY.

WHEN Magna Charta first ruled the British land,—both in thoroughness of spirit and completeness of intention with those immediately concerned,—a ray of metrological wisdom and a beam of light from some far-off horizon in the history of the human race, shot momentarily athwart the troubled scene of our national weights and measures.

Those institutions had existed from the earliest times known to our literature, an heirloom among the Anglo-Saxon peoples; and a late first-rate American writer, as well as statesman (John Quincey Adams), equally claiming with ourselves to be descended from that ancient stock, but without any necessary prejudice in favour of the wisdom of modern British Parliaments, has expressed a very firm conviction that the most perfect condition of those weights and measures, even including all that was done for them by modern savants under the reign of George IV., was in the earliest known times of Saxon history; and connects itself much more with an ancient Royal residence at Winchester, than a modern one in London or Windsor. It may have been earlier still; and the old, ancestor-descended system had already fallen into such republican, many-headed confusion in the times of King John, that his then new Charter, to the joy of all men, said that in future there was only to be one standard
of measure throughout the land;* while, to render that
principle a possible one to carry out in practice, wisdom
counseled, and ancient Saxon practice reminded, that
grand standards both of length and weight should be
immediately constructed, and copies thereof dispatched to
tall parts of the kingdom.

But what followed?

Those standard measures, if ever made, were lost; no
copies were sent to country districts; the Magna Charta
lawyers trusted in words only;† and then came a certain
very natural consequence.

Practical weights and measures are not only of interest,
but essential importance to all classes of the realm: for,
as was well said years ago, all the productions of land and
labour, of nature and art, and of every concern and con-
dition of life, are bought, sold, or estimated by them.
Hence, weights and measures have been very properly
defined as the foundation of justice, the safeguard of pro-
erty, and the rule of right; while the laws of honour
peculiarly abhor any fraud in this respect. Yet withal,
says the same authority, it is to the common people, in
every country, to whom the business of weighing and
measuring is almost exclusively committed. Whence, in
part, by evident necessity it comes, that weights and
measures are primarily affairs of the practically labouring

* "Measures are wanted for two distinct objects, the commercial and
the scientific. The wants of natural philosophy have grown up within
the last two centuries; while so early as Magna Charta it was one of the
concessions to the grievances of the subject that there should be one
weight and one measure throughout the land," says the late Lord
Brougham's chief educational authority; not knowing, however, that the
epoch of Magna Charta, instead of being primeval, is very middle-aged
indeed, in the real history of British weights and measures.

† A.D. 1215. Magna Charta, sect. 35:—
"There shall be but one uniform standard of weights, measures, and
manufactures; that for corn shall be the London quarter."
"Magna Charta," says Dr. Kelly, in his "Metrology," 1816, "points
out the quarter of London as the only standard for measures and weights
of that time, but we are left to guess of what measure or weight it was
the quarter part."
classes, of the poor, and those who with their own hands do the daily work of the world.

Their weights and measures too, to be fully useful, must suit the working-men, just as naturally as the mother-tongue is felt to do in after-life; for who is there, unless experienced in practical matters himself, who knows how suddenly and immediately, in many of the constant affairs of the working world, an unexpected exigency occurs; when, without books, or scales, or balances, or compasses, the labouring man, whether sailor or coal-miner, whether agriculturist or engineer, has to look some natural danger in the face; and his only hope of plucking the flower, "safety," from the event, is in his then and there instantly concluding, without instrumental assistance, without time for serious thought or metrical examination, upon a nearly correct estimate of some measure of weight, or length of space, or strength of material, or angle of slope, before the catastrophe arrives?

So what was the consequence when the restored king and government of A.D. 1215, having got the rule of the country once again into their power, did not send the promised standards to every town and village in the land? Why, every town and every village began in self-defence to make standard measures for themselves in their often very isolated provincial communities.

Within a certain range, that was tolerable enough; because all those earlier examples pro tem. were more or less closely founded on, or were tolerably representative in some way or another of, the original Saxon standards, and were named with short, pithy names derived from the same effective language; but after that first beginning of going a little astray, then as civilisation progressed, wealth asserted its interests too powerfully; the tendency arose to substitute legal deeds in place of material examples; and lawyers were always attainable, to frame any number of
acts of parliament to secure rent and taxes being drawn from the working poor in any and every denomination; but to prevent their deriving profits from their work, unless a statute standard was rigidly adhered to by them.

Unfortunately, however, the powers that were, went on framing their acts of parliament without either defining, actually making, or identifying any such standard. The taking of practical scientific steps really to do that, seemed to men of Oxford education and all schools of both classic literature and high mental philosophy, a base mechanic operation, which their ethereal line of studies placed them far above the level of. It was a drudgery they would not submit to; and even up to the other day (1814), when at last it was impressed on the governing bodies, too exclusively drawn from the English Universities, that, in the material matter of weights and measures, there must be material standards,—they grandiloquently appointed a yard, which was to bear a certain proportion to a second's pendulum of a specially named and legally described scientific order,—but what length that pendulum was of in very fact, they did not know and did not inquire; for they said "any expert watchmaker could ascertain that;" and yet up to the present time neither watchmaker nor philosopher, nor government official of any kind or degree, has fully succeeded in that little, but found at last to be a transcendentally difficult, problem.

So the confusion of weights and measures only grew worse in the kingdom, and the fault was attributed to the wrong parties, or the working-men; as when a Parliamentary Committee reported in 1758, that of those uneducated beings, but who had hitherto borne all the toil and burden of the work, only a few of them were able heretofore to make proper measures or weights; standards were carelessly made and destroyed as defective, and the unskilfulness of the artificers, joined to the ignorance of those who were to size and check the weights and measures, occa-
sioned all sorts of varieties to be dispersed through the kingdom, which were all deemed legal, yet disagreed.

Other independent-minded persons, however, ventured to report, and perhaps more justly, that another cause of this confusion was "the prodigious number of acts of parliament, whereby the knowledge of weights and measures became every year more and more mysterious." In 1823 it was stated by Dr. Kelly, in his examination before the House of Lords, "that there had been upwards of two hundred laws enacted without success in favour of conformity, and five hundred various measures in defiance of those laws." Both sets of acts of parliament, too, were in opposition to that law of the practical nature of things, which ordains that everything in connection with weights and measures shall be done in direct reference to material examples thereof.

But, in 1824, a standard yard and a standard pound were at last deposited in the House of Commons; and the Legislature enjoyed the advantage of having a moderately accurate example before them, of the practical thing they were legislating about. This pleasure, however, only lasted about ten years; for in October, 1834, both yard and pound perished in the Great Fire which consumed the two Houses of Parliament.

Then was made another lamentable attempt to get on without any standards at all; to collect revenue by the threat of a standard, and yet have no standard to refer to. Lawyers, therefore, had it all their own way in this pleasant fiction; and in an act of parliament (5 and 6 William IV. c. 63), which passed both assemblies in the following year, "the standards were referred to as if still in existence, and quoted as authorities to be appealed to on every occasion, although they had been actually destroyed a twelvemonth before, and no other standards submitted in their stead."
Both Houses of Parliament certainly appeared to have been wholly ignorant of this actual non-existence of the objects on which they were legislating; and Government itself was not aware of the state of ruin and neglect into which certain other standards, more hereditary than legal, had fallen into, in their own Exchequer Office.

In 1742, when some inquiries were set on foot by both the Royal Society of London and the Paris Academy of Sciences, those Exchequer standards (one of them an ell, and the other a yard, of the time of Queen Elizabeth), were then in a respectable condition, and seemed to be treated with attention and care, by the high officers and clerks of the establishment. But no one had heard of them again for a long interval. And when their habitation was at length revisited in 1835, to see the only real foundation on which the government of good King William was then legislating, Mr. Baily reports of the then single standard shown to him, the Elizabethan yard,* "that it was impossible to speak of it too much in derision and contempt. A common kitchen poker, filed at the end in the rudest manner by the most bungling workman, would make as good a standard. It has been broken asunder," he writes, "and the two pieces have been dovetailed together, but so badly that the joint is nearly as loose as a pair of tongs. The date of the fracture I could not ascertain, it having occurred beyond the memory or knowledge of any of the

* Since the above was written, an unusually good parliamentary report has appeared, drawn up by Mr. Chisholm, chief clerk in the office of the Comptroller-General of the Exchequer, on "The Exchequer Standards of Weight and Measure;" mentioning a yard rod, a gallon, and two bushels of Henry VII.; a yard measure and an ell, together with pints, quarts, gallons, bushels, and troy and avoirdupois weights of Queen Elizabeth, besides several other weights and measures of the early Norman kings, and not regarded as standards.

+ Of the above Exchequer standards, so called, the yard rod of Henry VII. is that which was expressly stated, in 1743, to have been for a long time disused as a standard; the ell rod of Queen Elizabeth is that which also dropped into disuse between 1743 and 1835; while the yard rod of the same queen is that which was reported on by Mr. Baily to the Royal Astronomical Society in 1835, as horrible in workmanship, and with its length shortened by a dovetail.
officers at the Exchequer. And yet, till within the last ten years, to the disgrace of this country, copies of this measure have been circulated all over Europe and America, with a parchment document accompanying them (charged with a stamp that costs £3 10s., exclusive of official fees), certifying that they are the true copies of the British standard."

These are severe remarks; and yet partly help to answer the noted difficulty which Dr. Kelly found himself confronted with, after all his historical researches up to his own time; viz. that in England there is nothing that has a greater tendency to grow worse, or, curiously enough, more obstinately resists improvement, than weights and measures. Yet the Exchequer itself has indicated the full truth of Mr. Baily's critique, by publishing the Astronomer Royal's very similar views; first, on the error in the general theory of British legislation on the subject of standards, as shown in "the entire apathy on the part of Government towards the matter, whereby it acts only when pressed by popular demands;" and second, the error in the practice of the British Executive, which is, within its functions, not much unlike the above.

Since then, however, some members of her Majesty's Government have advanced in metrological knowledge: a new office has been created for weights and measures, furnished with princely apartments, numerous assistants, a large revenue, and placed under a chief, with the title of "Warden of the Standards." Hence too, a gentle current of interest has so decidedly begun to flow towards the subject, that one or two of the oratorical leaders in politics have encouragingly intimated, that when that current shall have become still stronger they may then find it worth their while to utilise its motive power for their own purposes, and perhaps at the same time consider what can be done for, or with, our British hereditary weights and measures.
Too late! too late! for while these politicals were selfishly dallying with their national duties, a mine has been sprung beneath their feet. The merchants and manufacturers of the country, with a section of the scientific men, chiefly of the electrician and chemical stamp, have burst into the arena, and declared that they cannot wait for the slow improvements of Government. The creed that they almost worship consists in "buying in the cheapest, selling in the dearest, market," and making money with the utmost speed!* and as they fancy that the further and indefinite extension of their operations receives a momentary check in some foreign countries, by the different metrological systems there and here,—so immediately, without allowing the mass of the population to have a voice in that which is their affair, which is as ancient and necessary to them, the people, as their very language, and all their other national and hereditary institutions; and without considering whether, by breaking down the barriers between France with Frenchified countries and ourselves, they may not be raising up other obstacles between ourselves as so altered, and Russia, America, and Australia,—they, these new intruders into the metrological scene, are selfishly calling out and loudly demanding that French weights and French measures shall be instantly adopted by force of law from one end of Great Britain to the other; under pains and penalties, too, of the most compulsory order, to be enforced at all risks by a new and special description of highly paid officials to be appointed for that sole purpose.

In the midst of such a headlong pursuit of mere wealth,—as this unprecedented throwing overboard of the pre-historic possessions of our nation, for such a purpose, would be,—the poor are unfortunately the first to go to the wall. They may have been somewhat curbed and bridled in past times by kings and barons and government ser-

* See Mr. John Taylor's work, "Wealth the Number of the Beast."
vants,—but what is that to the oppression of merchants and mill-masters hasting to be rich, and freely sacrificing thereto any patriotic sentiments or historical associations which their mere "hands" may presume to indulge in?

The Committee were indeed told, from the reports of the Astronomer Royal and elsewhere, "that the said forcible introduction of foreign weights and measures into Great Britain would be to the excessively great inconvenience of 9,999 persons out of every 10,000 of the population, and the gain to the one person in 10,000 only small; and that any interference of Government for compelling the use of foreign measures in the ordinary retail business of the country would be intolerable; that they could not enforce their penal laws in one instance in a thousand, and in that one it would be insupportably oppressive." Yet all the effect that this wise, and truly charitable information produced on the merchants of Quaker professions and peace principles was, "to look forward to a comprehensive and exact system of inspection, and the establishment of an efficient central department to give force and unity to local action." In fact, for a few Englishmen to act in Great Britain, like a German army in undisputed possession of a foreign country; and put down at all costs, amongst the British people, any national feelings for certain historical institutions of their own; for things which, however they may have been meddled with in petty ways by modern acts of parliament, are still substantially the same as those which the origines of the nation received, the nation itself does not know how, or where, or exactly when; though they are fully aware that they have possessed them as long as they have been a nation at all; and they, the mass of the working people, understand the outside, physical world familiarly, intuitively, only in terms of them.

Thus far, nearly, was written in the first edition of this
book, published in 1864; but now, in 1877, what is the state of matters?

Well, their condition is surely most passing strange; for, bill after bill has been brought into Parliament, agitators have been at work throughout the land, defec­tions from the national cause have occurred by the thou­sand; and men who a few years ago gave the most splendid testimony that to force foreign measures on the British people would aggravate them to the extent of civil war, those who in an earlier state of society would have died rather than abandon their best opinions and most patriotic creeds,—have now been signing propositions on the other side; and even assiting in putting up at the Palace of Westminster, side by side, copies of the British and French standards of length, as though the Govern­ment of France ruled already over half of the British people;—and still the change of weights and measures has not really taken place yet.

Other renegades, encouraged too by some of the chief scientific societies in London, have been publishing new text-books in science for, if possible, all the colleges in the empire; in which books, though the authors still condescend to use the English language, they scorn to be loyal to the English authorised weights and measures; but speak of everything in the heavens above and the earth below in the new French metrical terms; which, almost heathen expressions, they seem to have sworn together they will make the people of this country accept, whether they like them or not.* While in the elementary schools which are now springing up under Government

* In the letters which have appeared in Nature, from H.M.S. Challenger's scientific expedition, carried on at an expense of not less than £20,000 a year, for four years together, to the British taxpaying people, those contemned and much-suffering individuals have the distances steamed over by their British ship, by means of British coal, described to them in kilomètres; and even a little shapeless piece of chalk, brought up by the dredge from the ocean-bottom, is defined for size to British readers by being recorded in minute fractional parts of a mètre.
School Board management all over the country, teachers are urged from some secret quarter to take time, with its expected political changes, by anticipation, and teach all the children within their reach at once the French weights and measures; or when they cannot do that, to have some printed representation of the French system suspended in sight, as though it were soon going to be the law of the land;—but yet the change has not been allowed.

More threatening still were the proceedings of the late Gladstonian Government; for if they did advise Mr. Benjamin Smith to withdraw his Parliamentary pro-French-Metric Bill in 1873, it was under the promise that they would bring in a bill themselves in 1874-5. They had already, under the headship of the Duke of Argyll in the India Office, introduced the Anti-British metrical system into India, in the most sweeping fashion of thorough-going revolutionists, by arbitrary and unprecedented enactments; * and now, apparently they conten-

* I have before me, in a pamphlet printed in Calcutta in 1871, a copy of "The Indian Weights and Measures Act, xi. of 1870:"

Head 1, declares, "This act may be called the Indian Weights and Measures Act, 1870, and extends to the whole of British India."

Head 2, declares, as to Standards:

That the primary standard weight shall be one which "when weighed in a vacuum, shall be equal to the weight known in France as the Kilogramme des Archives:"

That the primary standard of length shall be called a mètre, and shall be a distance on a rod of metal, which, "when measured at the temperature of melting ice, is equal to the measure of length known in France as the Mètre des Archives."

The unit of measure of capacity shall be a measure containing the equivalents of one French Archives' kilogramme "of water at its maximum density, weighed in a vacuum."

Head 3, treats of "the use of these new weights and measures."

Head 4, of "Wardens" to be appointed to attend them.

Head 5, of "Penalties:"

Writing now, in 1877, I am told that this system is not yet fully in force, that it never can be enforced without, at least, a frightfully overpowering increase of our army and police; and that, in so far, it has only added another element to the difficulties existing in India before.

What the expense has been on the part of Government, and the com-
planted doing the same thing for the British people themselves. But to have extra power wherewith high-handedly to force French weights and measures down the throats of a free British people, Mr. Gladstone not only appointed himself Chancellor of the Exchequer as well as Prime Minister, but must needs also go to the country for a greater Parliamentary majority than that he already had. He went; and now we all know how completely he was overthrown, his opponents coming into power instead.

This culminating case almost opens up a possible view of whence came the controlling influence which caused all the former bills before Parliament to fail. They were broken without hand; and no one at the time saw why. Certainly they were not defeated by any visibly sufficient efforts of men. For though two good speeches were delivered against the last bill, what were they to the torrent of declamation on the other side,—claiming, too, to be the side of liberal opinion, of modern science, of political advance, of mercantile wealth, of organized industries, of all civilisation, and indeed of everything but—nationality, history, and religion.

Those three ought, of course, to be a powerful trio; but the two latter of them were not invoked in Parliament at all. Indeed, they were apparently not understood by either party as belonging to the subject, though they inevitably must be allowed their due place in its discussion before long; so that whatever political ferment has been made hitherto by the metrological question, it is nothing to what will come.

Just now, or up to the present time, the fight has merely been between the would-be introducers of the new

plaints of the 300 millions of the Indian people in their own homes at the heartless experiment of a few doctrinaires in London being tried off upon them,—referring them, in the tropics, to the temperature of melting ice, and at the sea-level base of the whole atmosphere to a vacuum, for testing their new and alien standards,—it would be instructive indeed to ascertain,
French metric system, and the defenders of the British national system as it is. These latter men will have no change, simply because they dislike all change; and have been getting on after a fashion, they think, well enough hitherto. But they cannot expect on those principles to have the victory in future fights always given into their hand: especially when they can neither pretend to prove that the existing British metrology is everything that it might be to suit the advanced wants of the present high state of civilisation; nor demonstrate that it is still, all that it once historically was, in that primeval time when the system was first given as an heirloom to the Anglo-Saxon race, before they came to these islands.

When writers of the Georgian era are found complaining that through all our modern history, our weights and measures had always been growing worse, rather than better,—strange that none of them should have risen to the necessarily resulting idea that at some primeval age, they must have been of strange and even surpassing excellence. And yet such appears to have been the actual fact. Nor is it any detraction from the intrinsic merits of those early weights and measures to have it now suggested, that they were then adapted to one nation only; whereas the present day desires a cosmopolitan set of weights and measures, no matter what their origin, in order that they may be equably used and referred to by the scientific men of all nations, the bulk of the people in every country being left with their hereditary weights and measures untouched; for the whole of this idea is, in principle, a mere resuscitation of a cruel fallacy of the Middle Ages; viz. to try to keep up Latin as a common language among all scientists, whatever language their poor fellow-countrymen might speak. A suicidal fallacy too; because it was found in practice infinitely more important, patriotic, and charitable, as well as successful in science also, for each scientific man to have no secrets, no mysteries from the masses of
those poor, but often most religiously minded men around him; his own countrymen; and whose friendly encompassing of him in that manner, was the very source of the quiet and leisure and command of means which he enjoyed for the prosecution of his peculiar studies. Wherefore the first professor who gave a scientific lecture in the vulgar tongue in a German university, was rightly held to have made almost as precious, useful, and fruitful a reform, as that truly Christian priest who began the system of publicly praying, and reading the Scriptures, in the language of the people.

There is, indeed, something to be said for a little regulation of the details of weights and measures coming from the side of science; but, as for the mass of the question, the people were in the field before science. Neither is it in the power of any scientific men, with all their science up to its very latest developments, to invent a truly national set of weights and measures, any more than they can make a national language and a national people.

Before the Flood, according to the Bible, there was no division of mankind into nations; that was a Divine appointment afterwards, together with the creation of their tongues, the appointment of their bounds, and, there are good reasons for believing, the assignment of their weights and measures. And if that was the case, a direct and intentional effort by men to subvert them now entirely, is not likely to succeed, however many scientists put their shoulders to the wheel.

But the French metrical system, in its acts and ambitions, is precisely such an attempt in these days to dethrone the primeval systems of weights and measures amongst all nations; and make all mankind speak in future in that new and artificial metrological language, invented only eighty years ago in Paris. And if there is
sound reason for believing in the Divine appointment of the ancient systems,—and also, that one of the engines and methods of the final and chief Antichrist in destroying the salvation of mankind, is to induce them to set up human associations in the latter day in opposition to the revelations of God’s will,*—this new antagonistic met­ro­logical system ought to have been ushered in under some very evil influence.

How, then, was it brought to the light of day?

By the wildest, most bloodthirsty, and most atheistic revolution of a whole nation, that the world has ever seen. And, attempt to conceal it as they may, our present meek-looking but most designing promoters for introducing that very French system amongst us cannot wipe out from the page of history, that, simultaneously with the elevation of the metrical system in Paris, the French nation (as represented there), did for themselves formally abolish Christianity, burn the Bible, declare God to be a non-existence, a mere invention of the priests, and institute a worship of humanity, or of themselves; while they also ceased to reckon time by the Christian era, trod on the Sabbath and its week of seven days, and began a new reckoning of time for human history both in years of their then new French Republic, and in decades of days, so as to conform in everything to their own devised decimal and metrical system, rather than to Revelation.

Mere human telling, in the first edition of this book, was not enough to remind our British metrical agitators of those fearful things: so they have had them, not sounded again only, but repeated too in fact, within the two years following the Franco-German war, in blood and fire and blackest of smoke throughout the same city of Paris,—when the Commune, on getting for a time the upper hand, immediately re-established

the Republican era as against the Christian, and declared war against every traditional observance and respect of man. While since then, the still more savage and merciless proceedings of the Spanish Commune, wherever it has had an opportunity of rising in their cities, shows that the heart of man, unregenerated in Christ, is no whit better in the present day than at any epoch throughout all antiquity.

Now, perhaps,—and without pursuing any further this historic part of the subject of weights and measures, which, though as old as Cain and Seth, if not Abel also, is by no means yet played out on the stage of time,—it may be given to a favoured, predestined few, to begin to understand, on a figure once used by Dr. Chalmers, what extensive armaments of what two dread opposing spiritual powers may be engaging in battle around our little isle, contending there—on this subject, too, as well as many others—for mighty issues through all eternity. So that not for the force of the sparse oratory emitted in defence of British metrology before Parliament, were the bills of the pro-French metrical agitators so often overthrown, but for the sins rather of that high-vaulting system itself; and to prevent a chosen nation, a nation preserved through history thus far by much more than the wisdom of its own native rulers, and for more glorious purposes than have ever yet occurred to them,—to prevent that nation unheedingly robing itself in the accursed thing, in the very garment of the coming Antichrist; and Esau-like, for a little base pottage, throwing away a birthright institution which our Abrahamic race was intended to keep until the accomplishment of the mystery of God touching all humankind.

A very close approach to the dangerous cliff was made only a dozen years ago, when the Government's own Standards Commission, not content with the yard in place of the inch being pronounced a new British unit, must
also propose to drop the original inch entirely; inventing new names for multiples of 1,000 and 2,000 of their new unit yard, to take the place of the British mile; and subdividing it again as a concrete quantity into a totally unheard-of set of small lengths, such as neither we nor our fathers ever knew, to supersede and obliterate what have hitherto well served all the smaller, and most of the exact, purposes of Anglo-Saxon life and existence.

But happily the Commissioners' hands were stayed; and one of their number—the highest approach to the ideal of a philosopher since the days of Newton whom this country has produced, the late Sir John Herschel—was presently gifted to see, that of all the various length-measures now on the statute-book, the inch (which was then in such imminent danger) is by far the most really important, because the true and original unit and source of almost all the others. This idea too seemed continually to grow in Sir John Herschel's mind. For, through the inch, and water, he perceived that all the British weights and measures might be easily made (once again perhaps) most scientifically earth-commensurable; and without the popular value of any of the chief units or standards, or even their names, being interfered with.

That grand principle, too, of earth-commensurability, or that there should be a complete and harmonious scale of round, and even, numerical relations connecting the small units employed by man in his petty constructions on the earth, with the grander units laid out by the Creator in the sky, Sir John Herschel stood up splendidly for: and argued and wrote for the glorious idea really belonging to British metrology, in various parts of the country; but in vain! His colleagues on the Standards Commission could see no beauty nor desirability in that which he esteemed so highly: unless it was those of them who claimed something of the same earth-commensurable principle, though in a less perfect form, for the French mètre: and they
wished to abolish the entire British system. So after doing all that he could to convince, demonstrate, persuade, with the effect only of finding that the majority were determined to sacrifice everything British to France, he took the only final course for a great and honest man to take—he gave up what had been an honour to fifty years of his life, his place at the Standards Commission, his prospects of power or influence in government appointments,—and went out from amongst them all, alone; lowered, perhaps, in the eyes of many; but raised in his own conscience, and nobly nerved to carry on the battle single-handed, in the open world outside, against the pro-French metrical mania of the day. That mania, a strange intellectual disease which Sir John Herschel (the equal to whom, not Cambridge herself could show at the greatest of all competitive mathematical examinations) deemed not only anti-national, but, in spite of all that is so frequently said for it, not of the highest order of science either.

This was a case indeed of a scientist who would willingly suffer in place, power, and worldly social dignity, for opinion; and did so:—a man, therefore, in whom a great nation might trust when any dire emergency should arise; and who, when the last pro-French metrical bill was about to be urged before the House, came to the defence of his country's cause with the following letter to the Editor of the Times:—

"Sir, "As Mr. Ewart's Bill for the compulsory abolition of our whole system of British weights and measures, and the introduction in its place of the French metrical system, comes on for its second reading on the 13th proximo, I cannot help thinking that a brief statement of the comparative de facto claims of our British units and of the French on abstract scientific grounds may, by its insertion in your pages, tend to disabuse the minds of such, if any, of our legislators who may lie under the impression (I believe a very common one among all classes) that our system is devoid of a natural or rational basis, and as such can advance no a priori claim to maintain its ground. "De facto, then, though not de jure (i.e. by no legal definition existing in the words of an act of parliament, but yet practically verified in our
parliamentary standards of length, weight, and capacity as they now exist), our British units refer themselves as well and as naturally to the length of the earth's polar axis as do the French actually existing standards to that of a quadrant of the meridian passing through Paris, and even in some respects better, while the former basis is in itself a preferable one.

"To show this I shall assume as our British unit of length the imperial foot; of weight the imperial ounce; and of capacity the imperial half-pint; and shall proceed to state how they stand related to certain prototypes, which I shall call the geometrical ounce, foot, and half-pint; and shall then institute a similar comparison between the French legally authenticated mètre, gramme, and litre in common use with their (equally ideal, because nowhere really existing) prototypes supposed to be derived from the Paris meridian quadrant, distinguishing the former as the practical, the latter as the theoretical, French units.

"Conceive the length of the earth's axis as divided into five hundred million equal parts or geometrical inches.

Then we will define:—1. A geometrical foot as twelve such geometrical inches; 2, a geometrical half-pint as the exact hundredth part of a geometrical cubic foot; and, 3, a geometrical ounce as the weight of one exact thousandth part of a geometrical cubic foot of distilled water, the weighing being performed, as our imperial system prescribes, in air of 62° Fahr., under a barometric pressure of 30 inches.

"In like manner the theoretical kilogramme and litre of the French are decimally referred to their theoretical mètre on their own peculiar conventions as to the mode of weighing.

"This premised—(1) the imperial foot is to the geometrical in the exact proportion of 999 to 1,000 (nine hundred and ninety-nine to a thousand), a relation numerically so exact that it may be fairly considered as mathematical; and (2) and (3), the imperial half-pint and ounce are, each of them, to its geometrical prototype as 2,600 to 2,601.

"Turn we now to the practical deviations from their theoretical ideals in the case of the French units. Here, again (1), the practical mètre is shorter than its theoretical ideal. The proportion is that of 6,400 to 6,401. The approximation is, indeed, closer, but the point of real importance is the extreme numerical simplicity of the relation in our case, more easily borne in mind, and more readily calculated on, in any proposed case. (2) and (3). Any error in the practical value of the mètre entails a triple amount of aliquot error on the practical kilogramme and litre, so that, in the cases of these units, the proportion between their practical and theoretical values is not that of 6,400 to 6,401, but of 2,133 to 2,134. Here, then, the greater degree of approximation is in our favour: and it is to be observed that in our case this triplication of error does not hold good, since, by a happy accident, our standard pound has been fixed quite independently of our standard yard, and our gallon is defined as 10 lbs. of water.

"I am, Sir, your obedient Servant,

"J. F. W. HERSCHEL.

"COLLINGWOOD, April 30th, 1869."

This is very clear so far: but its able author did not go far enough. For while his grand fountain and source of earth-commensurability for the British measures was based,
even by him, upon, not the foot, which he ultimately used, but the inch, being an evenly earth-commensurable measure, and by the particular number of fire hundred millions of them,—yet he afterwards drops out of view both the inch, the fire times of so many parts, and says nothing about his new cubit standard, which he was at that very time proposing for the British nation, and prescribing that it should consist of 5×5 of those inches, in place of the nation's present yard of thirty-six inches. Nor does the eminent astronomer attempt to show that either the earth-commensurability or the terrestrial fiveness of the British inch was anything more than accidental. At all events, he does not explain how, or when, or through what, or by whom, that unit first came about; and though he alludes to English history as far back as any printed acts of parliament may extend, he shows no faith capable of tracing the fortunes of our nation back, and still further back, even up to those dim periods of primeval story where the Bible is the only book worth consulting.

Perhaps it was well, though, that Sir John Herschel stopped where he did: for time is required to enable mankind at large effectually to receive the whole of any very new idea; and had he, the most brilliant representative of modern exact science, gone on further still, and been the propounder of the Great Pyramid Divinely inspired source of the wisdom long latent in our ancient measures: and announced that they had been monumentised in the early Siriad land before history began, but yet in the most perfect earth and heaven commensurability, and in a manner never known to the profane Egyptians; —the sceptical modern world would hardly have consented to believe, but that the excellences of such a system were Sir John Herschel's own transcendent inventions; and had arisen much more through his brilliant grasp of modern academical science, than by any simple readings in that primeval stone-book of Revelation which still
stands on the Jeezeh hill, ever open, though hitherto illegible, to all mankind.

But for John Taylor, who never pretended to be a scientific man, to propound the grand idea;—and for the Scottish Astronomer, with scarce pay enough to exist upon, and only a few old instruments, though in a so-called Royal Observatory (but of an ancient kingdom treated very lightly now in London Government offices),*

* As this page, in proof sheet, is actually being looked over by me for press in Lisbon, where I have come at my own expense, to make certain solar observations with a spectroscope constructed also at my own cost (simply because the Royal Observatory, Edinburgh, has nothing of the kind at all worthy, and all my applications to Government for means, through years and years past, have been in vain)—there is no harm, and there may be some seeds of instruction in stating, that the little, but happily independent, kingdom of Portugal, over and above its other Government Observatories here, for Meteorology on one side, and Educational Astronomy on the other,—neither of which kinds of Observatories Edinburgh has at all,—is now erecting, in a park to the west of Lisbon, an Observatory for pure and high Astronomy alone; and which will be, as measured by the mere cost, some six times, and by other auxiliaries some ten times, more powerful than the one similar Royal Astronomical Observatory of Scotland, in Edinburgh.

Does that nobler appreciation and fuller establishment of high Astronomy in the Portuguese than the Scottish metropolis, arise from Lisbon being the capital of, though a very small, yet a still free and independent kingdom; and Edinburgh being the capital also of a small kingdom, but one which has lost its former magnificent independence; and being now annexed to a greater kingdom is ruled from London, the capital of the latter, where Scottish interests and Scottish glory are looked on with an alien eye?

Let the following grand Portuguese experience speak, in these days of admired Pan-Slavism, for the good of all mankind:—

When Portugal, say from 1100 to 1580 A.D., was free, though ever so small as a kingdom, she discovered all the Western and Southern islands, coasts, and chief interior features of Africa. She transcended also all the great nations of classic times in extending navigation from the little circuit of "the Mediterranean lake," to the grand expanse of the wide round world; and not only discovered the ocean-way to India on one side, and the existence of Brazil on the other, but established colonies, almost empires, of her own, in both those countries.

But when, after such excelsior deeds, by which, too, all the world has profited since then, the brave little kingdom of Portugal was annexed, in times of political conflict, to the greater kingdom of Spain, from 1580 to 1640 A.D., and ruled from Madrid,—what then became of Portugal and her foreign possessions? Were they better looked after, more powerfully governed, and more safely defended by the stronger Government of the greater country?

Not a bit of it. Almost all of those splendid Portuguese possessions were, in the course of a few years, allowed by Spain to be wrested away,
at his hand both for professional work, and to follow up the Great Pyramid clue—was, and is, quite a different matter. Such plan was, indeed, hardly other, than to let the stones of the Great Pyramid themselves cry out to a heedless generation.

But, oh! how effectively they cry for the few who will, and do, give heed to them! Only see how satisfactorily, in our Part I., the Great Pyramid's first and simplest mechanical features have helped us over Sir John Herschel's enormous, and by him never solved, difficulty of explaining why there was more meaning in the unit inch going fire, rather than any other number of hundred million times into the length of the earth's axis of rotation. Let the reader presently judge, too, how similarly gleaned Pyramid facts will enable us to assign a date, a place, and an origin to the whole system, capable of demanding the respect of all men, scientific and unscientific alike: on a far higher footing, moreover, than anything that can be said for all the works of the philosophers of Greece, the poems of Homer, or the reputed wisdom of the Egyptians themselves.

either by Indian natives or European governments, and so to be lost to Spain as well as Portugal. While the latter country made no more scientific discoveries after that, of international and historic importance. Now, Portugal is free once again; and though without her former immense tropical empires,—yet, as we have seen in Astronomy, gives probably twelve (12) times as much to observational science of all kinds, in Lisbon,—as what London allows to Scotland for the same purposes in her ancient and royal metropolis of Edinburgh.

That melancholy case has been unhappy much misunderstood hitherto, even in Edinburgh itself; and in large part owing to the officials of the Edinburgh University, an enormous and overbearing local institution, striving to get the little Royal Observatory there lowered by Government into an educational affair, in order that they may then appropriate it, as belonging to the scheme of themselves as a teaching and "lecturing Professorat." But now they are, in their turn, beginning to write under a similar inflection, mutatis mutandis, to what the poor Royal Observatory, on the Calton Hill, has suffered under so long; for a single English minister, Lord Salisbury, has by a stroke of his pen, which he refuses to withdraw, practically excluded for the future all Scottish University students from hope of place in the grand Anglo-Indian Empire; though that is an empire which Scottish brains and Scottish hands, both in peace and war, so much aided England in acquiring !!
CHAPTER XII.
CAPACITY MEASURE.

THE grand standard of capacity in the Great Pyramid, as already stated, is given by the contents or internal cubical measure, of the granite coffer at the further, or western, end of the King's Chamber; and that the crowning apartment of the whole of the interior of the gigantic monument.

But the said coffer is loose, isolated, standing on a flat floor without any guide-marks to show how it should be placed, and without the smallest hindrances (except its prodigious weight) to prevent it, in its present lidless condition, being pushed about anywhere, even through the doorway, down the long passages, and out of the Pyramid altogether, except for the contraction of one passage-way, at one particular point; viz. the first ascending passage at its lower commencement.

Even that fact too was recently disputed, for some one had said, in spite of my measures in "Life and Work" to the contrary, that there was a quarter of an inch to spare. But Dr. Grant of Cairo, accompanied by Mr. Waller, a medical man of the same place, specially looked into that matter in December, 1873, and settled it there and then by direct and immediately successive measures, with the same scale on both the passage breadth at the indicated place, and the breadth of the coffer-vessel; Dr. Grant reporting the case as follows:—
"The result of my measurement confirms yours: viz. the coffer in the King's Chamber, although turned straight into the axis of the first ascending passage, could not have passed the whole way along it.

"Lower End of Ascending Passage, Measured Close to North End of Portcullis, in British Inches.

<table>
<thead>
<tr>
<th>Description</th>
<th>Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breadth from east to west, across top, or north edge, sensibly the same as the breadth of the passage itself at that point</td>
<td>38.38</td>
</tr>
<tr>
<td>Breadth across middle</td>
<td>38.44</td>
</tr>
<tr>
<td>Breadth across bottom, or south edge</td>
<td>38.12</td>
</tr>
</tbody>
</table>

"Coffin in King's Chamber.

<table>
<thead>
<tr>
<th>Description</th>
<th>Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breadth of north end</td>
<td>38.62</td>
</tr>
<tr>
<td>Breadth of south end</td>
<td>38.75</td>
</tr>
</tbody>
</table>

"These," says Dr. Grant, "are my measures, and I can vouch for their accuracy within one-fourth of an inch."

That being the case, the coffer could not have been introduced by the regular passage-way leading to the King's Chamber, neither can it be taken out that way now, on the further account of the portcullis plug still in situ. But might it not be got out by passing it through Al Mamoun's forced hole in the masonry to the west of the granite plug?

By dint of immense exertions, on account of the coffer's weight, and the confined nature of the spaces through which it must be moved, it might be done.

Then in that case, why may not the real coffer have been taken away long ago, and the present one be a spurious affair of modern introduction?

If the present coffer had been so introduced, the introduction must of course have been since Al Mamoun's day; and would have been so serious a labour, that we should have been certain to have heard something about it; over and above that such labour would have been in the way of rebuilding, refurnishing, restoring, and beneftiting the Great Pyramid; and that is a totally unprecedented thing within the last 3,000 years. Depredations in plenty there have been up to the present hour, but no restorations.
There are, however, fortunately, far more cogent reasons to guide us, in a series of innate features of scientific measurement, never appreciated by Egyptians themselves, nor Greeks, nor Romans, nor Arabs, nor even any Europeans until now,—yet evidently, from the exactness with which they were executed at their original date, and their many confirmations and re-confirmations of each other, they were intended by the ancient architect. Intended moreover for a further very necessary purpose; for though the coffer as a capacity measure is larger than anything now on the British Statute-book, being indeed four times the size of the quarter which is at the head there,—yet one, single coffer measure is a very small thing to set before the whole world, and ask it to accept as a standard in preference to any other box or cylinder, or other shaped measure which they might have already made, or be thinking of making, for themselves.

But all this difficulty was perfectly foreseen by the inspired architect, as well as all the possible questionings as to the authenticity and contemporaneousness of the vessel with the building of the Great Pyramid, after 4,000 years should have passed over its head, and a fifth thousand had begun. Therefore it was that he identified the coffer by certain rather abstruse, yet positively identifiable, scientific features with the King's Chamber in which it is placed; and that chamber, the most glorious hall that has ever yet been constructed in polished red granite, with the enormous mass of the Great Pyramid itself; and that building with the sector-shaped land of Lower Egypt; and Lower Egypt with the centre of the inhabited land-surface of the whole world. So that, small though the coffer may be, in itself, there cannot be another vessel of such central importance in the eye of Nature, and to the whole of mankind also, when explained.

But who is to explain it?

Evidently it requires some one who has been favoured
with wisdom. Others have seen and despised, from Caliph Al Mamoun down to the uproarious visitors at the opening of the Suez Canal; but we have been already told-in Holy Scripture that there are things which, though absolutely inscrutable to the world at large, yet nevertheless the wise shall understand them. And if the chief explanations which I am now about to quote, have been furnished by Mr. James Simpson, known only as a young bank clerk in Edinburgh, and who never had the advantage of University education,—I care not for the world’s objections,—he has been favoured with peculiar wisdom from on high, and has been privileged to throw upon this ancient subject a light it never enjoyed before, within the history of all civilised times.

But let us come to the point and the proofs.

For the full measures of all the particulars of the coffer, the reader must be still referred to the several pages containing them in Chapter VIII. But we may consult his convenience by repeating the chief mean results of them here,—as thus:

Outside Measures of the Copper in Pyramid Inches.

| Length, from 89·92 to 89·62, corrected for concavity of sides. |
| Breadth, from 38·68 to 38·61 |
| Height, from 41·23 to 41·13 |

Inside Measures of Copper in Pyramid Inches.

| Length, 77·86, supposed to be true within half a tenth of an inch. |
| Breadth, 26·70 |
| Depth, 34·31 |
| Thickness of bottom . . . = 6·91 Pyramid inches. |
| Thickness of sides . . . = 5·98 Do. do. |

Now all these numbers are necessary to be kept in mind, for they have all a part to play in the proofs to come; and from the manner in which they are given, it will be seen that I have neglected the ledge cut out. I have done so; have in fact virtually filled it up; as indeed the mere overlooking it, is quite enough to bring about;
and as evidently should be done by the wise, when they thereby obtain what must have been the original form; and which, in all its apparent geometric simplicity, is yet fraught with manifold design.

We have already shown, and Professor H. L. Smith of New York has confirmed, with regard to the coffer, taken in and by itself, that—

\[
\begin{align*}
\text{Exterior cubic size} & = 142,316 \\
\text{Interior cubic contents} & = 71,317
\end{align*}
\]

\[
\text{Also that, Sides of coffer, cubic size} = 47,608 \quad \text{Bottom of coffer, cubic size} = 23,708
\]

And these relations, so like the duplication of the cube problem among the Greeks, are found in a vessel of strict geometrical figure, without carvings or any other adornment than exquisitely planed, and almost true, and smooth surfaces, as see the copies of Dr. Grant's and Mr. Waller's cast of them on Plate XVI.; where they, the sides of the coffer, are the facie princeps of all the various examples of

* The Rev. Henry Morton, of St. Stephen's Rectory, South Shields, brings out extremely well in his paper in "Life from the Dead" for March, 1877, that the duplication of the cube, from including an incommeasurable, is just as endless a disputation as squaring the circle, among primitive men, and modern men also, when imperfect in their mathematical education. Hence, when the people of Athens, decimated by a dreadful pestilence, applied to the Oracle of Delphi to stop it—and of course the oracle only required time enough for the pestilence to stop itself and then claim the credit for the Delphian false god—he, the Oracle, set the people upon the problem of how, exactly to duplicate the cube of the pedestal of that god's statue. Wherefore, in that day, 1,700 years after the Great Pyramid's foundation, and its double practical accomplishment of a variety of the duplication problem in the coffer—the Delphian Oracle was sage enough to know the difficulty of the case, and the people of Athens were not clever enough to solve it in any finite time.

The peculiar drift of the Oracle in gaining time reminds of a case described by the Rev. Dr. Moffat in Bechuana Land, in South Africa. The country was perishing from drought, and the people applied to their atheistical witch rain-maker to stop it. He promised certainly to do so if the people brought him a full-grown baboon, without spot, blemish, or injury of any kind. Now, the said baboon being one of the most active and wary of animals, and roaming over the most inaccessible rocky summits of the hills, gave the unlearned South Africans just as time-consuming a problem as the duplication of the cube was to the Athenians.
worked granite surfaces. But now for the connections with the red granite chamber, which the coffer is placed in; and with the Pyramid building itself.

(1.) The chief line of the whole King's Chamber is geometrically its cubic diagonal, and that has been certainly now ascertained by modern measure, assisted by computation, to be equal to 515.165 Pyramid inches. This is Mr. Simpson's base-line from which he reaches up to the Great Pyramid on one side, and down to the coffer in the other; thus:

(2.) $515.165 \times 10 = 5151.65 =$ side of a square of equal area with the Great Pyramid's vertical, right, section.

(3.) $515.165 =$ twice the greatest horizontal circumference of the coffer; nearly

(4.) $\frac{515.165}{10} = 51.5165 =$ (A.) the mean length of all the coffer's "arris," or edge lines.

= (B.) Diameter of a circle whose area is represented in the coffer's interior horizontal area; i.e. its inside floor.

= (C.) Side of a square whose area = mean area of the four external vertical sides of coffer.

= (D.) The diameter of a sphere, whose contents (71,688) came very near those of the hollow part of the coffer, and do, in a sense, exist there.

= (E.) The diameter of a circle in which the natural tangent of a Draconis (the Pyramid's Polar star at the date of erection) was at its higher culmination, viz. $38° 41' 20" = 34.344 Pyramid inches = coffer's depth.

So exactly, though extraneously, appears thus to be given the coffer's depth, that very element, which the senseless hammerings of modern travellers breaking off specimens of the material, forsooth,—have now very nearly deprived the world of seeing again in the body.

(5.) At the same time the external correlative of inside depth, namely, the height, is given simply by the tenth part the length of the King's Chamber, viz. 41.213.

(6.) While the breadth of the coffer's base is given thus, based on the number of days in the solar year:—In a circle with circumference 365.242 Pyramid inches, the natural tangent of $33° 41' 20''$, or the Pyramid Polar star's upper culmination $= 38° 753$ Pyramid inches, = breadth of coffer's base.

(7.) The depth and height are moreover thus related:—

Depth squared : height squared :: area of side : area of side + end.
If 103·033 Pyramid inches was found an important touchstone of commensurability in the King's Chamber, bringing out Mr. Simpson's "sums of the squares there," we may expect to find it in the coffer also; where accordingly—

(8.) \(103·033^2\) = area of four external sides of the coffer, nearly.
(9.) \(\frac{103·033^2}{2\pi}\) = height of the coffer squared.

This last theorem brings into view the invaluable quantity \(\pi\), which the Great Pyramid commemorates by the shape of its whole external figure: and Mr. St. John Vincent Day had announced long since, that, profiting by small inequalities between the sides of the coffer, as shown to exist by my measures of them, it could be proved that the height of the coffer is to the length of two adjacent sides (viz. a side and an end) as 1 to \(\pi\). And now to that good beginning, Mr. Simpson adds,—

(10.) Coffer's internal floor has a boundary whose length = the circumference of a circle of equal area to coffer's outer floor or base; a curious result this of the long shape of the coffer, compared with the cube, or cylinder, which it might have been for capacity measure alone, and of which more presently.
(11.) Coffer's depth multiplied by \(2\pi\) = area of east and west (that is, the two long) sides of the coffer.
(12.) Coffer's height squared = area of \(\frac{\text{side + end}}{\pi}\).
(13.) A circle with diameter 38·753 Pyramid inches (the breadth of the coffer's base); or
A square with side 34·344 Pyramid inches (the depth of the coffer), has an area = the area of the external long side divided by \(\pi\).
(14.) Finally, if two vertical, right, sections be made through the middle of the coffer, then such are the proportions of lengths, breadths, and thicknesses, that
(A.) Area of the sections of the walls of coffer, is to area of whole section included, as 1 to \(\pi\). And
(B.) Area of sectional walls = height of coffer squared.

Then follow some most interesting correspondences, with distinctions, between these three apparently most diverse things, the pointed Great Pyramid, the enclosed King's Chamber, and the lidless granite Coffer; thus—

(15.) In each of these three structures, one rule governs their shape, viz. two principal dimensions added together are \(\pi\) times the third.
Illustrated thus:—

In Pyramid, Length + breadth = π height.
In King's Chamber, Length + height = π breadth.
In Coffer, Length + breadth = π height.

Wherefore Pyramid and Coffer have their radii vertical, and King's Chamber horizontal.

Professor Hamilton L. Smith, of New York, has also been privileged to discover many remarkable commensurabilities between the coffer and other signal portions both of the Great Pyramid, and some natural data, such as the number of days in the year; these latter commensurabilities evidently requiring that the measures of the coffer be expressed in Pyramid inches, and in no other units of a different length from them. These discoveries are not yet fully published—some of them will be noticed in a future chapter.

But now, still further, for the position of this remarkable vessel, the coffer, in the equally remarkable room, the King's Chamber. To a certain extent I have almost foreclosed against myself the possibility of having anything of importance to say there,—having described the coffer as loose on a flat, smooth, unmarked floor, and having also spoken of one end being tilted up, by a nodule of hard jasper from the desert outside, pushed in by Arabs in modern times. It is the south end which is so tilted, and in committing that abomination the ignorant children of the desert of to-day, seem to have pushed the coffer ten inches towards the north, of where it had been intended to stand; for on subtracting that quantity from my measured distance (see "Life and Work," vol. ii. p. 105) from the south wall, and adding it to what was measured from the north wall, each distance comes out 58·2 Pyramid inches; or, within the limits of the errors of observation, the height of the Great Pyramid divided by 100.

Encouraged by this indication, Mr. Simpson considered
the distance of the west side of the coffer, from the west side of the chamber. The slued position of the coffer (see Plate XIV.), evidently indicates that the men who recently pushed it northward while tilting it, moved it a little eastward too. My present measured distance therefore from the west, 55·0 inches, is rather too great. What distance then ought it to have been in such a monument as this, where everything evidently goes by number and measure?

What else, replied Mr. Simpson, but the coffer's touchstone length, 51·516 Pyramid inches? Allowed pro tem.: but what length does that leave between the eastern side of the coffer, and the eastern side of the chamber?

Nay, said he, take it not from the far-off eastern wall of this long chamber, but from a meridian plane cutting the chamber into two equal halves, and then you will find the quantity 116· inches; sufficiently near to the length of the ante-chamber, or to the tenth part of the coffer's own height above the base of the Great Pyramid, to be accepted as intentional by the architect of the whole; and yet sufficiently far from the 116·26 of the ante-chamber's measure to permit of a further reason being investigated by-and-by.

Meanwhile it may be observed that we have, theoretically, divided the King's Chamber, transversely to its length, into two equal halves. Is anything else gained by that?

This most important illustration of the very groundwork of the claim of the coffer to be a vessel of capacity having an earth-size reference. At p. 162 we showed its formation upon the cube of a line of the length of 50 inches, or two of the remarkable cubits of the Great Pyramid, each of which cubits is memorable in all science and all history as the ten-millionth part of the earth's semi-axis of rotation, for the period of intellectual man residing on this planet world.
Now that “ten-millions” is a large number, but very round, very exact, and very characteristic; and if we take the precise breadth and half length of the room as determined before (p. 178), 206·066 Pyramid inches, and for height, the larger 2nd height also given before, say 235·5, we obtain almost exactly 10 million cubic inches, as the contents of each half of the room; or indicating that something is accomplished there connected with capacity measure, and depending primarily on a length of two such cubits, as these earth-axis commensurable ones of the Great Pyramid are.

The earth-size relations then of the coffer, as deduced for itself alone, are justified by the whole King’s Chamber; and the actual size, we showed before (p. 154), is Pyramidally recognised by the lower course capacity of the chamber being 50 times the contents of the coffer, and the coffer standing on the 50th course of the masonry of the whole of the Great Pyramid from the pavement upwards. But the shape; yes, the shape of the coffer as a capacity measure—what is to justify that?

We have already given a variety of reasons of a somewhat mathematical order at p. 147, but have no objection now to add thereto this general verbal apology;—that the shape of the coffer is to enable it, with its elemental-founded size, to typify and be most suitable to the size, shape, forces, and purposes of man; not of man trying to scale the heavens by his own might, but of man living in obedience to, and harmony with, the commands of God.

John Taylor had suggested, but not very strongly, that the shape of the coffer was derived from the hot bath, the Calidarium, long known in the East—a long and deep box-shape in which a man might lie down at full length, or sit up; and such a shape, he showed, had been found more convenient for a corn-holder, or large corn-measure, than a cube.

But in presence of the 4,000 years and more, which
the Great Pyramid now represents to man,—the most solemn case of lying down is that of the tomb; and the full length, horizontal extension is as characteristic of what was ever taught in the Hebrew or Christian religion, as it was radically opposed to the wretched, bent-up, and shortened attitude of some miserable idolaters, and of the Parsees in India in the present day, or the cremation methods of others, or the Egyptian plan of bringing out the mummies of their ancestors, and setting them up round the dinner-table at the greater family feasts.

The very look of the coffer evidently does produce in some human minds the idea of lying down, extended, looking upwards, peaceful and calm, but strong in faith of a future awakening by the power of God: and only this last month I have read in an American newspaper of a recent visit to the King's Chamber of the Great Pyramid, and how the clergyman of the party, the Rev. Dr. Field, insisted on laying himself down full length inside the coffer.

What his thoughts were, as he lay therein, are not given, beyond the usual most absurd prejudice of the vulgar, that he was lying down in King Cheops' former place; and when he, Dr. Field, rose from that granite chest and found himself odious, horrible, filthy, with fine grey dust begriming his hair and transfusing his clothes,—he, Republican though he was, consoled himself with the courtier-like idea that it was "the honour-imparting dust of King Cheops." And yet so very far was it from being anything of the kind, that—over and above Cheops having been buried, as Herodotus relates, in another place (see Plate XV.), and the coffer having been often filled and emptied again of rubbish in modern times,—I can testify to this,—that, previously to my measures in January, 1865, I had the coffer cleared out, and washed both inside and outside with soap and water. Hence the detestable powdery matter which the Reverend Doctor so willingly grovelled in, was, if not actually plebeian, at least so
very modern as to be the product *in situ* of the last
twelve years only: and is contributed chiefly by the
limestone dust, gathered in pushing through the earlier
passages and the rubbish of Al Mamoun's hole, and then
shaken out of the clothes of the swarms of travellers, as
they dance their violent reels in the noble granite hall,
by the excrements of bats startled in numbers by the
uneartly howls, by ashes of cigars, the subsided smoke
of innumerable flaring candles, &c. &c. But leaving the
Doctor to cleanse his garments as best he may, let us
return to our metrological inquiry.

Having already said so much in point of principle
and theory for the coffers, we may now approach the real
object of this chapter: the practical uses in capacity-
measure of the granite coffers of the King's Chamber;
a vessel measuring, as its architect originally intended
that it should, 71,250 cubic Pyramid inches, or something
very close thereto.

The whole quantity subdivides itself easily, after the
manner of the Pyramid arithmetic and Pyramid con-
struction, as follows:—the two most important steps
being, *first*, the division into 4, as typifying the four
sides of the base; and *second*, the division into 2,500,
or 50 × 50 parts; fifty being the special number of the
room, and the number also of the masonry courses of
the whole structure on which that chamber, or rather
the two adjoined chambers of ten million cubic inches
each, of which it is composed, rest in their places.
Pyramid Capacity Measure

<table>
<thead>
<tr>
<th>Division, or number of each denomination contained in the whole coffer</th>
<th>Intermediate divisions</th>
<th>Capacity of each denomination in Pyramid cubic inches</th>
<th>Equivalent Weight in Pyramid pounds of Water</th>
<th>Name now proposed to be given to each successive portion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>71,250.</td>
<td>2,500.</td>
<td>Coffer.</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>17,615.</td>
<td>625.</td>
<td>Quarter.</td>
</tr>
<tr>
<td>10</td>
<td>2.5</td>
<td>7,125.</td>
<td>260.</td>
<td>Sack.</td>
</tr>
<tr>
<td>25</td>
<td>2.5</td>
<td>2,850.</td>
<td>100.</td>
<td>Bushel.</td>
</tr>
<tr>
<td>2,500</td>
<td>10</td>
<td>28.5</td>
<td>1.</td>
<td>Pint.</td>
</tr>
<tr>
<td>25,000</td>
<td>10</td>
<td>2.85</td>
<td>0.1</td>
<td>Wine-glass or fluid ounce.</td>
</tr>
<tr>
<td>250,000</td>
<td>10</td>
<td>0.285</td>
<td>0.01</td>
<td>Tea-spoon or fluid drachm</td>
</tr>
<tr>
<td>25,000,000</td>
<td>10</td>
<td>0.00285</td>
<td>0.0001</td>
<td>Drop.</td>
</tr>
</tbody>
</table>

We begin, therefore, with the large measured and scientific quantity of the coffer; and end with a unit which, in an approximate form, as a drop (i.e. the cubical space occupied by a drop of water falling freely in air at a given Pyramid temperature and pressure), is in every one's hands, and is definable accurately upon the coffer by the stated proportion.

In contrasting this arrangement with the British imperial system, we may see at once that that modern system is merely a measure for large and rude quantities, knowing of nothing smaller than the pint (the gill being merely a later tolerated addition to suit special wants), and rendering it therefore necessary for the apothecaries and druggists to manufacture a sort of fluid and capacity measure for themselves, which they do by starting from the pint and ending in the drop; or, as they term it, with needless addition of dog-Latin, a "minim."

This apothecaries' fluid measure was established only in 1836; and we may assume, with Lord Brougham's *Penny Cyclopædia*, that such fluid ounce, when it is an ounce, is an ounce avoirdupois; although it is stated
elsewhere, that medical men are never to use anything but troy weight.

This incongruity renders the break between imperial, i.e. the present British, capacity, and apothecaries' capacity, measures peculiarly trying; followed as it is by a break of connection between apothecaries' capacity, and apothecaries' weight, measures also.

In the Pyramid arrangement, however, there is no halting half-way; but, when it is a question of capacity, the scheme goes right through from the biggest bulks ever dealt with in commerce, and through all the measures required by the people further in dealing with coal, corn, wool, potatoes, beer, wine, peas, meal, oil, medicines, photographicals, and chemicals, up to the smallest quantity ever judged of by capacity measures of specified name; for when once we have arrived by several decimal stages at "drops," no one would ever think of subdividing them further, if he could, in any other manner than by the tens of pure arithmetic again and again.

Next, for the testing of these bulks by weight, the imperial system has only one strikingly even equivalent, viz. the gallon, = 10 lbs. of water weight. But that is accompanied by the double drawback, 1st, that 10 lbs. in weight is not an imperial known weight; and 2nd, that the gallon is not the unit of the imperial system.

The unit of the imperial capacity system is a pint; and it is, moreover, the very important centre of connection between that system for large ordinary quantities, and the apothecaries' system for scientific and medical small quantities. It is, therefore, the point of all others in the scale which should be round and complete, testable also at a moment's notice by an equally round, well-known, and frequently employed standard of weight.

So it was too in the days of the wisdom, wherever that was derived from, of our Saxon forefathers, or the
times of instinctive strength of our hereditary traditions; but under the luxurious, and very modern, reign of George IV. that strange tendency to take measures from the poor, and enlarge them more or less for the convenience chiefly of the rich, was rise; so the pint, from having been the unit, as one pound's weight of water, was expanded into the odd quantity of 1 and \(\frac{1}{4} \) pounds of the same; while the bigger measure of a gallon, with which the poor man has seldom to deal, was ordained to be the standard capable of being tested by a round sum of 10 lbs., if that could be obtained or made up from other weights.

This petty manoeuvring with some of the customary old usages, if not also hereditary rights, of the poor, was attempted, in the case of the new imperial pint, to be electro-plated with brilliant proverbial mail, by Lord Brougham's and the great "Diffusion of Useful Knowledge Society's" giving out this jingling rhyme, to be learned by all good subjects in these latter days,—

"A pint of pure water
Weighs a pound and a quarter."

But we may well venture to doubt whether every peasant has yet got that distich by heart; and whether he does not rather ruminate in his family circle and about the old hearthstone over the far more ancient and pithier rhyme,—

"A pint's a pound,
All the world round."

An expression, too, in which there may be vastly more than immediately meets the eye; seeing, as in our above table, that the Pyramid system appears to restore the principle embodied in those two little lines; and may have communicated it, in ages long gone by, to many other countries and peoples also, besides the British; in
part—who knows?—to prove them, if they could be faithful, and for how long, to their ancient covenant.

At all events, to those who now enter the Great Pyramid, and look with understanding eyes, one of the first things set before them in that microcosm of the King's Chamber, the Ante-chamber thereto, is the Boss on the granite leaf. Which Boss, over and above having served in lineal measure to perpetuate the inch, is now found in its cubic capacity to represent approximately the Pyramid pint; the Pyramid pint too, visibly standing vertically over the lower stone of the leaf, proved already (see p. 190) to show the size of the "Quarter" measure of the system.

Almost every one of the Pyramid capacity measures, however, over and above its pint, with its equal the pound, admits of being tested by a round number of "water-pounds;" and that number is always such a one as we shall presently see equally exists in the Pyramid system of weight measure.

We have, therefore, only to conclude this division of the subject by submitting a table of comparison of each concluded Pyramid capacity vessel, with each similarly named current capacity vessel in Great Britain, through means of the common medium of English cubic inches. Whence it will be seen that, excepting the "coffer," (though even that is hardly altogether unknown to our nation, "chaldron" having been under Anglo-Saxon rule an expression for, and a description of,* it,) there is no need to invent any new names; for, under the existing names, as of pints, gallons, &c. &c., the absolute capacities have often varied much more than here indicated,† and without a tithe of the reason for it.

* See Mr. Taylor's "Great Pyramid," p. 144.
† In or about 1800 it was reported that in Westmoreland the following diverse measures were used:—1st, a Winchester bushel; 2nd, a customary bushel, equal to three Winchester bushels; 3rd, a potato bushel, equal to two Winchester bushels; and, 4th, a barley bushel, equal to two and a half Winchester bushels.
INTERNATIONAL APPENDIX TO GREAT PYRAMID CAPACITY MEASURE.

If analogues of the Great Pyramid measures are thus found in the oldest metrology of the Anglo-Saxons presently known, some traces of them can hardly but be discoverable also in the hereditary metrologies of other countries besides our own Great Britain.

Without, then, attaching any particular importance to the results, I append here some of the most striking approaches to coincidence, chiefly gathered from Kelly’s “Universal Cambist,” published in 1821. Dr. Kelly having been an author of the most respectable class in commercial and educational science; and one who, though the French metrical system had already appeared on the horizon in his time, yet lived in the full force of the older hereditary metrological systems—systems perverted often exceedingly into provincial variations, but not then begun to be stamped out of existence wholesale, for the benefit of the mètre of Paris.
"Quarter" Capacity Corn Measures.

<table>
<thead>
<tr>
<th>Country or City</th>
<th>Name of Measure</th>
<th>Contents in English cubic inches</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ancona</td>
<td>Rubbio</td>
<td>17,459</td>
</tr>
<tr>
<td>Malta</td>
<td>Salma</td>
<td>17,678</td>
</tr>
<tr>
<td>Great Pyramid</td>
<td>Quarter of Cofer</td>
<td>17,866</td>
</tr>
<tr>
<td>Rome</td>
<td>Rubbio</td>
<td>17,970</td>
</tr>
<tr>
<td>Sicily</td>
<td>Salma generale</td>
<td>16,866</td>
</tr>
</tbody>
</table>

"Sack" Capacity Corn Measures.

<table>
<thead>
<tr>
<th>Country or City</th>
<th>Name of Measure</th>
<th>Contents in English cubic inches</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amsterdam</td>
<td>Mudde</td>
<td>6,788</td>
</tr>
<tr>
<td>Basel</td>
<td>Sack</td>
<td>7,870</td>
</tr>
<tr>
<td>Bolsano</td>
<td>Scheffel</td>
<td>6,657</td>
</tr>
<tr>
<td>Deventer</td>
<td>Mudde</td>
<td>7,049</td>
</tr>
<tr>
<td>Dordrecht</td>
<td>Great Sack</td>
<td>7,638</td>
</tr>
<tr>
<td>Dresden</td>
<td>Scheffel</td>
<td>6,455</td>
</tr>
<tr>
<td>Frankfort</td>
<td>Malter</td>
<td>6,590</td>
</tr>
<tr>
<td>Genoa</td>
<td>Mina</td>
<td>7,367</td>
</tr>
<tr>
<td>Hage</td>
<td>Sack</td>
<td>6,546</td>
</tr>
<tr>
<td>Hamburg</td>
<td>Scheffel</td>
<td>6,426</td>
</tr>
<tr>
<td>Hanau</td>
<td>Malter</td>
<td>6,888</td>
</tr>
<tr>
<td>Pernau</td>
<td>Tonne</td>
<td>7,722</td>
</tr>
<tr>
<td>Prague</td>
<td>Strick</td>
<td>6,516</td>
</tr>
<tr>
<td>Great Pyramid</td>
<td>Sack</td>
<td>7,146</td>
</tr>
<tr>
<td>Reval</td>
<td>Tonne</td>
<td>7,219</td>
</tr>
<tr>
<td>Turin</td>
<td>Sacco</td>
<td>7,015</td>
</tr>
<tr>
<td>Zwoll</td>
<td>Mudde</td>
<td>6,861</td>
</tr>
</tbody>
</table>

"Bushel" Capacity Corn Measures.

<table>
<thead>
<tr>
<th>Country or City</th>
<th>Name of Measure</th>
<th>Contents in English cubic inches</th>
</tr>
</thead>
<tbody>
<tr>
<td>Berlin</td>
<td>Scheffel</td>
<td>3,180</td>
</tr>
<tr>
<td>Calabria</td>
<td>Tomolo</td>
<td>3,119</td>
</tr>
<tr>
<td>Greek (ancient)</td>
<td>Medimnus</td>
<td>2,712</td>
</tr>
<tr>
<td>Hildeshcem</td>
<td>Scheffel</td>
<td>3,164</td>
</tr>
<tr>
<td>Königsburg</td>
<td>Scheffel</td>
<td>3,152</td>
</tr>
<tr>
<td>Magdeburg</td>
<td>Scheffel</td>
<td>3,151</td>
</tr>
</tbody>
</table>
"Bushel" Capacity Corn Measures—continued.

<table>
<thead>
<tr>
<th>Country or City</th>
<th>Name of Measure</th>
<th>Contents in English cubic inches.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maranhám</td>
<td>Alquiero</td>
<td>2,772</td>
</tr>
<tr>
<td>Mecklenburg</td>
<td>Scheffel</td>
<td>2,591</td>
</tr>
<tr>
<td>Nancy</td>
<td>Carte</td>
<td>2,925</td>
</tr>
<tr>
<td>Naples</td>
<td>Tomolo</td>
<td>3,122</td>
</tr>
<tr>
<td>Niméguen</td>
<td>Scheffel</td>
<td>2,546</td>
</tr>
<tr>
<td>Parma</td>
<td>Stajo</td>
<td>3,135</td>
</tr>
<tr>
<td>Poland</td>
<td>Korzec</td>
<td>3,120</td>
</tr>
<tr>
<td>Great Pyramid</td>
<td>"Bushel"</td>
<td>2,858</td>
</tr>
<tr>
<td>St. Maloës</td>
<td>Boisseau</td>
<td>2,897</td>
</tr>
<tr>
<td>Sardinia</td>
<td>Starelo</td>
<td>2,988</td>
</tr>
<tr>
<td>Smyrna</td>
<td>Killau</td>
<td>3,132</td>
</tr>
<tr>
<td>Wismar</td>
<td>Scheffel</td>
<td>2,547</td>
</tr>
</tbody>
</table>
CHAPTER XIII.

WEIGHT MEASURE.

The weight measure of the Great Pyramid we have also to obtain from its grand Red-Granite Coffer, in the calm air, the darkness, and most equal temperature of its internal, and well-protected, King’s Chamber. But, as before intimated, any question of weight, treated in the highest terrestrial sense and anthropological purpose manner, requires the introduction of an additional and more difficult idea than mere cubic space; and this idea is, the mean density of the whole earth.

Were masses of such matter directly procurable, the best representation of the Pyramid weight standard might have been a rectangular block of that substance, 5.7 times smaller than the coffer’s internal capacity, set up beside it in the equal temperature and rarely much-disturbed atmospheric pressure of the same chamber.

But as we are not able, in spite of all the wonderful resources of modern science, to delve anything like deep enough to obtain a specimen of this grand unit material which forms the foundation of our globe (if indeed it really exists as a unity, and does not rather arise from the mean density of a vast variety of elements, some of them very much heavier, and others lighter
than the 5·7), we must take the coffer's contents in water as a stepping-stone, but only as that, to reach our desired result.

Thus the coffer's contents of pure water are 71,250 cubic Pyramid inches, which at the temperature of 68° Fahr., would weigh 18,030,100 of our avoirdupois grains; according to the estimate of the British Government that one cubic British inch of distilled water at temperature 62° Fahr. and barometer 30·00 inches, weighs 252·458 grains; the necessary reduction being performed for the different size of the inch and the altered temperature. Therefore a mass of the earth's mean density material of the size of 12,500* Pyramid cubic inches, at the standard Pyramid temperature and pressure (30·0 Pyramid inches of the mercurial barometer), weighs in the lump 18,030,100 British avoirdupois grains.

But what are, may, or should be, its subdivisions on the Pyramid system? Here we can follow no better plan than that adopted in the capacity branch of metrology; and then we are rewarded by finding, when we come to the most characteristic division of all, viz. that of 50 × 50, which should give us a popular unit to compare with the pint in capacity—we find, I say, that it does give us something which is excessively close to the old Saxon pound; but with this further advantage, of world-wide application in the Pyramid system, and presently to be illustrated in computing weight from measured size, viz. that each such Pyramid pound is equal to the weight of five cubic Pyramid inches of the earth's mean density.

Hence our first Pyramid weight table runs thus:

* Derived from 71,250 divided by 5·7.
Having already stated that the Pyramid grand weight standard weighs in British terms, viz. avoirdupois measure, 18,030,100 British grains; we are met, as soon as we begin to compare Pyramid and British weights together in point of fact, with an accusation,—that the Pyramid grains must be very small, if there are 25,000,000 of them, to 18,000,000 nearly of the British.

But herein comes to light one of those needless pieces of meddling legislation by our most modern, or Georgian era, political rulers, which so provoked John Quincy Adams and other American writers on Saxon metrology; for whereas the old law of the land was, that the troy pound should be divided into 7,680 grains (and which were very nearly the weight of full and fair grains of well-grown wheat), a later law said that it should be divided into only 5,760 parts or grains so called, but of no known variety of plant employed for breadstuff. Wherefore Cocker, Wingate, and other arithmeticians of that day, used to enter in their useful compendiums during the transition period, that 32 real grains, viz. the old ones, or
24 artificial grains, i.e. the new ones, made the pennyweight troy; and when that ingenious story was pretty well indoctrinated into their obedient scholars, the notice of the old grains was dropped out altogether, and the new ones remained masters of the situation, with the word "artificial" removed, and as though there had never been any other.

Referred then now, over the heads of these new, to the genuine old, grains of Saxon metrology (so far as we can trace them back by the usual literary and historical steps, and which is, after all, not so much as a thousand years), the number of 25,000,000 of the Pyramid grains would have been measured then by 24,040,100 of the Saxon grains of that earlier, though not Pyramid epoch, day; but a sufficiently close approach to the 25,000,000, to satisfy any poor man seeking the value of a few grains only.

But the British legal weight measure of modern and historical times has, over and above this item, always been, even within itself and at home, in a dire antagonism between two grand and rival systems; viz. troy and avoirdupois, not to say anything of apothecaries' weight, which is little but the troy, under a different mode of subdivision. General public favour seems at last to have settled upon avoirdupois, as most worthy to be the national weight in future for things in general, and especially things on a large scale; but as it does not go lower than drachms, why then, even though troy weight should be extinguished to-morrow, apothecaries' weight will have still to be kept up for dealing with smaller quantities than drachms and the more valuable class of substances. There is, indeed, a legal definition of the number of the large modern "artificial grains" which constitute a pound avoirdupois, viz. 7,000; but as the further avoirdupois subdivisions are into 16 ounces, and these into 16 drachms, we are left there with one such drachm equal to the crushingly
awkward quantity to deal with in accounts of 27·34375 grains; and drachms are just the point where science begins to be particular.

Therefore it is that druggists, obliged already to buy wholesale by avoirdupois, have then to dispense retail by troy or apothecaries' weight; for these last are the only British weights which enable them to deal easily with grains; and yet these are not real grains, neither for the people, nor through history, nor in science.

The Pyramid weights, therefore, which are on one system only, and go through the whole scale from tons to grains without any break, seem to offer already, at this point, an honourable mode of escape to the British nation out of the confusion it has suffered for ages. No new names are required, many close approaches to the grander standards and units of our country will be remarked, and the proportions of matter under each denomination, as used in the Pyramid, and in British, nomenclature, are approximately as follows:

PYRAMID AND BRITISH WEIGHT MEASURES,

Compared through the temporary medium of English "artificial," and over-large grains.

<table>
<thead>
<tr>
<th>1 ton Pyramid</th>
<th>18,090,100'</th>
<th>1 ton avoird.</th>
<th>15,880,000'</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 wey Pyramid</td>
<td>1,803,010'</td>
<td>1 wey English</td>
<td>1,974,000'</td>
</tr>
<tr>
<td>1 cwt. Pyramid</td>
<td>721,200'</td>
<td>1 cwt avoird.</td>
<td>784,000'</td>
</tr>
<tr>
<td>1 stone Pyramid</td>
<td>72,120'</td>
<td>1 stone meat.</td>
<td>56,000'</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 stone wool.</td>
<td>98,000'</td>
</tr>
<tr>
<td>1 pound Pyramid</td>
<td>7,212'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 ounce Pyramid</td>
<td>721'20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 drachm Pyramid</td>
<td>72'12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 grain Pyramid</td>
<td>0'7212</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1876)
Specific Gravity.

In no part of metrology more than in weight, is there found so much of the wheel within wheel of natural difficulty, tending, unless well watched and studied, to introduce perverse variations whenever uniformity is attempted; and there are still existing some supporters of the old arguments for keeping up both the troy and avoirdupois weight systems amongst us. For the same reasons, too, that those gentlemen believe the complication was first introduced.

And what reasons were they?

When society was in a very primitive, or much more probably, a mediæval degraded, condition, and little but grain was sold, a test for the amount of grain in any particular vessel was, the weight of water it would hold. But water and grain are of different specific gravities; therefore, if equal bulks were taken, the purchaser got a very different quantity of what he valued most, than if equal weights were observed; and as some parties were more particular about bulks than weights, and vice versa, two sets of weights were prepared, with such an amount of difference between them, that a pound of grain, measured by the one sort of pound, occupied exactly the same cubical space as a pound of water measured by the other variety of pound.

But in the present day, when an infinity of kinds and species of matters besides bare grain are bought and sold, and almost every one of the thousand and more substances thus dealt in has a different specific gravity, we cannot hope to have as many different systems of weight as there are of such substances; though by so doing, and at the same time maintaining only one system of capacity measure, there might be kept up on many occasions a specious appearance of identity between weight and bulk. Hence, for the modern man, the only practical resource seems to
be, to have one capacity, and one weight, measure pure and simple; but to produce the identity required of old for different substances, by calculation. Assisting that calculation necessarily by some convenient table of specific gravities, wherein the point of coincidence between the two descriptions of measure, or the point where there is no calculation at all from bulks to find weights, shall be in favour of the substance most frequently required to be dealt with; or still better; for those which offer the best average example of all the substances which have in their turn to be either weighed or measured by man; for such plan tends to prevent any one substance acquiring an excessive maximum, or extreme minimum.

In the French metric system this point of coincidence is occupied by water; and it is intended that the cubic amount of water being measured, that statement shall in itself, with the mere alteration of names, and perhaps of the decimal point, express its weight. Hence, at a recent metrological discussion, at the Philosophical Society of Glasgow, a pro-French metrical speaker lauded this quality of his favourite anti-British-national system; and enlarged upon how convenient it must be for a merchant receiving goods in the docks, out of many vessels from many countries, to go about among the packages with a mere French metre measuring-rod in his hand; and by that obtaining their cubic bulks, thence to know simultaneously their weights also.

"Yes," remarked another speaker, "that would answer perfectly, if British merchants imported, and exported, and dealt in, nothing but water."

Now the pro-French metrical man on this occasion was a large dealer in iron; and had made much fame for himself, and some money too, by improved methods of working the weighty iron plates required for modern armour-clad war-vessels. So he being rather completely overthrown by the above answer, he tried faintly to recover himself
and his theory with the professional remark, "Well, but you must allow that the French metrical system is an excellent one for ship-builders computing their displacements by."

"Yes," again answered his most truth-speaking opponent, "if ship-builders are never required to deal with salt water; only pure, fresh, distilled water; and can keep that always at the uncomfortably cold temperature of water's maximum density, and can also work in a vacuum as to atmospheric air;" for all these are the truly anti-practical plans for any correct weighing to be performed on the boasted French metrical system;—a system invented by a really most unpractical, and people-despising, knot of a few closet doctrinaires.*

Other speakers then came to the defence of the pro-French-metrical iron ship-builder, and urged that a table of specific gravities might be employed, when anything else than pure distilled water at a temperature of 39° Fahr. was being measured or weighed; and also, that when rough commercial results only were required, both temperature and atmospheric pressure might probably be neglected.

Let us look each of these sides of the argument straight in the face; for they serve well to contrast essential and inherent qualities in the French metrical, as against the Pyramid, system of weighing.

The former, having its specific-gravity equality-point at water, while almost all the substances dealt with by art

* Having had an opportunity, five years ago, of discussing with a University professor in Sicily, who was also one of King Victor Emmanuel's new Roman senators, the recent adoption by Italy of the unpractical French mètre, kilogramme, and litre,—when they had such good practical hereditary measures bequeathed to them by the old Romans, as their foot, pound, and amphora—I ventured to ask how the Sicilian people liked to give up their traditional institutions and take to these new and alien-invented French weights and measures? "The Sicilians!" shouted he, with almost comical indignation; "what business have they for one moment to think about the matter?" And then I saw that the reputed liberal king, Victor Emmanuel, was obliged to act more tyrannically than any Russian emperor in the matter of spreading the French metrical system amongst his no longer loving subjects.
and science (especially the more useful and valuable ones in modern life, such as the metals, minerals, &c.), are heavier, far heavier, than water,—the weights first given out by the French métre rod are, as a rule, largely in error.

The latter or Pyramid system, on the contrary, having its equality-point at the earth’s mean density, or between stones and metals, is much nearer the truth at once and without any specific gravity correction, for things in general, and for precious ones in particular.

Again, the French system which makes the temperature reference close to freezing, or where men can barely exist (and certainly cannot work to advantage), and the atmospheric pressure reference, a vacuum where they cannot exist at all,—must require much larger corrections on the rough measures actually taken in the circumstances of daily life,—than the analogous Pyramid references; which are those of the average temperature and average pressure under which all men upon this earth do live, move, and have their various occupations.

Under the French system, indeed, a shopkeeper ought to take account in summer of the large amount of thermal expansion of his goods, from their being then far above the ideal temperature of water’s maximum density, the wintry 39° Fahr.; and in winter he ought to correct all his indoor weighings, for the artificial temperature which he keeps up there by stoves or otherwise. While in both summer and winter he ought to make large allowance for the buoyant power of air of the density, more or less, of the whole atmosphere, or 30 inches pressure of mercury, as compared with 0·000 inches, on the comparative specific gravities of both the material of his weights, and the material of the things weighed; the duly entered tabular specific gravities, being true, according to his system, only in an absolute vacuum; and that, too, in close proximity to an ice-house.
But under the Pyramid system, and under the British also, the ordinary weighings in the shop under the temperatures and pressures there usually experienced, either in winter or summer, will be never more than microscopically different from weighings performed under the exact and scientific temperature and atmospheric pressure references of these systems; viz. the mean, very nearly, of what are experienced both in the shops and the general habitations of men, all the wide world over. *But of this more and further, in Chap. XV.*

Weights, then, on the Pyramid system are equally referable, as with the French system, to one given, and scientifically definable, point on both the temperature and pressure scales, when nicety is required. But that given point in the Pyramid case is an easier, pleasanter, and a better-known one; while for the rough work of the world, the Pyramid weights are calculable at once from Pyramid linear measure, without any reference to observations of thermometer and barometer at the instant, much more accurately than the French are from theirs, under similar circumstances. The Pyramid rules, too, being expressible in the following simple manner:—

For small things, ascertain their bulk in cubic inches, divide by 5, and the result is the weight in Pyramid pounds—if the said articles are of the same specific gravity as the earth's average material.

For large masses, ascertain their bulk in cubic Pyramid cubits, add 1/2, and the result is the weight in Pyramid tons,—under the same condition of specific gravity.*

But if the matter measured in either case were not of

* Conversely, the Pyramid weight of a body of earth's mean density being given, to find its Pyramid cubical measure—

For small things, multiply the pounds weight by 5, and it will give the number of cubical inches; and

For large masses, decrease the ton's weight by 1/2, to find the number of cubic cubits.
earth's mean density, but, say, ordinary stone, the real weight would be nearer a half, and if of the more common metals, double, the amount given by the above process; the raw number first procured by it, requiring for accuracy's sake, in the case of every different physical substance, to be multiplied by its specific gravity in terms of that of the earth's. Hence, such tabular multiplier is 1 when the specific gravity is the same as that of the mean of the whole earth-ball's contents; a fraction of 1 when lighter; and 1 with something added to it, when heavier; as in the following table, prepared from various authorities:

Pyramid System of Specific Gravities.

<table>
<thead>
<tr>
<th>Material</th>
<th>Specific Gravity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Earth's mean density = 1</td>
<td></td>
</tr>
<tr>
<td>Temperature = 68° Fahr.</td>
<td></td>
</tr>
<tr>
<td>Barometric Pressure = 30.025 British inches</td>
<td></td>
</tr>
<tr>
<td>Cork</td>
<td>0.043</td>
</tr>
<tr>
<td>White pine (American)</td>
<td>0.072</td>
</tr>
<tr>
<td>Oats (loose as in bushel)</td>
<td>0.088</td>
</tr>
<tr>
<td>Larch (Scotland)</td>
<td>0.093</td>
</tr>
<tr>
<td>Lithium</td>
<td>0.100</td>
</tr>
<tr>
<td>Riga fir</td>
<td>0.105</td>
</tr>
<tr>
<td>Barley (loose as in bushel)</td>
<td>0.112</td>
</tr>
<tr>
<td>Ether, sulphuric</td>
<td>0.129</td>
</tr>
<tr>
<td>Wheat (loose as in bushel)</td>
<td>0.132</td>
</tr>
<tr>
<td>Alcohol, pure</td>
<td>0.139</td>
</tr>
<tr>
<td>Pumico-stone</td>
<td>0.160</td>
</tr>
<tr>
<td>Ice</td>
<td>0.163</td>
</tr>
<tr>
<td>Butter, tallow, fat</td>
<td>0.165</td>
</tr>
<tr>
<td>Bees' wax</td>
<td>0.169</td>
</tr>
<tr>
<td>Old oak</td>
<td>0.170</td>
</tr>
<tr>
<td>Distilled water</td>
<td>0.176</td>
</tr>
<tr>
<td>Sea-water</td>
<td>0.180</td>
</tr>
<tr>
<td>Blood</td>
<td>0.180</td>
</tr>
<tr>
<td>Heart of oak</td>
<td>0.206</td>
</tr>
<tr>
<td>Cannel coal</td>
<td>0.223</td>
</tr>
<tr>
<td>Aloes</td>
<td>0.239</td>
</tr>
<tr>
<td>Chloroform</td>
<td>0.267</td>
</tr>
<tr>
<td>White sugar</td>
<td>0.282</td>
</tr>
<tr>
<td>Bone of an ox</td>
<td>0.291</td>
</tr>
<tr>
<td>Magnesium</td>
<td>0.310</td>
</tr>
<tr>
<td>Ivory</td>
<td>0.321</td>
</tr>
<tr>
<td>Brick</td>
<td>0.351</td>
</tr>
<tr>
<td>Casing-stone, Gt. Pyramid</td>
<td>0.367</td>
</tr>
<tr>
<td>Sulphuric acid, concentrated</td>
<td>0.373</td>
</tr>
<tr>
<td>Nummulitic limestone, G. P.</td>
<td>0.412</td>
</tr>
<tr>
<td>Porcelain (china)</td>
<td>0.420</td>
</tr>
<tr>
<td>Glass, crown</td>
<td>0.439</td>
</tr>
</tbody>
</table>

"Common stone" 1.442
Desert sand, near the Sphinx 1.454
Aluminium 1.460
Red granite (Peterhead) 1.464
Marble (Carrara) 1.477
Red granite, Gt. Pyramid 1.479
Emerald 1.487
Jasper 1.494
Basalt 1.500
Glass, flint 1.527
Sapphire 1.550
Diamond 1.618
Topaz 1.621
Ironstone 1.670
Sapphire 1.701
Garnet 1.720
Ruby 1.750
Loadstone 1.843
Silver ore 1.907
Arsenic, molten 1.010
Chromium 1.04
Tungsten 1.07
Tellurium 1.10
Litharge 1.10
Uranium 1.13
Antimony 1.17
Lead ore, black 1.20
Zinc, in its common state 1.21
Tin ore, black 1.22
Wolfman 1.25
Zinc, compressed 1.26
Tin, pure, Cornish 1.28
<table>
<thead>
<tr>
<th>Substance</th>
<th>Specific Gravity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iron, cast at Carron</td>
<td>1.28</td>
</tr>
<tr>
<td>Iron ore, prismatic</td>
<td>1.29</td>
</tr>
<tr>
<td>Lead ore, cubic</td>
<td>1.33</td>
</tr>
<tr>
<td>Iron, forged into bars</td>
<td>1.36</td>
</tr>
<tr>
<td>Copper, native</td>
<td>1.37</td>
</tr>
<tr>
<td>Manganese</td>
<td>1.40</td>
</tr>
<tr>
<td>Steel, hardened</td>
<td>1.37</td>
</tr>
<tr>
<td>Brass, cast, common</td>
<td>1.37</td>
</tr>
<tr>
<td>Brass, cast</td>
<td>1.47</td>
</tr>
<tr>
<td>Mercury, precipitated, red</td>
<td>1.47</td>
</tr>
<tr>
<td>Cobalt</td>
<td>1.48</td>
</tr>
<tr>
<td>Cadmium</td>
<td>1.50</td>
</tr>
<tr>
<td>Brass wire, drawn</td>
<td>1.50</td>
</tr>
<tr>
<td>Nickel</td>
<td>1.64</td>
</tr>
<tr>
<td>Copper wire, drawn</td>
<td>1.56</td>
</tr>
<tr>
<td>Bismuth, native</td>
<td>1.68</td>
</tr>
<tr>
<td>Bismuth, molten</td>
<td>1.72</td>
</tr>
<tr>
<td>Silver, native</td>
<td>1.76</td>
</tr>
<tr>
<td>Mercury, brown cinnabar</td>
<td>1.79</td>
</tr>
<tr>
<td>Silver, virgin</td>
<td>1.84</td>
</tr>
<tr>
<td>Silver, hammered</td>
<td>1.85</td>
</tr>
<tr>
<td>Mercury, precipitated, per se</td>
<td>1.91</td>
</tr>
<tr>
<td>Lead, molten</td>
<td>2.00</td>
</tr>
<tr>
<td>Palladium</td>
<td>2.07</td>
</tr>
<tr>
<td>Thallium</td>
<td>2.10</td>
</tr>
<tr>
<td>Mercury, fluent</td>
<td>2.38</td>
</tr>
<tr>
<td>Mercury, congealed</td>
<td>2.75</td>
</tr>
<tr>
<td>Gold, not hammered</td>
<td>2.76</td>
</tr>
<tr>
<td>Gold, hammered</td>
<td>2.77</td>
</tr>
<tr>
<td>Gold, English standard</td>
<td></td>
</tr>
<tr>
<td>22 carats</td>
<td>3.31</td>
</tr>
<tr>
<td>24 carats</td>
<td>3.38</td>
</tr>
<tr>
<td>222 carats</td>
<td>3.40</td>
</tr>
<tr>
<td>Platinum, purified</td>
<td>3.42</td>
</tr>
<tr>
<td>Platinum, hammered</td>
<td>3.57</td>
</tr>
<tr>
<td>Platinum wire, drawn</td>
<td>3.69</td>
</tr>
<tr>
<td>Platinum, compressed</td>
<td>3.87</td>
</tr>
<tr>
<td>Iridium, compressed</td>
<td>3.90</td>
</tr>
</tbody>
</table>

No efficient system, then, of determining weights by linear measure, in the present day, can possibly go unaccompanied by some kind of table of specific gravities; the number of items in such table being not dependent on the system, but on the richness and variety of natural products. Wherefore a few of these items at least might worthily be extracted from time to time, and discoursed on as natural theology texts by every schoolmaster appointed to teach weights and measures,—for what a boundless vista does not simple specific gravity open up into the realm of nature! And what thankfulness should it not excite in the mind of man towards the Creator, for his free gift of all these endless varieties of elementary matter, with which He has of old stocked the earthly abode of man; and thereby made a higher existence possible to him, than to denizens of water alone! A state of existence, with possibilities of continual improvement over all that has been yet, which is indicated in those simple figures 5·7; or the material 5·7 blocks which crown the walls of the King's Chamber above, and decide the size of the coffer below, as being expressive of what the whole earth contains, besides water.

The specific gravity standard of the Pyramid weight
measure being the mean density of all the solid, as well as fluid, treasures of the earth,—means thus an almost infinity of things in the history of mankind; and there appears to be further an even commensurability of a most marvellous order, between the weight of the whole Great Pyramid and the weight of the planet earth; marvellous at any time on account of the innate difficulty of the problem; more marvellous still when we consider the age in which it was executed, and on so grand a scale as to demand the most untiring perseverance and liberal expenditure of funds in carrying it out to completion.

The reader may perhaps not object to see some of the steps of this calculation, especially if we obtain the numbers to be compared, viz. the respective weights or masses of the Great Pyramid and the earth, by means of the system of Pyramid weight measure now being described.

If we desired the weights in Pyramid pounds, we should begin by taking the linear dimensions of each of the bodies in inches; but as tons are usually employed for large weights, and the weights to be dealt with are surely large enough in this case, we had better follow the custom (though of course our tons will be Pyramid tons), and begin with the dimensions of the bodies before us, in cubits, of the Pyramid (each cubit 25 Pyramid inches long).

LINEAR ELEMENTS OF SIZE OF GREAT PYRAMID.

<table>
<thead>
<tr>
<th>Description</th>
<th>Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertical height of Great Pyramid</td>
<td>232.52</td>
</tr>
<tr>
<td>Inclined height of Pyramid face</td>
<td>295.72</td>
</tr>
<tr>
<td>Side of square base of Great Pyramid</td>
<td>365.24</td>
</tr>
<tr>
<td>Transverse thickness of the ancient casing-stone film</td>
<td>4.00</td>
</tr>
</tbody>
</table>

CUBICAL ELEMENTS OF SIZE OF GREAT PYRAMID.

Cubic Pyramid cubits in the whole building, computed from the above linear elements | 10,339,850
Subtract for hollow internal spaces, such as the grand gallery, chambers, and passages, computed extraneously | 5,250

<table>
<thead>
<tr>
<th>Subtotal</th>
<th>10,334,600</th>
</tr>
</thead>
</table>

Subtract casing-stone film's cubic contents | 861,952

| Remains, cubic contents of the general mass | 9,472,648 |
Now all these calculations, thus far, would have to be performed on any system of computing weights from linear measurements, even on the French metrical system; and there also we should have still further to ascertain the specific gravity of the materials we are dealing with, not one of them being the same as water. But the casing-stones, of which there are 861,952 cubic cubits, have a specific gravity (ascertained by direct experiment on hand specimens) of 0.367, where unity represents the mean density of the whole earth; while the general residual mass of the building, of which there are 9,472,648 cubic cubits, has a specific gravity, under the same circumstances, of 0.412.

For Weight of Great Pyramid.

Hence the conversion of the previous data into weight, proceeds thus:

Casing-stone cubic cubits
Add ¼ (see p. 261)

Multiply by specific gravity 0.367
And, Residual mass in cubic cubits
Add ¼

Multiply by specific gravity = 0.412

Wherefore

For Weight of the Earth.

Linear Elements of the Earth.

Polar diameter = 20,000,000 Pyramid cubits.
Equatorial diameter = 20,070,000
Mean of all diameters, nearly = 20,047,000

Cubical Elements of the Earth.

Cubic Pyramid cubits contained in the earth, computed from the above linear elements, on the usual formula, depending on the value of π = 4,218,400,000,000,000,000
Now, to turn these cubic cubits into tons, we have merely to add \(\frac{1}{2} \); for as the earth itself is its own, and the Pyramid's unit of density, the multiplier there is simply unity. Hence—

\[
\begin{align*}
4,218,400,000,000,000,000,000,000,000,000,000 & + 1,054,600,000,000,000,000,000,000,000,000,000 \\
= 5,273,000,000,000,000,000,000,000,000,000,000 &
\end{align*}
\]

Weight of earth in Pyramid tons

Comparing now this weight, with that of the Great Pyramid as given above in the same tons (5,273,834), the first three places of numbers are found to be identical, quite as close, or rather a much closer, correspondence than could well have been expected; while the difference in the number of places of figures, or the number of times that the weight of the earth is absolutely greater than that of the Great Pyramid, is in the proportion of \(10^{15} \) to 1; or, as some prefer to express it, \(10^{9 \times 2} \) to 1.

Now this very proportion is in Pyramid numbers, and must further be considered to have been intended; for had the building not been chiefly composed of a stone so much lighter than what is usually known as "common stone," that it has the specific gravity of 0.412 in place of 0.442, the even proportion would not have been obtained,—without indeed altering the size, and that would have overthrown other equally, or still more, important commensurabilities. But now, without in the slightest degree interfering with any of its other departments of science and cosmical reference, the Great Pyramid, still standing, from primeval ages, in the centre of all the land surface of the whole world, puts forth this additional ground for having an unexceptional fitness to be the one and central establishment of authority and reference for weight measure to all men, of all nations, through all time, living on the whole earth.
International Appendix to Great Pyramid Weight Measure.

Hereditary Pound Weight Measures.

<table>
<thead>
<tr>
<th>Country or City</th>
<th>Name of Weight</th>
<th>Weight in English Grains</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aix-la-Chapelle</td>
<td>Pound</td>
<td>7,234</td>
</tr>
<tr>
<td>Augsburg</td>
<td>Heavy pound</td>
<td>7,580</td>
</tr>
<tr>
<td></td>
<td>Light pound</td>
<td>7,295</td>
</tr>
<tr>
<td>Basil</td>
<td>Livre, poids de marc</td>
<td>7,555</td>
</tr>
<tr>
<td>Berlin</td>
<td>Pound</td>
<td>7,231</td>
</tr>
<tr>
<td>Bilboa</td>
<td>Light pound</td>
<td>7,260</td>
</tr>
<tr>
<td>Brunswick</td>
<td>Pound</td>
<td>7,206</td>
</tr>
<tr>
<td>Canary Islands</td>
<td>Libra</td>
<td>7,104</td>
</tr>
<tr>
<td>Cassel</td>
<td>Pound</td>
<td>7,501</td>
</tr>
<tr>
<td>Cologne</td>
<td>do.</td>
<td>7,216</td>
</tr>
<tr>
<td>Constance</td>
<td>do.</td>
<td>7,285</td>
</tr>
<tr>
<td>Corsica</td>
<td>do.</td>
<td>7,666</td>
</tr>
<tr>
<td>Dantzic</td>
<td>do.</td>
<td>7,231</td>
</tr>
<tr>
<td>Erfurt</td>
<td>do.</td>
<td>7,285</td>
</tr>
<tr>
<td>France</td>
<td>Livre, poids de marc</td>
<td>7,555</td>
</tr>
<tr>
<td>Frankfort</td>
<td>Pound</td>
<td>7,210</td>
</tr>
<tr>
<td>Geneva</td>
<td>Light pound</td>
<td>7,082</td>
</tr>
<tr>
<td>Hamburg</td>
<td>Pound</td>
<td>7,476</td>
</tr>
<tr>
<td>Hanover</td>
<td>do.</td>
<td>7,611</td>
</tr>
<tr>
<td>Königsberg</td>
<td>do.</td>
<td>7,231</td>
</tr>
<tr>
<td>Leipzig</td>
<td>do.</td>
<td>7,206</td>
</tr>
<tr>
<td>Liège</td>
<td>do.</td>
<td>7,330</td>
</tr>
<tr>
<td>Lübeck</td>
<td>do.</td>
<td>7,480</td>
</tr>
<tr>
<td>Lüneburg</td>
<td>do.</td>
<td>7,540</td>
</tr>
<tr>
<td>Lyons</td>
<td>Livre, poids de soia</td>
<td>7,088</td>
</tr>
<tr>
<td>Madeira</td>
<td>Libra</td>
<td>7,077</td>
</tr>
<tr>
<td>Mecca</td>
<td>Rottolo</td>
<td>7,144</td>
</tr>
<tr>
<td>Mecklenburg</td>
<td>Pound</td>
<td>7,458</td>
</tr>
<tr>
<td>Munster</td>
<td>do.</td>
<td>7,353</td>
</tr>
<tr>
<td>Naples</td>
<td>Cantaro piccolo</td>
<td>7,420</td>
</tr>
<tr>
<td>Neufchâtel</td>
<td>Livre, poids de marc</td>
<td>7,555</td>
</tr>
<tr>
<td>Oldenburg</td>
<td>Pound</td>
<td>7,476</td>
</tr>
<tr>
<td>Padua</td>
<td>Libbra, peso grosso</td>
<td>7,380</td>
</tr>
<tr>
<td>Portugal</td>
<td>Arratel</td>
<td>7,083</td>
</tr>
<tr>
<td>Prussia</td>
<td>Pound</td>
<td>7,216</td>
</tr>
<tr>
<td>Great Pyramid</td>
<td>"Pound"</td>
<td>7,212</td>
</tr>
<tr>
<td>Rotterdam</td>
<td>Light pound</td>
<td>7,243</td>
</tr>
<tr>
<td></td>
<td>do.</td>
<td>7,175</td>
</tr>
<tr>
<td>St. Gall</td>
<td>Libra</td>
<td>7,101</td>
</tr>
<tr>
<td>Spain</td>
<td>Pound</td>
<td>7,219</td>
</tr>
<tr>
<td>Stettin</td>
<td>Old livre</td>
<td>7,460</td>
</tr>
<tr>
<td>Stralsund</td>
<td>Livre</td>
<td>7,266</td>
</tr>
<tr>
<td>Strauburg</td>
<td>Libbra, peso grosso</td>
<td>7,363</td>
</tr>
<tr>
<td>Venice</td>
<td>Pound</td>
<td>7,234</td>
</tr>
<tr>
<td>Ulm</td>
<td>do.</td>
<td>7,220</td>
</tr>
<tr>
<td>Wurtzburg</td>
<td>do.</td>
<td>7,362</td>
</tr>
<tr>
<td>Wurzburg</td>
<td>do.</td>
<td>7,511</td>
</tr>
<tr>
<td>Zell</td>
<td>Light pound</td>
<td>7,238</td>
</tr>
<tr>
<td>Zurich</td>
<td>Light pound</td>
<td>7,238</td>
</tr>
</tbody>
</table>
The above forty-seven remarkable approximations in many countries to the Pyramid pound, are extracted out of a table of 174 weights of all kinds; and the origin, or centre of diffusion of the 7,212 grains, or Great Pyramid, pound, is evidently not to be sought in any of the classical profane nations; the Old Roman pound having been equal to from 4,981 to 5,246 English grains; the Ancient Greek mina, from 5,189 to 6,994 English grains; the Pharaonic Egyptian pound, or mina = 8,304 grains; and the Alexandrian Egyptian mina = 6,886 English grains.
CHAPTER XIV.

LINEAR AND SURFACE MEASURE.

We have now arrived at the commercial arrangement of the most important of all the measures of a nation; at that one which requires practically to be attended to first, and which was first attended to, and secured with more than sufficient accuracy, as well as with the grandest of suitable and harmonious earth-commensurability, in the Great Pyramid; viz. linear, or length, measure. And, after all that was accomplished in laying out the exterior of the building in terms of this standard, we have just seen that the interior arrangements of the Pyramid are similarly laid out; and there, both in a harder material and in a constant temperature which brings all standards of all materials into a uniform and inter-comparable condition, most unexceptionably.

The particular standard of length measure for the Great Pyramid, viz. its 25-inch cubit, the one-ten-millionth of the earth's semi-axis of rotation, has its length most exactly ascertainable by modern measure (combined with an understanding formula, so as to take advantage of a multiple of the single standard arranged by the Architect himself), in the King's Chamber; where, as Prof. H. L. Smith has well shown, it is given by the expression: Cubic diagonal of the room multiplied by 10, and divided by the breadth of the floor. That is, in Pyramid inches
deduced from the British inches of my actual measures of the said chamber in 1865 (see Chap. X.), \(\frac{3141.648}{206066} = 25.000 \) Pyramid inches.

This, too, is evidently the length to which, in a concrete, single, and distinctly separate shape, we were also introduced by the granite leaf in the ante-chamber, as already detailed in Chap. X.; the chief purpose, however, there, being to show the subdivisions of a single cubit, first into five hand-breadths, and then each hand-breadth into five parts (25th parts of the whole cubit), which parts we will call, in our language, "inches."

Now any one of these inches is the unit, unit-standard if you like, of the Great Pyramid linear measure. Accurately, this inch is the 1-500,000,000th of the earth's axis of rotation; but approximately, a thumb-breadth, to any full-sized, able-bodied man who has ever lived on the earth during the last four thousand years. In that long interval of anthropological time, what mighty empires, what varied races of men, and what languages too, have arisen and have passed away again from the face of the world! Therefore, of the present words and phrases, laws and customs, which rule in modern society, whether scientific, political, or commercial, which of them can expect to continue to control the actions and thoughts of men for anything like a similar period to this rule of the inch; or for the next forty centuries of years?

A thumb-breadth, then, is, both chronologically and historically, no indifferent test-reference of approximation, to every poor man, for realising, when in haste, the unit of his measure of length; and keeping up some identity in his works with those of his fathers from earliest history, and even before history. Wherefore it is only characteristic of human nature in the large, that the working-men of Newcastle, according to the unintended testimony of Sir William Armstrong before the British Association
of 1863, have once more practically, by their deeds and in their works, pronounced indubitably for the inch (an inch, too, decimally subdivided), wherever extreme accuracy is concerned.

It was so in our olden national times as well; viz. that the English unit was the inch, and not any of those larger measures, of yards or metres, which the wealthy have been endeavouring to get established of late.

The old Exchequer standards, spoken of in 1742 (strong bars of gun metal, square in cross section and slightly convex at the ends, to suit "end measure"), marked E for Queen Elizabeth, and supposed to date from 1580, were, as reported at the time, one a yard, and one an ell; but that did not make either the one, or the other, the unit of the country's length measure. Where the unit is small, the public standard must inevitably consist of a number of such units strung together; and the incommensurability, except through their component inches, of that pair of measures laid side by side, the yard and the ell, might have reminded men in subsequent times of the true state of the case.

But it did not; and that the efforts of the ruling classes in making so much, as they have during late years been doing, of the yard, were intended to establish it as a new unit, and not as a convenient number of the ancient small inch units arranged together to suit a special purpose of manufactures and commerce, the following words of the Act (June, 1824) sufficiently testify:

"The straight line or distance between the centres of the two points in the gold studs in the straight brass rod, now in the custody of the Clerk of the House of Commons, whereon the words and figures standard yard of 1760 are engraved, shall be, and the same is hereby declared to be, the original and genuine standard of that measure or lineal extension called a yard; and that the same straight line or distance between the said two points in the said
gold studs in the said brass rod, the brass being at the temperature of 62° of Fahrenheit's thermometer, shall be, and is hereby denominated, the **imperial standard yard**, and shall be, and is hereby declared to be, the **unit**, or only standard measure of extension."

Yet a yard unit would be by no means generally acceptable, even by those desiring something large; for we have already seen the favour extended in Queen Elizabeth's time to the 45-inch ell; while both the Astronomical Society's new scale of 1835, as well as those of Troughton, Sir George Shuckburgh, and others, were oftener of five feet than three. At three, however, what is now by modern law, in defiance of history and fact, the **unit** of our country's linear measure, has been eventually settled by the last Parliamentary Commission;* and at three feet it will legally remain until some great constitutional exertion be made to rectify it.

During all these twenty or thirty past years, too, that it has remained there, a most artificial quantity, and naturally incommensurable with anything grand, noble, sublime,—there never seemed to be the slightest suspicion amongst any of the Government Commissioners, until John Taylor announced it from his Great Pyramid studies, and Sir John Herschel followed with scientific confirmations, that each single one of the 36 really **unit** inches of which the modern British Government's standard, and erroneously called **unit**, yard is composed, contains within itself all

* The commission of 1838 had been thorough enough to consider, at least according to its lights at that time, all the following points:—

A. Basis, arbitrary or natural, of the system of standards.
B. Construction of primary standards.
C. Means of restoring the standards.
D. Expediency of preserving one measure, &c., unaltered.
E. Change of scale of weights and measures.
F. Alteration of the land chain and the mile.
G. Abolition of troy weight.
H. Introduction of decimal scale.
I. Assimilation to the scale of other countries, &c.
that much-desiderated physical applicability and scientific perfection,—when each individual British inch is, almost exactly, the 1-500,000,000th of the earth’s axis of rotation already referred to.

Almost, only, and not quite though, at this present time; for it requires 1.001 of a modern British inch to make one such true inch of the earth and the Great Pyramid. An extraordinarily close approach, even there, between two measures of length in different ages and different lands; and yet if any one should doubt whether our British inch can really be so close to the ancient and earth-perfect measure, I can only advise him to look to the original documents, and see how narrowly it escaped being much closer; and would have been so too in these days, but that the government officials somewhere in the "unheroic" eighteenth century allowed the ell measure, of equal date and authority with the yard, and of a greater number of inches (45 to 36), and therefore, in so far, a more powerful standard,—to drop out of sight.

The modern inch now in vogue amongst us was derived from the Exchequer yard standard, through means of Bird’s copy in 1760 and other copies, and was therefore intended to be one of the inches of that particular yard; but the inches of the Exchequer ell were rather larger inches, and there were more of them; so that if either standard was rightfully taken as the sole authority for the value of an inch, it should have been the ell. Now when these standards were very accurately compared by Graham in 1743, before a large deputation of the Royal Society and the Government, it was found that the Exchequer ell’s 45 inches exceeded the quantity of 45 such inches as the Exchequer yard contained 36 of, by the space of 0.0494 of an inch. A result, too, which was

in the main confirmed by the simultaneous measures of another standard ell at Guildhall, with an excess of 0.0444 of an inch, and the Guildhall yard with the excess of 0.0434 of an inch; showing that at that date generally, the English inch was larger than it is now by the amount of very nearly the 0.001 of an inch which we find with the Great Pyramid inch.

Keeping, however, for minuter details only to the Exchequer standard ell; and finding that it was not, after all, the very Exchequer yard, which was subsequently made (in Bird’s copy) the legal standard of the country, that it was compared with by Graham, but a previous copy of it, and found in 1743 to be in excess by 0.0075 of an inch, on the Royal Society’s scale,—we must subtract this quantity from the observed excess of the Exchequer ell; and then we get that its 45 inches were equal in terms of the present standard inches of the country, to 45.0419.*

* This rather roundabout conclusion, but unavoidably roundabout from the nature of the only documents in existence at the time of the first edition of this book being prepared, has been directly tested since then, and almost entirely confirmed by my friend, since deceased, Colonel Strange, the eminent superintendent for Government of all scientific instruments ordered for India.

The problem set before Colonel Strange, in 1864, was, to obtain at that time, in the then legalised and Government inches of our country, a direct measure of the Exchequer’s Queen Elizabeth’s standard ell rod; i.e. the gun-metal bar decorated with the royal crown and E. at each end, and safely preserved in the Exchequer, it is believed, for close on 300 years.

Colonel Strange kindly undertook the task, and having obtained formal leave from H.M. Exchequer and the Lords of the Treasury, proceeded thus:

With the aid, partly, of Messrs. Chisholm and Chaney (the Chief Clerk and Junior Clerk of the Exchequer, now Warden and Sub-Warden of the Standards), the exact microscopic length of the modern Government standard yard was laid off on the old Elizabethan ell, starting from one end of it precisely, and marking on the ell, towards the further end of it, exactly where the other end of the yard came. That place was defined by a very fine line, drawn with a sharp steel point; and then they had between that line and the further end of the ell, the difference in length of the yard and the ell, viz. 45 - 36 = 9 inches, nominally; but it might be more or less than 9 inches, if there was any sensible difference in the size of the inches of the ell and of the inches of the yard.—(See Transactions of R. Society, Edinburgh, vol. xxiii. for 1864, pp. 702, 706.)

This plan was an excellent one, because it threw the anomalies or accu-
But 45 Pyramid inches are equal to 45.0450 modern English inches; whence it will be seen, of those earlier English inches, that they had such a truth, a justness, and a closely earth-axis commensurable quality, that it required an addition of only 0.0001, or no more than the twentieth part of a hair's breadth, or of rather less than that still, to make one of those English inches perfectly equal to a Pyramid inch: and will cause every well-wisher of his country to perceive that the inch must be preserved. Not only and simply preserved too, but, if possible, restored to its exact ancient and Pyramid value;—when the following table of earth-commensurable lengths (in its now proposed subdivisions, chosen because apparently appropriate to the Great Pyramid's numbers, as well as suitable to human use and wont), would become possible to be the British measures in modern times also, and without dislocation to any of the more usual popular factors.

mutated small differences of all the ell's 45 inches upon the yard's inches into the small 9-inch, nearly, space, and reduced any temperature correction required to an infinitesimally small quantity.

The next step of Colonel Strange was, in the same skilful manner, to transfer that residual 9-inch length, nearly, of the ell, to a slip of brass; and then, after having again and again compared that transferred length with the marked length on the ell, and found it certainly to agree therewith to the verge of visibility with a magnifying glass, he took it to Messrs. Troughton and Simms's grand instrumental establishment, and by means of well-known micrometer-microscope apparatus there, determined the exact length in modern Government inches of the apparent 9 inches, more or less, transferred from the ell.

And how much did it amount to?

To 9.039 inches. Showing that the Elizabethan ell's 45 inches were equal to 45.039 of the present inches of the British Government; that is, that the Elizabethan ell's inches were longer than the present English inches, but not quite so long as the Great Pyramid inches, yet coming almost ten times closer thereto than does the present legalised inch of the country.
Great Pyramid Length Measures

<table>
<thead>
<tr>
<th>Division, or number of each part in the grand Length Standard</th>
<th>Intermediate division</th>
<th>Length in Pyramid miles</th>
<th>Length in Pyramid cubits or arms</th>
<th>Length in Pyramid inches</th>
<th>Name now proposed to be applied</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1000</td>
<td>4·000</td>
<td>10,000,000</td>
<td>250,000,000</td>
<td>Earth's half-breadth, or semi-axis of rotation.</td>
</tr>
<tr>
<td>1,000</td>
<td>4·000</td>
<td>1·000</td>
<td>2,500</td>
<td>62,500</td>
<td>League.</td>
</tr>
<tr>
<td>4,000</td>
<td>0·4</td>
<td>250·000</td>
<td>100·000</td>
<td>2,500·000</td>
<td>Mile.</td>
</tr>
<tr>
<td>40,000</td>
<td>2·5</td>
<td>25·000</td>
<td>10·000</td>
<td>250·000</td>
<td>Furlong.</td>
</tr>
<tr>
<td>100,000</td>
<td>10·000</td>
<td>2·500</td>
<td>1·000</td>
<td>25·000</td>
<td>Acre-side.</td>
</tr>
<tr>
<td>1,000,000</td>
<td>10·000</td>
<td>0·250</td>
<td>0·010</td>
<td>0·001</td>
<td>Rod.</td>
</tr>
<tr>
<td>10,000,000</td>
<td>25·000</td>
<td>1·000</td>
<td>0·100</td>
<td>Tenth.</td>
<td></td>
</tr>
<tr>
<td>(20,833,333)</td>
<td>25·000</td>
<td>0·250</td>
<td>0·001</td>
<td>Hundredth.</td>
<td></td>
</tr>
<tr>
<td>250,000,000</td>
<td>250·000</td>
<td>0·025</td>
<td>0·0001</td>
<td>Thousandth.</td>
<td></td>
</tr>
<tr>
<td>2,500,000,000</td>
<td>2,500·000</td>
<td>0·0025</td>
<td>0·0001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25,000,000,000</td>
<td>25,000·000</td>
<td>0·00025</td>
<td>0·0001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>250,000,000,000</td>
<td>250,000·000</td>
<td>0·000025</td>
<td>0·0001</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A small standard, viz. the foot of 12 inches, is left in place; because, although not evenly earth-commensurable, and inappropriate, therefore, for scientific purposes, there is a large operative use for it; and it is connected at one end, though not at the other, with the Pyramid system. And if we next compare all the mutually approximating Pyramid items with the British, and in terms of present British inches (so that we may not be speaking in an unknown language), we shall have the following table:—

Pyramid and British Linear Measure

Compared through the temporary medium of British linear inches.

<table>
<thead>
<tr>
<th>1 earth's semi-axis of rotation</th>
<th>250,250,000·000</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 league Pyramid</td>
<td>250,250·000</td>
</tr>
</tbody>
</table>

1 mile	62,562·500
1 acre-side	2,502·500
1 rod	250·250

1 cubit or arm	25·025
1 foot	12·012
1 inch	1·001
The first remark to be expressed on this table is the very close approach of the acre-side of the Pyramid to that of the British scale. It is a length which does not nominally figure on the usual modern linear English lists, though it exists through the square measure; and is, without doubt, the most important land measure by far which the whole community possesses; because it is the invariable term in which all the landed property of the country is bought, sold, and "deeded."

As such an all-important quantity to this country, we cannot at all understand how an acre was ever established by Government at such a very awkward proportion in the length of its side, as it now is, to any of our linear measures; for the fraction which it gives is rough to a degree: and yet, it will be observed, by the previous tables, that the Pyramid principle, hardly altering the real and absolute value to any sensible extent, makes the acre-side in Pyramid inches at once the easy quantity of 2,500; or in arm, i.e. cubit, lengths, 100.*

And a second remark is, that these linear measures lead terrestrial distances, as by leagues and earth-radii, so easily and by decimal steps, from affairs of the earth to those of the skies, that they possess another direct advantage in science. For, whether in the case of the moon,

* This important principle of identifying the acre-side with the linear measures of its own country has been recently taken up, or rather arrived at independently, by Mr. Louis D'Aguilar Jackson, in his little book, "Simplified Weights and Measures," E. and F. N. Spon, 48, Charing Cross, London, 1876.

Accordingly, at p. 18, he speaks of its having been a custom in primitive times to have no special measures of surface, because the measures of length were used as corresponding with the side of a square surface, and rendering particular "superficial measures quite unnecessary."

Again, at p. 26, he speaks of the existing English expedient of Gunter's chain and other special land measures as having been introduced only "owing to the moderns having lost sight of the acre-side of ancient times, which evidently must have been once at 100 cubits, and afterwards perhaps 200 feet. And in his own proposed scheme accordingly, of not a revolutionised, but only of a wisely reformed, English table of linear measure, he recure to what he considers original principles, and announces, 12 inches = 1 foot, 200 feet = 1 acre-side, 30 acre-sides = 1 mile.
or the vastly more distant sun, astronomers express their respective distances almost always in terms of an earth-radius or earth's half-breadth—as if all men were perfectly aware of what length that was—and yet there is no indication of it in the authorised and legal long measures of the country. No! not though the sacred Book of Job indicates Divine Providence to be still waiting for the answer of self-sufficient, o'er-vaulting, man, as to how much he does really know, and use, of that most proper grand linear standard for him, in his present abode, viz. "the breadth of the earth."

Nor does the advantage of the Pyramid principle end here, for the mile contains 2,500, or 50×50, cubit lengths; and such a proportion has recently, though it is to be feared involuntarily, become so great a favourite with Government, that they have commenced a magnificent survey of Great Britain on precisely this proportion, or 1-2500th of nature.

This is by far a larger scale than either our own, or any other, country has ever been completely surveyed on yet; and infers such an infinity of drawing, copying, and engraving, that it could positively never have been thought of, even in wealthy Great Britain, but for the previous invention, first of photography to do all the copying, and then of electrotypy to multiply the soft engraved copper plates. Hence the survey on the scale of 1-2500th is a remarkable public work of the present time, and excites some curiosity to know how and why that proportion came to be adopted.

Plainly 1-2500 does not form any portion of the British imperial linear system; and when we are officially told, that the proportion was adopted to allow of the map being on a scale of 25 inches to a mile, or becoming thereby capable of representing an acre by one square inch,—we are quite assured (if the Government is still true to the legal measures of the land), that that is not
the reason; for the map is not on that scale. It is truly
of the proportion of 1-2500th of nature; but that gives,
in the British metrology, 25·344 inches to a mile,* and
1·018 square inches to an acre.

Immense inconvenience, therefore, results to the com­
ponent members of the British nation, that the grandest
and most costly survey of their country which they have
ever paid for, and which is now in inevitable progress,
whether they like it or not,—does not fit in to their
existing measures evenly, but carries these annoying
fractions along with it.

Yet a single act of parliament adopting the Pyramid
measures for the country,—or, we might almost say,
restoring the nation’s hereditary measures to their proper
place, and not occasioning any inconvenience to the ordi­
nary public using the inch, the acre, and the mile,—
would cause the map, without any alterations at all to it,
to be at once a map on the scale of most precisely and
evenly 25 of the then legal British inches to the then
mile,† and of one square legal British inch to the then
acre, without the smallest fraction left over or under;
and would substitute truth for arithmetical falsehood, on
every occasion when a Briton has hastily, and tries
shortly, and without going into fractions, to mention the
great national map of his country.

In my first edition I said that Britons might in haste

* Agreeably with the present law of the land that 12 inches = 1 foot,
3 feet = 1 yard, and 1,760 yards = 1 mile; then 1 mile contains 63,360
inches, which quantity being divided by 2,500 (the Ordnance map’s scale
of reduction), gives 25·3440, the proportion alluded to above.
† The proportion here stated is arrived at thus:—
In the table of proposed Pyramid linear measure, p. 266, it will be seen
that 25 inches = 1 cubit; 100 cubits = 1 acre-side; 25 acre-sides =
1 mile; whence, 1 mile contains 62,500 inches; and 62,500 divided by
2,500 as before, yield 25·0000 exactly.
Also, 1 acre-side contains 2,500 inches; wherfore that number divided
by the 2,500 of the Ordnance map’s scale of reduction, necessarily yields
1·0000 inches.
stumble into that slovenly and untruthful error of speaking of 25·344 inches, as being 25·000 inches, or of the Ordnance map being on the scale of 25·000, when they should have said 25·344, inches to a mile; but I regret to have to add now, that larger experience shows that they commit themselves equally in their calmer moments, and with abundance of leisure, as well; for in the Proceedings of the Royal Society of Edinburgh for the Session 1872-3, just published, the learned President Professor, Sir Robert Christison, Bart., M.D. (and great for the introduction of the French metrical system, as well as for more accurate or convenient weights and measures for British pharmacy and chemistry), one therefore who knows what exactness is,—yet even he, from his presidential chair and in his inaugural address for the session, could continually speak of, and the Society subsidised by Government could continually print on page after page, "the 25-inch maps of the Ordnance Survey;" when they ought to have said, and printed, "25·344-inch maps of the same survey."

INTERNATIONAL APPENDIX TO GREAT PYRAMID LINEAR MEASURE.

Hereditary Cubit or "Cloth" Measures.

<table>
<thead>
<tr>
<th>Country or City</th>
<th>Name of Linear Measure</th>
<th>Length in British Inches</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aix-la-Chapello</td>
<td>Ell</td>
<td>26·38</td>
</tr>
<tr>
<td>Aleppo</td>
<td>Pic</td>
<td>26·66</td>
</tr>
<tr>
<td>Alexandria</td>
<td>Pic</td>
<td>26·80</td>
</tr>
<tr>
<td>Algiers</td>
<td>Turkish pic</td>
<td>24·53</td>
</tr>
<tr>
<td>Ancona</td>
<td>Braccio</td>
<td>25·33</td>
</tr>
<tr>
<td>Bergamo</td>
<td>Braccio</td>
<td>25·80</td>
</tr>
<tr>
<td>Bergen</td>
<td>Ell</td>
<td>24·71</td>
</tr>
<tr>
<td>Berlin</td>
<td>Ell</td>
<td>26·25</td>
</tr>
<tr>
<td>Betislagui</td>
<td>Guz</td>
<td>25·00</td>
</tr>
<tr>
<td>Bologna</td>
<td>Woollen braccio</td>
<td>25·00</td>
</tr>
<tr>
<td>Cairo</td>
<td>Pic</td>
<td>26·80</td>
</tr>
<tr>
<td>Candia</td>
<td>Pic</td>
<td>25·11</td>
</tr>
<tr>
<td>Copenhagen</td>
<td>Ell</td>
<td>24·71</td>
</tr>
<tr>
<td>Cremona</td>
<td>Braccio</td>
<td>24·24</td>
</tr>
<tr>
<td>Cyprus</td>
<td>Pic</td>
<td>25·45</td>
</tr>
</tbody>
</table>
International Appendix—continued.

<table>
<thead>
<tr>
<th>Country or City</th>
<th>Name of Linear Measure</th>
<th>Length in British Inches</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dunkirk</td>
<td>Auno</td>
<td>26.62</td>
</tr>
<tr>
<td>Emden</td>
<td>Ell</td>
<td>26.40</td>
</tr>
<tr>
<td>Ferrara</td>
<td>Woollen braccio</td>
<td>26.33</td>
</tr>
<tr>
<td>do.</td>
<td>Silk braccio</td>
<td>24.75</td>
</tr>
<tr>
<td>Layden</td>
<td>Ell</td>
<td>26.89</td>
</tr>
<tr>
<td>Lisbon</td>
<td>Covado</td>
<td>26.70</td>
</tr>
<tr>
<td>Mantua</td>
<td>Braccio</td>
<td>26.00</td>
</tr>
<tr>
<td>Mocha</td>
<td>Guz</td>
<td>25.00</td>
</tr>
<tr>
<td>Modena</td>
<td>Braccio</td>
<td>24.31</td>
</tr>
<tr>
<td>Namur</td>
<td>Ell</td>
<td>26.11</td>
</tr>
<tr>
<td>Nancy</td>
<td>Auno</td>
<td>26.18</td>
</tr>
<tr>
<td>Nimeguen</td>
<td>Ell</td>
<td>26.11</td>
</tr>
<tr>
<td>Nuremberg</td>
<td>Ell</td>
<td>25.95</td>
</tr>
<tr>
<td>Oudenarde</td>
<td>Ell</td>
<td>26.28</td>
</tr>
<tr>
<td>Padua</td>
<td>Woollen braccio</td>
<td>26.80</td>
</tr>
<tr>
<td>do.</td>
<td>Silk braccio</td>
<td>25.30</td>
</tr>
<tr>
<td>Parma</td>
<td>Cloth braccio</td>
<td>26.10</td>
</tr>
<tr>
<td>Patras</td>
<td>Silk pic</td>
<td>25.00</td>
</tr>
<tr>
<td>Persia</td>
<td>Guerze</td>
<td>25.00</td>
</tr>
<tr>
<td>Poland</td>
<td>Ell</td>
<td>24.30</td>
</tr>
<tr>
<td>Prussia</td>
<td>Ell</td>
<td>26.25</td>
</tr>
<tr>
<td>Great Pyramid</td>
<td>“Sacred Cubit”</td>
<td>25.025</td>
</tr>
<tr>
<td>Ravenna</td>
<td>Braccio</td>
<td>26.46</td>
</tr>
<tr>
<td>St. Gall</td>
<td>Cloth ell</td>
<td>24.20</td>
</tr>
<tr>
<td>Sciose</td>
<td>Short pic</td>
<td>25.98</td>
</tr>
<tr>
<td>Stettin</td>
<td>Ell</td>
<td>25.62</td>
</tr>
<tr>
<td>Tournay</td>
<td>Ell</td>
<td>24.40</td>
</tr>
<tr>
<td>Trent.</td>
<td>Cloth ell</td>
<td>26.64</td>
</tr>
<tr>
<td>do.</td>
<td>Silk ell</td>
<td>24.09</td>
</tr>
<tr>
<td>Trieste</td>
<td>Woollen ell</td>
<td>26.60</td>
</tr>
<tr>
<td>do.</td>
<td>Silk ell</td>
<td>26.22</td>
</tr>
<tr>
<td>Tunis</td>
<td>Woollen pic</td>
<td>26.50</td>
</tr>
<tr>
<td>do.</td>
<td>Silk pic</td>
<td>24.83</td>
</tr>
<tr>
<td>Valenciennes</td>
<td>Auno</td>
<td>25.93</td>
</tr>
<tr>
<td>Venice</td>
<td>Woollen braccio</td>
<td>26.61</td>
</tr>
<tr>
<td>do.</td>
<td>Silk braccio</td>
<td>24.81</td>
</tr>
<tr>
<td>Verona</td>
<td>Woollen braccio</td>
<td>26.67</td>
</tr>
<tr>
<td>do.</td>
<td>Silk braccio</td>
<td>25.22</td>
</tr>
<tr>
<td>Zante</td>
<td>Silk braccio</td>
<td>25.37</td>
</tr>
</tbody>
</table>
Foot Measures.

As shown in our table on page 266, and its subsequent explication, a 12-inch foot standard introduces notable difficulties into the earth-commensurable section of the Great Pyramid arrangement of long measure. And proposals have been before the public for several years, from totally opposite quarters too, requesting Government to enact a 10-inch foot for the future use of the nation.

Such a foot would evidently harmonize at once with every branch of the Pyramid system; but how would it suit the convenience of the working-men, for whose purpose mainly the foot seems to have been originally introduced, and is still kept up?

We have already seen in the note on page 28, Chapter III., that the natural or naked foot of a man is barely 10·5 inches long, though the shoe and booted foot of civilized man may be twelve inches or more; and indeed, in some parts of Switzerland and Germany, their local metrological tables state that twelve inches make, not a foot, but a "schuh," or shoe. There need be no surprise, therefore, to find, that two separate foot measures have long been known amongst mankind, one of them averaging twelve English inches long, and the other ten, though still almost invariably divided into twelve parts, or small inches of its own: in the foot of the one case, its length was twelve thumb breadths, and in the other, twelve finger breadths, approximately. The ancient Roman foot (11·62 English inches long nearly) was evidently of the former class; as was likewise the Greek Olympic foot, generally known as the Greek foot par excellence, and = 12·11 English inches; though Greece had also another foot standard, termed the Pythic foot, which was only 9·75 English inches long.

But in mediæval and modern, or Saxon, Norman, and British times, humanity seems to have declared itself unmistakably for the larger foot. So that in Dr. Kelly's list of all the commercial peoples known to Great Britain in 1821 (see his "Universal Cambist," vol. ii. p. 244), while ten of them have feet ranging between 9·50 and 10·99 English inches, no less than seventy-four are found to have feet whose lengths are comprised somewhere between 11·0 and 13·0 of the same inches.

Hence, if any alterations should be made in future time to earth-commensurate the Pyramid foot, as now imagined = 12·012 English inches, it should rather be in the direction of making it = 12·5 than 10·0 Pyramid inches; and no harm would be done in either case, so long as the value of the inch was not interfered with.

The ancient idolatrous Egyptians of the Pharaonic period do not seem to have had any foot measure; but, for all linear purposes, to have invariably used their well-known profane cubit = 20·7 English inches long; doubling it sometimes as the royal or Karnak cubit, which was then = 41·4 English inches. In subsequent Greek Alexandrian times, those Egyptians both employed, perverted, and mixed up with their own, sundry measures of Greece, and may then have had feet, as well as small cubits = 1·5 foot; but these hybrid and short-lived standards are by no means worth our while now to inquire into, for Alexandria of the Ptolemys, never very ancient, has long since been deservedly dead and buried; while the present Alexandria is a different city, inhabited by a differently descended people, and professing a totally different religion.
Hereditary Inch Measures.

<table>
<thead>
<tr>
<th>Country or City</th>
<th>Name of Linear Measure</th>
<th>Length in British Inches</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amsterdam</td>
<td>Rhineland foot(\frac{1}{12})</td>
<td>1.029</td>
</tr>
<tr>
<td>Anspach</td>
<td>Foot(\frac{1}{12})</td>
<td>0.977</td>
</tr>
<tr>
<td>Augsburg</td>
<td>Foot(\frac{1}{12})</td>
<td>0.971</td>
</tr>
<tr>
<td>Austria, Vienna</td>
<td>Zoll</td>
<td>1.037</td>
</tr>
<tr>
<td>Basil</td>
<td>Foot(\frac{1}{12})</td>
<td>0.979</td>
</tr>
<tr>
<td>Belgium</td>
<td>Lost its traditions and language too.</td>
<td></td>
</tr>
<tr>
<td>Berlin</td>
<td>Foot(\frac{1}{12})</td>
<td>1.016</td>
</tr>
<tr>
<td>Berne</td>
<td>Zoll</td>
<td>0.962</td>
</tr>
<tr>
<td>Birmah, Rangoon</td>
<td>Paulgaut</td>
<td>1.000</td>
</tr>
<tr>
<td>Calemberg</td>
<td>Foot(\frac{1}{12})</td>
<td>0.961</td>
</tr>
<tr>
<td>Cleves</td>
<td>Foot(\frac{1}{12})</td>
<td>0.971</td>
</tr>
<tr>
<td>Denmark</td>
<td>Tomme</td>
<td>1.030</td>
</tr>
<tr>
<td>Emden</td>
<td>Foot(\frac{1}{12})</td>
<td>0.972</td>
</tr>
<tr>
<td>France (older system)</td>
<td>Pouce</td>
<td>1.066</td>
</tr>
<tr>
<td>France (systeme usuel), interdicted since 1840</td>
<td>Pouce</td>
<td></td>
</tr>
<tr>
<td>France (modern)</td>
<td>Destroyed its traditions.</td>
<td>0.950</td>
</tr>
<tr>
<td>Hanover</td>
<td>Zoll</td>
<td>1.042</td>
</tr>
<tr>
<td>Holland</td>
<td>Lost its traditions.</td>
<td>1.009</td>
</tr>
<tr>
<td>Innsbruck</td>
<td>Foot(\frac{1}{12})</td>
<td>1.028</td>
</tr>
<tr>
<td>Königsberg</td>
<td>Foot(\frac{1}{12})</td>
<td>1.033</td>
</tr>
<tr>
<td>Leyden</td>
<td>Foot(\frac{1}{12})</td>
<td>0.950</td>
</tr>
<tr>
<td>Lindau</td>
<td>Zoll</td>
<td>1.030</td>
</tr>
<tr>
<td>Lucerne</td>
<td>Schuh(\frac{1}{12})</td>
<td>0.984</td>
</tr>
<tr>
<td>Middleburg</td>
<td>Foot(\frac{1}{12})</td>
<td>0.984</td>
</tr>
<tr>
<td>Neuffchâtel</td>
<td>Tum</td>
<td>0.974</td>
</tr>
<tr>
<td>Norway</td>
<td>Foot(\frac{1}{12})</td>
<td>0.997</td>
</tr>
<tr>
<td>Nüremburg</td>
<td>Foot(\frac{1}{12})</td>
<td>0.971</td>
</tr>
<tr>
<td>Oldenburg</td>
<td>Foot(\frac{1}{12})</td>
<td>0.989</td>
</tr>
<tr>
<td>Pisa</td>
<td>Pollegada</td>
<td>1.082</td>
</tr>
<tr>
<td>Portugal</td>
<td>Foot(\frac{1}{12})</td>
<td>0.985</td>
</tr>
<tr>
<td>Prague</td>
<td>Zoll</td>
<td>1.030</td>
</tr>
<tr>
<td>Prussia, up to 1872 do. since 1872</td>
<td>Lost its traditions.</td>
<td></td>
</tr>
<tr>
<td>Great Pyramid</td>
<td>“Inch”</td>
<td>1.001</td>
</tr>
<tr>
<td>Rhineland</td>
<td>Foot(\frac{1}{12})</td>
<td>1.029</td>
</tr>
<tr>
<td>Rome</td>
<td>Foot(\frac{1}{12})</td>
<td>0.988</td>
</tr>
<tr>
<td>Spain</td>
<td>Pullegada</td>
<td>0.927</td>
</tr>
<tr>
<td>Stettin</td>
<td>Rhineland foot(\frac{1}{12})</td>
<td>1.029</td>
</tr>
<tr>
<td>Straßburg</td>
<td>Land foot(\frac{1}{12})</td>
<td>0.968</td>
</tr>
<tr>
<td>Sweden</td>
<td>Tum</td>
<td>0.974</td>
</tr>
<tr>
<td>Zurich</td>
<td>Zoll</td>
<td>0.984</td>
</tr>
</tbody>
</table>
The above table is prepared chiefly from Dr. Kelly's "Universal Cam­
bist," but inasmuch as he does not descend below foot measures, and the
inches are then deduced by dividing his values for the feet by twelve;—the
list is supplemented by positive inches, or their verbal equivalents, as,—
zoll, pouce, tomme, tum, pollegada, pulgada, &c., as contained in Weale's
Woolhouse's "Weights and Measures."

One Inch of the Great Pyramid,
subdivided into tenths and half-tenths, equal in length to one 500-millionth
of the Earth's Axis of Rotation.

N.B.—The above pictorial representation must be considered approxi-
mate only, on account of the expansions and contractions of the paper
it is printed on, from moisture.
CHAPTER XV.

HEAT AND PRESSURE, ANGLE AND TIME.

As already shown, no system of weights and measures can be complete without a reference to heat, and its power of altering the dimensions of all bodies. It would appear too, that, next to the very existence of matter, heat is the most important influence or condition in creation; and, since the rise of the modern science of thermo-dynamics, which looks on heat as a mode of motion, the measure of heat is the first step from statics to dynamics, which is the last and truest form of all science.

A "thermometer" is therefore, in these days, one of the most widely essential of all scientific instruments, and there is probably no modern science which can advance far without its aid; unless indeed such science be assisted by some semi-natural and practical method of securing one constant reference temperature for all its observations; but which is seldom possible to be carried out completely in any modern observatories, and in fact is not. Yet the thermometer in England, though there so doubly necessary, has been allowed to remain in a most unsatisfactory guise. That is, its scale is generally ridiculed over all continental Europe, as being both inconvenient in practice, and founded in error, in so far as the notion of that worthy man, Mynheer Gabriel Daniel Fahren-
heit,* touching absolute cold, is seen every winter to be a mistake, whenever his thermometer descends below its own carefully marked zero; while the all-important point of the freezing of water is left at the not very signal, but certainly rather inconvenient, number of 32°; and the boiling-point at the not more convenient one of 212°.

Many, therefore, have been the demands that we should adopt either the German Réaumur, or the French Centigrade, i.e. originally the thermometer of Celsius; in terms of any of which, water freezing marks 0°; and all degrees below that notable point are negative; above, positive.

The proposed change has, except in a few chemical circles, been strenuously resisted, because—

1st. The anomalous absolute numbers chosen for freezing and boiling on Fahrenheit's scale do not interfere with the accuracy of thermometers so marked, when due allowance is made for them.

2nd. It has been against the principle of most British scientific men hitherto, in their different weights and measures, to have them showing a natural standard in themselves; but only to have their proportion to the said natural standards numerically determined, and then recorded in writing elsewhere.

3rd. This system has been carried out in its integrity in Fahrenheit's thermometer when it is written, that 180 even subdivisions shall exist between freezing and boiling; and the commencing number for freezing shall be 32°.

4th. In the fact that the distance between freezing and boiling is divided into 180 parts in Fahrenheit's ther-

* He was born at Hamburg some say, at Dantzig according to others, and lived long at Amsterdam; exactly when he was born is not known, nor is the date of his death, but his "Dissertation on Thermometers" was published in London in 1724, not many years after the first successful introduction of quicksilver to take the place of air in thermometers; and seems to have been the chief agent, over and above his own practical success in the manufacture of thermometers, in causing him to become such an almost universal favourite in England. And yet it is now alleged that Fahrenheit was not the original inventor of the scale which bears his name, that having been really devised and first used by Olaus Roemer, the celebrated astronomer of Copenhagen, about 1709.
mometer, but only 100 in the French thermometer and 80 in the German instrument, eminent advantage is claimed for every-day purposes; even among the chemists too, as well as all other members of the community,—because a greater number of different states of temperature can be quoted in even degrees without reference to fractions of a degree; and—

5th. It is said that the proposed change would be subversive of all ordinary ideas of steady-going individuals as to what the new numbers really meant; because, what honest country gentleman would appreciate in his heart that a temperature of 40°, when a French system should be established amongst us, meant a summer heat of 104° Fahrenheit?

Some of these objections have weight, but others are of doubtful importance; and in all that can be said about the British scientific principle (as established by the present Government) not founding its measures on natural standards direct,—that is proved to be baseless for our nation's early, and more than historic, origin, and for the absolute primeval fact,—by reason of the real British length unit, the inch, having been found, after all, to be an even, round, decimal-ending fraction of the earth's semi-axis of rotation.

The ultra-scientific and most highly educated upholders too of Fahrenheit, have, in the instance of the best practical zero of temperature, received a notable correction from the poorer classes of our land; the very classes for whom alone all working measures should be primarily arranged; seeing that every gardener, and probably every ploughman who thinks of such things at all, is accustomed in his daily toil to speak of the more rurally important and biologically trying cases of temperature (as well as the physically marvellous one of the universal fluid becoming a solid), not in terms of Mr. Fahrenheit's scale by any means, but as so many "degrees of frost" or "heat."
The practical importance, therefore, of having the British thermometrical zero at the freezing-point of water, is thus incontestably proved, and from the right quarter; while, if it be desirable, as no doubt it is desirable, to have the space from freezing to boiling divided into a greater number of degrees than either the French or German systems offer,—why then, let the nation take for the space between the two natural water units, not even the 180 of the clever Amsterdam Dutchman, Fahrenheit, or rather of Olaus Roemer, the Danish astronomer, but the 250 of the Great Pyramid scale; for by so doing, not only will they reap that one advantage above mentioned to a still greater extent; but they will suffer less shock, as it were, in their feelings, when talking of summer temperatures, than even if they retained the size of the Fahrenheit degrees, but placed the 0 at freezing; as simply illustrated by the following numbers, giving the same absolute temperatures in terms of five different thermometric scales:

<table>
<thead>
<tr>
<th>Fahrenheit</th>
<th>Modified Fahrenheit</th>
<th>Centigrade</th>
<th>Réaumur</th>
<th>Pyramid</th>
</tr>
</thead>
<tbody>
<tr>
<td>122°</td>
<td>90°</td>
<td>50°</td>
<td>40°</td>
<td>125°</td>
</tr>
<tr>
<td>104°</td>
<td>72°</td>
<td>40°</td>
<td>32°</td>
<td>100°</td>
</tr>
</tbody>
</table>

But now for the finishing off of this last temperature scale, in the manner in which the Pyramid system so often ends with reference to the four sides of its base, and to the first four simple sections of such a Pyramid. Multiply, therefore, the 250° of water-boiling by 4, making 1,000, and where are we landed?

At that most notable and dividing line of heat, where it causes bodies to begin to give out light; and registered with confidence by the Diffusion of Useful Knowledge Society, in vol. ii. of their "Natural Philosophy," p. 63, under title of "Iron Bright Red in the Dark," as being
752° Fahrenheit, which amounts to 1,000° of the Pyramid precisely. And multiply this 1,000° again by 5, and where are we? At 5,000° of the Pyramid, or that glowing white-hot heat, where the modern chemists of several nations would place the melting-point of the most dense and refractory of all metals, platinum. Or descend again to — 400° Pyramid, and we find a point regarded by some existing chemists as the absolute zero of temperature: though natural philosophers are more inclined to prefer their theoretical base of the air thermometer at — 682° Pyramid; but as none of them have yet approached nearer than about half-way thereto, no man among them knows what physical obstacles may lie in the untried portion of their path. And that there may be many such difficulties, we have not to look far for an example.

Thus the French metrical temperature reference was originally intended by its exceedingly scientific authors, admirable for their day, to have been the freezing-point of water; on the arithmetical and mathematical, rather than physical and experimental, conclusion—that they would find water in its densest condition when coldest, or immediately before passing into the state of ice. But lo! when they began to experiment, nature refused to be bound by human ideas, and water was discovered to be of the greatest density at a very sensible distance of heat above freezing, or at 39°.2 Fahr.

When this discovery was once made, able men found in it a most beneficent influence to promote the amenities of human life upon the surface of the earth; seeing that but for the anomalous expansion of water with cold, when the temperature descends below 39°.2 Fahr., our lakes and rivers would freeze at the bottom instead of the top; and would, in fact, accumulate beds of ice below, until in the winter they became entirely solid blocks; which blocks no summer sun would be able to do more than
melt a small portion of the surface of, to be inevitably frozen hard again the next cold night, to the destruction of all the fish.

The discovered fact, however, of what really does take place, when water approaches the freezing-point, had the inconvenience of utterly breaking up the uniformity of the Academy's arrangements for temperature reference in the French metrical system. For the Parisian philosophers still desired to refer some observations to freezing; yet could not but conscientiously admit the superior propriety, at least for all measurements wherein the density of water entered, of employing their newly corrected temperature of 39\(^\circ\)2 Fahr., rather than their former 32\(^\circ\) Fahr.

Accordingly, at page 21 of Roscoe's "Lessons in Chemistry," where the best possible face is put upon French measures for the British nation, we are told that the French unit of weight is a cubic centimetre of water at a temperature of 4\(^\circ\) Centigrade. But at page 147, a table of specific gravities is given, where it is stated that water at the temperature of 0\(^\circ\) Centigrade is to be taken as unity; and no temperature reference at all appears for length measure; perhaps because the author knew that that is just now, for the mètre of the Archives, a still further deviation from the originally intended uniformity, being actually an uncertain quantity somewhere between 6\(^\circ\) and 12\(^\circ\) C., on account of an error in the mètre's length.

Again, at pages 361 and 362 of Prof. Roscoe's handy little book, extensive tables are formally given of comparisons between the English and French measures of all kinds (descending, where weight is concerned, to the sixth place of decimals of a grain), but no mention at all is made either of temperature or atmospheric pressure for any of them; though the former condition must vary occasionally by 60\(^\circ\), and the latter by the extent of the whole atmosphere.
In fact, the too learnedly artificial and bungled character of the French temperature and pressure references is such, that they cannot, in practice, look the light of day in the face; while they are, above all things, and for other reasons as well, totally unsuitable to the working-man. You cannot, for instance, attempt or pretend to use them in practice, without breaking their most important provisions continually; as well as introducing huge errors, such as the omission or introduction of the whole atmosphere, and all for the purpose of guarding against mere microscopic errors depending on minute and almost totally insensible variations of the atmosphere as it exists about, and is breathed momentarily by, us.

On that unhappy doctrinaire French system, strictly, if there should arise a difference of opinion in society, or at a market, as to which is the longer of two measuring-rods, or which is the heavier of two weights, you must carry both of them away from what they were being employed for, and bring the rods down by any possible method to the 6° or 12° C. point, and place the weights by some difficult and expensive contrivance in a vacuum at a temperature of 0° C., or perhaps 4° C. Both of these being out-of-the-way conditions where no one wants to use either rods or weights; and where you may find that their relations to each other (from different rates and characters of heat expansibility) are actually and totally different from what they were at any of the degrees of natural temperature, wherein they were being really and practically used; and which degrees never differ much from their mean quantity all the year through.

Indeed the extreme narrowness of the range both of temperature and atmospheric pressure, within which all the best, and the most too, of human work is performed, and can only flourish,—has begun at last to excite intelligent and interested attention. Wherefore thus, an able
and scientific American observer, field-geologist, and eloquent author, Mr. Clarence King, holds forth, in his recent book entitled "Mountaineering in Sierra Nevada," California,—on pressure of the atmosphere, when he has descended to the inhabited and low plain country from the high and snowy flanks of Mount Shasta:—

"The heavier air of this lower level soothed us into a pleasant (laziness) (frame of mind) which lasted over Sunday, resting our strained muscles and opening the heart anew to human and sacred influence. If we are sometimes at pain when realising within what narrow range of latitude (temperature) mankind reaches finer development,—or how short a step it is, from tropical absence of spiritual life to dull boreal stupidity,—it is added humiliation to experience our still more marked limitation in altitude. At fourteen thousand feet, or with 17 only, in place of 30, inches of atmospheric pressure, little is left me but bodily appetite and impression of sense. The habit of scientific observation, which in time becomes one of the involuntary processes, goes on as do heart-beat and breathing; a certain general awe overshadows the mind; but on descending again to lowlands, one after another the whole riches of the human organization come back with delicious freshness."

By what insane impulse then could it have been, that the philosophers of Paris did not accept their position on the earth, under the atmosphere, as given them by God to breathe; and instead of thankfully making the delightful mean annual temperature and wholesome and necessary mean annual pressure of the atmosphere on and in their abodes, the national references for those features in all matters of their metrology,—they must rush off to a horribly chilling and actually freezing zero; to a theoretical absence of all vital atmosphere; and to a host of physical difficulties which they have not even yet overcome or got out of the maze of.
Or by what mere flock-of-sheep impulse of irrationally following, is it, that now our own British scientific men, and the meteorologists among them more particularly, having made their own barometrical observations between 50° and 80° indoors, and having received others from abroad also confined within the same delightful limits of temperature, can think of no other mode of bringing them all to one common temperature point of comparison, than by carrying every one of them right away to the distant and outside freezing-point; and applying for that purpose so large a correction to the numbers read off from each barometer, that the original observer fails to recognise in his computed observations, those standard heights of quicksilver which he used to identify in his daily experience with particular conditions of weather, or warnings of approaching storms? Yet the London Government and the British people are daily paying, by the advice of their unpatriotic scientists of Gallic proclivities, for this worse than useless correction being applied to innumerable meteorological observations.

But all these anomalies are so happily corrected by the Great Pyramid system, that its primeval Author must surely have had more real regard for humanity, than all the savants and doctrinaires of both the first French Revolution and the present Cobden Club, put together. For the mighty building of old, being founded on the 30th parallel of latitude, is at once in the approximate temperature and very approximate atmospheric pressure of the middle zone of either hemisphere of the earth; and as the iso-bars, equally with the iso-therms, are much broader there, than in any other latitude,—that 30° zone represents the climatic conditions of a larger part of the earth than any other possible zone; and being also the parallel which has in either hemisphere an equal amount of surface between it and the Pole on one
side, and between it and the Equator on the other, it cannot help being somewhere very near to a golden mean between the far too hot tropics, and the far too cold Arctic and Antarctic circles;—while at the same time it receives more sunshine, more vivifying influence to man than any other latitude, by reason of its paucity of clouds, combined with the high solar altitude. (See the maps in my "Equal Surface Projection.")

That paucity of clouds in latitude 30° being largely due to the trade-wind influence, is accompanied by a barometric pressure which, in that latitude and at the surface of the sea, reaches there its terrestrial maximum, rather than mean quantity;—but then come into play the elevation both of the King's Chamber in the Great Pyramid, and of the Pyramid on its own hill-top, which corrects that small excess of pressure; as likewise does the same elevation fact, the rather too great temperature of Egypt generally, for the Pyramid Standard of climate heat; that land being situated in one of the longitudes, as well as latitudes, of extra and anomalous development of warmth.

But this total hypsometrical elevation of 4,297 inches above the sea-level, corrects the King's Chamber's region of atmospheric mean temperature, to what,—in the scale of natural temperatures?

To the temperature firstly of one-fifth exactly, from freezing to boiling of water; and secondly, to the mean temperature of all the anthropological earth. The entire earth has a surface temperature rather lower than one-fifth; but such entire earth includes Polar lands in either hemisphere of such excessively low temperature that they are not, and cannot, and never will be, permanently occupied by man. Lands too, which with their long Arctic nights ignore the Pyramid's very first and foundational teaching, or of solar days numbering 365·242 to the length of the year. Lands, moreover, which in their per-

* See my "Treatise on Equal Surface Projection," 1870.
petual cold may represent that declared impossibility, almost forbidden thing by the Almighty, to Job,—

"Hast thou entered into the treasures of the snow?
Or hast thou seen the treasures of the hail,
Which I have reserved against the time of trouble,
Against the day of battle and war?" (Job xxxviii. 22, 23.)

There is, therefore, no more occasion for taking those uninhabitable, and uninhabited, Polar lands' temperatures into account, when deciding on the one temperature to which all civilised men shall refer their science, their comforts, and their commerce,—than for our own most learned meteorologists, working in pleasantly warmed rooms, carrying all their British barometric observations away to 32° Fahr. actually; while that hyperborean, but always advancing, and southwardly extending, people, the Russians—who know what cold is far too well to court it unnecessarily—reduce their barometric observations to 62° Fahr.; a most praiseworthy approach to the 68° Fahr. of the Great Pyramid, but without any known cosmical, or religious, reason in its special favour.

And on making such very proper Polar exception in our earth-surface inquiry, the mean temperature of all man-inhabited countries appears to be, the very same beneficent and most suitable quantity as that of the Great Pyramid; whose system of numbers enables us now to express its standard quantity of a temperature, by 50°; or the very number already made out as specially belonging to the King's Chamber itself, where temperature reference is most required. Hence we are now Pyramidically justified in giving, in the following general table (derived as to its items from various modern sources expressed in Fahrenheit and Centigrade), the numbers which would be read off for those phenomena, so important towards the progress of civilisation and man, upon any well-graduated Pyramid thermometer, soon, it is hoped, to come into British national use.
Temperatures in Pyramid Thermometer Degrees.

Atmospheric pressure = 30 inches, except when otherwise stated.

<table>
<thead>
<tr>
<th>Phenomena</th>
<th>Number on Scale</th>
<th>Phenomena</th>
<th>Number on Scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Platinum melts</td>
<td>5000</td>
<td>Stearine melts</td>
<td>128</td>
</tr>
<tr>
<td>Wrought-iron melts</td>
<td>4000</td>
<td>Spermacei melts</td>
<td>122</td>
</tr>
<tr>
<td>Steel melts</td>
<td>3750</td>
<td>Summer temperature at Pyramid</td>
<td>100</td>
</tr>
<tr>
<td>"Cast-iron melts"</td>
<td>3500</td>
<td>Ether, common, boils</td>
<td>92</td>
</tr>
<tr>
<td>"grey, melts"</td>
<td>3250</td>
<td>Blood heat</td>
<td>91.5</td>
</tr>
<tr>
<td>"white"</td>
<td>3875</td>
<td>Butter and lard melt</td>
<td>82</td>
</tr>
<tr>
<td>Gold, pure, melts</td>
<td>3130</td>
<td></td>
<td></td>
</tr>
<tr>
<td>"alloyed as in coinage"</td>
<td>2625</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Copper melts</td>
<td>3125</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silver, pure, melts</td>
<td>2950</td>
<td></td>
<td></td>
</tr>
<tr>
<td>"Bronze melts"</td>
<td>2355</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sulphur boils</td>
<td>2250</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antimony melts</td>
<td>1100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zinc melts</td>
<td>1080</td>
<td></td>
<td></td>
</tr>
<tr>
<td>"Iron visible in the dark"</td>
<td>1028</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mercury boils</td>
<td>900</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sulphuric acid, strong</td>
<td>882</td>
<td></td>
<td></td>
</tr>
<tr>
<td>"boils"</td>
<td>832</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lead "</td>
<td>815</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cadmium</td>
<td>788</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phosphorus boils</td>
<td>725</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bismuth melts</td>
<td>575</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water boils under 20 atmospheres</td>
<td>535</td>
<td></td>
<td></td>
</tr>
<tr>
<td>"15"</td>
<td>500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>"10"</td>
<td>450</td>
<td></td>
<td></td>
</tr>
<tr>
<td>"5"</td>
<td>381</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spirit of turpentine boils</td>
<td>325</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetic acid boils</td>
<td>290</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sulphur melts</td>
<td>275</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water boils</td>
<td>250</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sodium melts</td>
<td>238</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzol boils</td>
<td>200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alcohol, pure, boils</td>
<td>198</td>
<td></td>
<td></td>
</tr>
<tr>
<td>"Stearic acid" melts</td>
<td>195</td>
<td></td>
<td></td>
</tr>
<tr>
<td>White wax melts</td>
<td>195</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wood spirit boils</td>
<td>179</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potassium melts</td>
<td>166</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yellow wax melts</td>
<td>158</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Greatest observed shade</td>
<td>155</td>
<td></td>
<td></td>
</tr>
<tr>
<td>temperature</td>
<td>139</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mean temperature at level of King's Chamber in Great Pyramid.

Pyramid temp. — $T^\circ = 50$

Mean temperature of all lands inhabited by man, and temperature of the most suitable degree to man.

- Ether boils: 28
- Mean temperature of London: 25
- Low winter temperature at Pyramid: 20
- Water freezes: 0
- Freezing mixture, snow and salt: -50
- Sulphuric acid freezes: -87
- Mercury freezes: -98
- Greatest Arctic cold experienced: -125
- Greatest artificial cold, nitrous oxide and carbonic disulphide, in vacuo: -350
- Absolute zero (Miller's Chemistry): -400

Theoretical base of air thermometer, or air supposed to be so excessively contracted in bulk by cold, as at last to occupy no space at all, and in that case to become of infinitely great specific gravity!
Angle.

No sooner has man in the course of his scientific development begun to contemplate the skies, than he feels the necessity of having angular, as well as, or even rather than, linear, measure to refer to for distances; and the same demand for angular measure is soon afterwards experienced in each of the purely terrestrial sciences as well.

Therefore it was, that the French savants of the Revolution attempted to introduce into their decimally arranged metrical system an angular graduation where the quadrant contained 100, and the whole circle 400, degrees. But, after trying it for some years, they had to give it up; for the influence of "Great Babylon," which is believed to have originally invented, and then fixed on the world, our present sexagesimal system, or 360° to the circle, and 60 minutes to the degree, was too powerful for modern Paris to contend successfully against.

But there could have been no more community of feeling or idea between most idolatrous Babylon and the totally non-idolatrous Great Pyramid in their goniometry, than in their methods of astronomical orientation, which we have already seen were entirely diverse. What system, then, for angle was more probably employed at the Great Pyramid?

A system apparently of 1,000° to the circle; 250° to the quadrant.

This conclusion has been ventured to be deduced from the following features at the Pyramid:—

(1.) The angle of rise of the Pyramid’s flanks, and the angle of descent or ascent of its passages, are both very peculiar angles, characteristic of the Great Pyramid; and though rough and incommensurable on either the Babylonian, or French, or any known angular system, are in a practical way evenly commensurable on the Pyramid system.
288 THE GREAT PYRAMID. [Part III.

<table>
<thead>
<tr>
<th>Pyramid Feature</th>
<th>System of Angle Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>A whole circumference</td>
<td>360°</td>
</tr>
<tr>
<td>Angle of side with</td>
<td>50° 51' 14"</td>
</tr>
<tr>
<td>horizon</td>
<td>26° 18' 10"</td>
</tr>
</tbody>
</table>

(2.) Whereas the King's Chamber has been in a manner utilised as the chamber of the standard of 50, and the Queen's as that of the standard of 25, and are both of them witnessed to by the number of the Pyramid courses on which they stand, the subterranean chamber may be considered the chamber of angular measure; and does, at its centre, view the whole Pyramid side, at an angle of 75° 15' 1" Babylonian, but 209°.03 Pyramid. And though there are now only 202, there are shown to have been in the original finished Pyramid somewhere between 208 and 212 complete masonry courses; or agreeing, within the limits of error of those researches, with the angular result of 209°.

(3.) And then there follows a useful practical result to Navigation, and its peculiar itinerary measure, the "knot," or nautical, or sea mile; viz. the length of a mean minute of a degree of latitude.

At present there is much inconvenience from the large difference in length between our land and sea miles; for they measure 63,360· and 72,984· inches respectively.

But, granted that a Pyramid knot shall be 1-25th part of a Pyramid degree,—then the respective lengths of a Pyramid land, and a Pyramid sea, mile will be the comparatively approaching quantities, in inches, of 62,500· and 62,995·.

* See my "Life and Work," vol. iii. p. 209.
Money.

The French metrical system included money; and its francs, issued accordingly, have deluged the world to such an extent, that when a prize was recently proposed to all nations by the Queen of Great Britain for a certain artistic manufacture, viz. a fan, to be competed for at the South Kensington Museum of Science and Art, the money value of that prize was publicly advertised in "francs."

Wherefore many inquirers have demanded, "What about money on the Pyramid system?"

I can only answer them, that I have not been able to find out anything about that subject in the Great Pyramid.

But is that to be wondered at? Only look at any piece of money whatever: whose image and superscription does it bear? That of some earthly Caesar or other. Therefore is money of the earth, earthy; i.e. in the sense of dust and ashes, human inventions, and speedy passing away. But all the Great Pyramid measures hitherto investigated, being evenly commensurable in every case, either with the deep things of this planet world, or the high things of heaven above, are to be considered as impressed rather with a typical effigy of some of the attributes of the creation of God, in praise moreover and honour of God alone; while we may find their purity, as well as almost eternity, presently borne testimony to by a closer and more direct link of connection still.

Time.

Time is an admitted subject in every good system of metrology; and yet is it an absolute imponderable; one, too, of which, says the moralist, we take no account but by its loss. And if this be true, how all-important
for us to know "how much there is of it;" and more especially how much still remains, of that finite section already told off by the Eternal, to witness the present manner of dominion, perhaps trial, of men upon the earth!

Hitherto, these questions have been utterly above unaided man's intellect; and though the metaphysicians, following up their verbal disquisitions on the infinity of space, desire to make out also an absolutely infinite extension of time, and that both for time past and time to come,—the researches of the scientists are more to our purpose, for they dwell rather upon the unlimited divisibility of time. Divide it, for instance, into ever such minute portions, and it is time still; and not like the chemical elements of matter, which, after a certain amount of subdivision, exhibit, to the mathematician, their component molecules with totally different properties from what are possessed by larger portions of the substances.

But whether time be long or short, and past, future, or even present, the human senses, unassisted by reference to the material world, are far more liable to error in this than in any other branch of all metrology. To some men, time slips away almost unheeded, unimproved, too, until the end of life itself be come; while with others, time is regarded as the most precious of all the usable gifts of God to men. With time and plenty of it, what splendid achievements may be realised; and into a short time, how much can be packed away! While the involuntary action of our thinking system, even exceeds the utmost straining of our voluntary efforts in matters of time; so that a single second between sleeping and waking has enabled a man to pass, without desiring it, through the multitudinous experiences of a long and eventful life.

On one side, again, in the study of time, the Natural History sciences give us the sober biological warning, that man, as he exists now, in materially uninterfered-
with possession of the earth, is not going to last forever; for there is a settled length of time for the whole duration of a species, as well as the single life of an individual therein. But on the other side, the too exclusive study of certain of these very sciences has led their out-and-out votaries, in late years, to talk more flippantly of time than of anything else under the sun. A few hundred thousand millions of years accordingly are at one instant created, and at another destroyed, or at another still totally disregarded by some of these gentlemen, accordingly as their theories of the hour prompt them: and it is only the astronomer who stands up in rigid loyalty to this real creation by God alone, and tells mankind that time is one only; that it is the chief tester of human truth, or error; and, even down to its minutest subdivisions, it cannot be safely disregarded. The same eclipse, for instance, of sun by moon, as seen from the same place, cannot occur at two different times, only at one time; and that one epoch is capable of the sharpest definition, even down to a fractional part of a second.

To astronomy therefore only, of the modern sciences, can we reasonably look for some safe guidance in the practical measuring of time.

In the broadest sense, time is said to be measured by the amount of movement of some body moving at an equable rate. And the most equable motion by far, the only motion that has not sensibly varied within the period of human history, is, I might almost say, the favourite, or at least the fundamental, Pyramid phenomenon of the rotation of the earth upon its axis.

Not that even that movement is absolutely uniform through all possible time, in the eye of theory; but that, tested practically in the most rigid manner, or by the determination of the length of a sidereal day, no alteration has been perceived either by practical or
physical astronomy during the last 2,300 years. The next most equable movement too, but of far longer period, is a secular consequence of that diurnal rotation, combined with the spheroidal figure, obliquity of axis, and an active disturbing element, the gravitation attraction of the sun and moon; producing thereby the "precession of the equinoxes;" whose whole cycle is performed in about nine and a half millions of these days, or turnings of the earth upon its own axis before a distant fixed star; and of which grand cycle not more than a sixth part has been performed yet, within all the period of human history.*

But though these two very distinct, and most different, phenomena,—the sidereal day, and the precessional period, of the earth, may be the grand storehouses for reference in the regulation of time for high science,—some easy, simple, yet striking modification of each is required for the practical purposes of man in general. And then comes in the evident propriety of using, for the shorter period, a solar, rather than a sidereal, defined day, and in place of the excessively long precessional period, but without losing sight of its aptitudes for historical purposes,—the more moderate cycle of a year; i.e. the time of the earth's revolution round the sun. Such annual motion, moreover, we must adhere to, although it is a movement experiencing many minute perturbations; and though it both is, and has been

* This precessional phenomenon of long duration will come up again in future chapters of this book, being, in a manner, the grand historical dial of the Great Pyramid. And those who have not mastered the subject yet in principle, should read forthwith some of the numerous excellent treatises on Astronomy in our language by authors of repute, such as Sir John Herschel's "Outlines of Astronomy;" and should be very careful how they listen to any private teaching of a contrary tendency by one or two individuals only; for the subject is one where single enthusiasts occasionally go as completely and absolutely wrong, as they still more frequently do on the exact numerical value of π; and there, neither the Great Pyramid nor modern science can tolerate any divergence from the one and only truth.
through the whole human period of development of the universe, by no means nearly even multiple of the other, or daily, movement, whether we define the year by reference to either sidereal or purely solar, phenomena.

These are practical points on which it is well worth while to spend a few more words, in order to try to make the Pyramid case clearer to those of our readers who desire further information. Let us begin then with the days.

As the sidereal day is defined, in apparent astronomy, to be the interval elapsing between a star leaving the meridian of any place, through the earth’s diurnal revolution on its axis, and returning to it again (+ an excessively small correction for the precessional movement in the interval); so a solar day is the time elapsing between the sun being on the meridian of any one place and seeming to return to it again; and that portion of time is equal to a sidereal day + the amount, measured by the rate of solar annual motion, that the sun has, in the diurnal interval, apparently retrograded among the stars, but by the really onward motion of the earth in its ceaseless annual orbit around the sun’s splendid light and heat-dispensing sphere. Hence a solar day of the earth is longer than a sidereal one; and in such proportion, that if a year contain $365\frac{1}{4}$ of the former, it will contain roughly $366\frac{1}{4}$ of the latter.

When absolute diurnal equality is required from day to day, the solar days have to go through a computation formula to reduce them from real solar days (as they may appear to an observer, and therefore also called apparent) to what are termed mean solar days; or the successive places that the sun would occupy in our sky if, in place of the earth revolving in an elliptical orbit with a variable velocity, it revolved in a circular orbit with a constant velocity, the time of a whole revolution remaining the same. But as this is only a residual correction, which
does not alter the beginning or ending of the year at all, or the beginning or ending of any day sensibly to the mere beholder of the general features of nature,—we may at once contrast the sidereal and the solar days together, as to their relative aptitudes to promote the greatest good of the greatest number of mankind.

Of the beginning of a sidereal day, then, hardly more than a dozen persons in the kingdom are aware; and, as it begins at a different instant of solar time each day (in the course of a year passing through the whole 24 hours), even those few doctrinaires can only inform themselves of the event, by looking at their watches under due regulation.

But, of the far more easily distinguishable beginning of a solar day, it was thus that a devout, though not sacred or inspired, poet of the Talmud wrote centuries ago; and he will probably be equally heart-appreciated still by 9,999 out of every 10,000 of the population:—

"Hast thou seen the beauteous dawn, the rosy harbinger of day? Its brilliancy proceeds from the dwellings of God: a ray of the eternal, imperishable light, a consolation to man.

"As David, pursued by his foes, passed a dreadful night of agony in a dreary cleft of Hermon's rock, he sang the most exquisitely plaintive of his Psalms:—'My soul is among lions: I lie in the dark pit among the sons of men, whose teeth are spears and arrows, and their tongue a sharp sword. Awake up, my glory, awake lute and harp, I myself will awake right early.'

"Behold! the dawn then broke; heaviness endured for a night, but joy came in the morning. With sparkling eyes 'the hind of the morning,' the soft and rosy twilight, sprang forth, skimmed over hill and dale, bounding from hill-top to hill-top further than one can see; and, like a message of the Deity, addressed the solitary fugitive on the sterile rock: 'Why dost thou complain that help is
not near? See how I emerge from the obscurity of the
night, and the terrors of darkness yield before the genial
ray of cheerful light!

"David's eye was turned to the brightening hue of the
morn. Light is the countenance of the Eternal. He saw
the day-dawn arise, followed by the sun in all its matur-
tinal splendour, pouring blessings and happiness over the
earth. Confidence and hope returned to his soul, and he
entitled his Psalm in the Cave of Adullam, 'The roe of the
morning, the song of the rosy dawn!'

If any species of day, then, is marked in the Great
Pyramid's metrological system, is it likely, after what we
have already seen of that building's kindly feelings for
man at large, its general objects and methods, its earth's
annual orbit round the sun, and its sun-distance,—is it
likely, I say, to be any other than the earth's solar
day (the mean solar day, too, if it be represented evenly in
the base-side by a cubit length)?

And for the same reason, the Pyramid year can be no
other than the mean solar tropical year; or that which is
declared by the sun returning to the same tropic or place
of turning in its apparent motion in the sky; bringing on,
therefore, the winter and summer, the typical night and
day of the year, in the same self-evident, powerful, bene-
cficent manner to all mankind. And of the previously
concluded mean solar days, in such a solar tropical year,
there are contained at present, according to modern
astronomy,

\[
\begin{align*}
= 365.242242 \pm \text{&c.} \\
= 365 \text{ days, 6 hours, 48 minutes, 49.7 \times \text{&c., seconds};}
\end{align*}
\]

a length said to be nearly 25 seconds shorter than the
similar year in the time of the Great Pyramid. A differ-
ence easy to write down on paper, but not practically
sensible to men in the ordinary avocations of life. But
no one will be asked to decide for either which kind of
day, or which kind of year, exists in the Great Pyramid
Metrology,—without documents of contemporary date,
and enduring kind in stone, being actually discoverable
there.

The next succeeding arrangement, however, of time, in
all Christianly religious, and some other, metrological
systems, after *days*, is not this grand, natural, yet most
inconveniently incommensurable, one of a *year*; but the
short, and, by days, perfectly commensurable, one of, a
week; commensurable, however, not by 5 or by 10, but
by the peculiar, and otherwise impressive, number 7.

Indeed, the week of 7 days is something so important
in itself, and forms so decided a stage of time whereon
tradition conflicts with science, sacred opposes profane,
and the Deistic contends with the rationalistic,—that it
may be prudent for us to return, in our now ensuing
Part IV., to further rigid practical examinations of the
Great Pyramid; endeavouring thereby to read off, with­
out prejudice, what the primeval monument has to say,
if anything, touching the voluntary, as well as the natural,
subdivisions of time for the ruling of the life, and regula­
tion of the work, of man while on his trial here.
PART IV.

MORE THAN SCIENCE AT THE GREAT PYRAMID.
"THUS SAITH THE LORD GOD; I WILL ALSO DESTROY THE IDOLS (OF EGYPT), AND I WILL CAUSE THEIR IMAGES TO CEASE OUT OF NOPH."

EZEKIEL XXX. 13.
CHAPTER XVI.

THE SACRED CUBIT.

IN speaking of anything in this book as simply sacred, I mean, to the best of my limited powers and poor ability, to distinguish such, sacred to the God of Israel, or to the one and only true God who liveth for ever and ever; and I have no respect of the same kind, nor similar comprehensive word, for any of the gods of Egypt, no matter what the learned Egyptologists of the present day may say in their defence or their favour.

Hence it is no light affair for every real Christian disciple, if we should indeed find anything sacred in the above higher sense, in the Great Pyramid; and especially if we should learn that the grand standard of length, or the very governing cubit employed in the scientific design of the primeval monument was—and if it was once, it must be still—sacred to the Lord Jehovah of the Bible and all Eternity.

Of Cubits of Ancient Renown.

The mere name of "cubit" mounts up the question at once to the beginning of human affairs, for it is one of the earliest-named measures of which there is any notice. Not indeed that the word cubit is ancient in itself; but that it is now the one English word always used by our translators to express whatever chief measure of length,
long or short, did form the working and practical *standard* of linear measure to, or for, any and every nation in the ancient world. No nation could exist then, any more than now, without having some standard of linear measure belonging to it, and referred to by its subjects either directly or indirectly in all matters where lengths and breadths were concerned. But the standard length of one nation, though called now in our printed books by the same name, “cubit,” was no more the necessary standard length of another nation in a different part of the world and in a different age, than the yard of the British Government, or two-foot rule of the British people, is of the same exact length, identical origination, and social force as the mètre of the French nation, the Chinese chik, or the Turkish pike. National standards they are, each and all of them, legal, discriminating, and politically omnipotent in their own respective countries; but every one of a different length from the other, and their legal and political powers depending only, and precisely, on the absolute length of each.

Hence, under the one mere, and often misleading, word, or name, of *cubit*, improperly used for *standard* (which word *itself* discriminates no linear dimensions whatever), our translators have heaped together a number of totally different measures of length, conflicting metrological symbolisms, and diverse national distinctions, as if they were all of one and the same length. They have even done worse; for most persons having Latin enough to derive cubit from *cubitus*, the elbow, they measure off 18 inches, more or less, from their own elbow to the end of the middle finger; and say, with a peculiarly knowing smile, whenever a so-called “cubit” of any time or nation whatever is mentioned,—that was the length of their standard of linear measure.

Yet, though both the cubitus of the Romans and πηχυς of the Greeks were very close to the length of 18 inches,
the standard measures of other and older nations were very different in length.

What names, then, were they called by; or were there different names for different lengths of national standards, in those days?

In Egypt the linear standard was called, from 2170 B.C. through all their long historical period and down to 100 A.D., according to different modern Egyptologists, "mah," "meh," "mahi," or "mai:" and signified, according to the late W. Osburn, "justified" or "measured off."

Amongst the Assyrians, according to Mr. Fox Talbot and Dr. Norris, their standard measure was generally termed, in the age of Nebuchadnezzar, or 700 B.C., "ammat;" and in more ancient times, "hu."

Among the Hebrews, again, the standard measure was called "ammah."* There is discussion still amongst scholars whether this was the original, or Mosaic Hebrew, word, for the thing to which it is now applied; for some authors maintain that ammah is an Assyrian word, and introduced only by Ezra when he was recopying the Scriptures in Babylon during the captivity. But they cannot prove the case absolutely; and meanwhile, although there are some who will have it that the word alludes to "the fore part of the arm"—though too we are otherwise, and most practically, assured that the Hebrew standard was of a totally different length from such part of the arm, being rather, if the arm be alluded to at all, representative of its whole length,—there are others who maintain that the word rather implies, "the thing which was before in point of time," the thing which was "the first, the earliest, the 'mother,' measure," and even "the foundation of all measure."

But these disputations of philologists are not in our

line, neither are they sufficient for what we require now to know, quite apart from any particular words; viz. what actually were the lengths of the several linear standards of the chief ancient nations, in terms of modern British inches. And we need, moreover, to be quite certain of these before we can presume to say that there is anything peculiar in such other length as we shall afterwards find to characterize the Sacred Cubit, both Hebrew and Christian.

Now the cubits of Greece and Rome (medieval, however, rather than ancient, as compared with the times of the Great Pyramid) were, in length, 18.24 British inches nearly, as every one, I believe, allows.

The cubit of Egypt, a far older land than Greece or Rome, was always longer, and close to 20.68 (sometimes for shortness spoken of as 20.7) British inches, by almost equally unanimous and universal testimony. And hence we see at once that the word cubit, as now used even by the learned, signifies merely a national standard of measure, and gives no idea of exact length, unless we prefix some other word, as Greek, Roman, Phoenician, or Egyptian, &c.

But when such word is prefixed, it is most important to our present inquiry to know, that the then double word becomes one of immense power in primeval history, because cubits of intended different lengths were so few; and each cubit was so long-lived. Through all the old and new empires of Egypt, for instance, under native princes, there was but one length (20.68 inches nearly) for the Egyptian cubit handed down most carefully from father to son.

There has, indeed, been a notable attempt in modern London society, during the last few years, to assert that there was a second cubit, of the same short length as the Grecian, viz. 18.24 British inches, in use, and in prominence too, in ancient Egypt; though reserved there for
the one purpose of measuring land. They even declare that such employment of it was fully as early as the day of the Great Pyramid, and even had the honour of deciding the size of the base of that most unique monument.

This is an assertion which we find it absolutely necessary to inquire into with fulness, as follows.

Of the one old, profane Egyptian Cubit: and the recent attempt to say there was another.

The whole case for there being, or ever having been, another cubit in historic profane Egypt, than the 20·68 British inch one, seems to have grown up thus.

The Director-General of the Ordnance Survey of Great Britain (1874), after having twice tried in the *Atheneum* to establish against the conclusions in my "Life and Work at the Great Pyramid," two other hypotheses for accounting for the length of the base-side of that ancient monument, he using a different length of base-side with each hypothesis, he at last brought out a third Great Pyramid base-side length, and a third hypothesis to account for it. This last assumed length was 9,120 British inches, and its explanatory theory, or rather hypothesis only, was the gratuitous statement that that 9,120 length was intended to be five hundred times the length of "the Egyptian land cubit;" and as that cubit was stated, after having been called into existence by him, to have been 18·24 British inches long,—of course $18·24 \times 500 = 9,120$.

By itself perhaps I might have passed this statement by, to sink according to its merits; but when it was presently not only adopted and followed by "the Warden of the Standards" of Great Britain, printed and reprinted by the Royal Society of London, and quoted as irrefragable at the British Association for the Advancement of Science—the matter was becoming serious. And, further still,
when the Rev. F. R. A. Glover, M.A., who had been deeply studying the mensurations of the Great Pyramid, attacked me with the remark—

"Did not you say in 'Our Inheritance in the Great Pyramid,' Chap. II. of Second Edition, that the length of the Great Pyramid's base-side, according to the best means of all the socket-defined measures, was 9,140 British inches; and that the length of the sacred cubit of the Great Pyramid's inspired design was settled thereby?"

"Certainly."

"And now here is the Royal Society publishing that the length is only 9,120 British inches, and you are a Fellow of that Society. So you are implicated in, and consenting to, telling the world one thing in the Society's book, and quite a different thing in your own book. Pray which of them am I to believe?"

Such, nearly, were the words in which Mr. Glover brought the case home to my individual, human responsibility. So, having ascertained from the Professorial Lecturer at the British Association's meeting at Bradford,* that he had drawn all his information from the printed "Proceedings" of the Royal Society of London, I represented in a formal paper to be read before that learned Corporation, that if the Director-General had got 9,120, by taking a mean of certain two base-side measures of the Great Pyramid giving 9,110 and 9,130,—he had obtained it by improperly throwing out of view two other at least equally scientifically measured, and well-known, results giving 9,163 and 9,168 of the same inches; and which results, properly combined with the others, gave 9,140 for the base-side length, and not 9,120.t

How the Council of the Royal Society thereupon absolutely refused to let my paper appear before an open

* The justly celebrated Professor Clark Maxwell, M.A., of Cambridge.
† See Chapter III., p. 33. See also Chapter X., p. 180, for confirmations from the King's Chamber.
meeting of the Society; how I then sent in a conditional resignation of my Fellowship, to be read in public together with the reasons why I so resigned; how the Council held back those reasons, and merely announced that I had resigned; how I therefore printed a pamphlet giving the whole case, and sent a copy to every member of the Society; and how the next annual general meeting of all the Fellows was held, and no move was made by any one (so far as I have yet heard) to question the Council’s proceedings, or vindicate the true size of the ancient Great Pyramid; and how in fact the whole of the members have now homologated everything done by the Council in supporting the wrong, and suppressing the true, Great Pyramid measures—all that, I might have written some forcible remarks upon, but would rather refer all readers to Appendix III., at the end of this book, as being an independent opinion from America on the case.

But in the meanwhile I desire not to conceal from any one, that the great, the wealthy, the powerful, and numerously organized association almost worshipped in the London world of science, the Royal Society, has now in fact, though not in its own words, pronounced for the Great Pyramid’s base-side length being only 9,120 British inches, as well as having been anciently and even primevally intended to be that; and that I find myself therefore opposed by the whole Society, by its wealth, power, Government influence, and by each and all of its 600 or so, of Fellows. That is the fact; therefore any one who is influenced by a crowd, by numbers and worldly success, may, and many no doubt will, join them.

But shall I therefore yield the point? No! For although I knew well that I was, when still F.R.S., one of the least of those so honoured scientifically; and know also that the ranks of the Society contain numerous men almost infinitely learned in difficult sciences which were strange to me,—yet the present question was within my
moderate compass, had been the subject of my special attention, and is rather one of simple honesty than scientific difficulty,—one, therefore, which a single human mind, with a soul to be saved and an immortal hereafter, must form a far higher tribunal for judging, than any Society, Corporation, Secret Council, or any Association which, as such, is the work of man and not of God, and has no soul belonging to it, nor any future in heaven before it.

Having therefore already indicated (pp. 34 and 304) how little of observational and true foundation there is for any one asserting the Great Pyramid base-side length to be 9,120 British inches only, let us here go forward to the next part of the question,—and which second part thereof was evidently father to the novel idea that there was in ancient profane Egypt, besides its undoubted 20.68-inch cubit, another cubit only 18.24 inches in length, so that, when multiplied by 500, it should yield exactly 9,120.

Now, most strange to say, seeing that the overweening Royal Society has adopted it, and arbitrarily extinguished a refutation thereof sent to them,—the notion of an 18.24-inch cubit having ever been in use in profane Egypt under the Old Empire, rests only on a literary mistake of the Director-General of the Ordnance Survey, when reading a passage in Herodotus; which passage, in reality, says nothing of the kind.

Herodotus, that charming relater of history as a pleasant family tale, we must remember, is telling his story to the Greeks; and amongst other particulars of what he saw in Egypt, informs them of an allowance of land to each of the soldiers there, a liberal and highly prized allowance too, of so many cubits square; to which account he appends the explanatory remark, evidently for the benefit of his then hearers, the Greeks,—that the Egyptian cubit is of the same length as that of Samos.
Of what length then was the cubit of Samos?

Of the same length, instantly asserts the eminent surveying military chief at Southampton, and now also implies the Royal Society of London, 600 strong, as the Greek cubit, viz. 18.24 inches. But is it so?

As there is no other scrap of ancient authority now existing in the world, so far as I am aware, touching the absolute and material length of the cubit of Samos in the time of Herodotus, 445 B.C. (except that slight verbal comparative notice of his, identifying it with the Egyptian, rather than the Greek), we must endeavour to ascertain from him, himself, what he, Herodotus, meant,—when he explained to a Greek audience in Athens, that the length of the Egyptian cubit was the same as the cubit of Samos.

Why, for instance, did he not say that the Egyptian cubit was the same as the Greek cubit, if he meant it, and was speaking to Greeks themselves?

By turning to his book "Thalia," 55, we shall find that Herodotus there makes a Lacedæmonian refer to the Samians (in their isle so close to Asia Minor and so far from Greece), not as Greeks, but as "foreigners." And again, in "Thalia," 56, he himself speaks of a siege of Samos by the Lacedæmonian Dorians as "their (the Greeks') first expedition into Asia." "Words," writes the Rev. Professor Rawlinson, in a note to his excellent translation, "which are emphatic. They mark the place which the expedition occupies in the mind of Herodotus. It is an aggression of the Greeks upon Asia, and therefore a passage in the history of the great quarrel between Persia and Greece, for all Asia is the king's" (i. 4).†

* I do not mean that the Royal Society has published such an opinion, in so many words, as its own conclusion; but I do mean that it printed that particular conclusion in a paper by one of its Fellows in both their "Proceedings" and "Transactions," and rejected a paper with opposite conclusions. Whether, doing that, they are fully justified before God in holding that "they never give their opinion, as a body, upon any subject, either of nature or art," that comes before them,—let a man with a soul, rather than a society without one, attempt to say.

† See also "Edinburgh Astronomical Observations," vol. xiii. p. 170.
Samian, then, in the mind and feelings of Herodotus, eminently meant Asiatic or Persian, the antipodes of everything Greek; and the phrase was a rather delicate way of that admirable describer telling his polite Athenian audience, that the cubit of the strange and far-off Egyptians he had been travelling amongst, was of the same length as that of their hated and dreaded foes, the Persians; but without offending Attic ears by the sound of the detested Eastern name. For Samos was but a poor little island, in itself altogether innocent of making aggressions on such a combination of states as Greece; and, since its actual invasion by the Lacedæmonians, was much better known to Greeks than the continental and somewhat mysterious country of the Persians themselves.

Now, the Persian cubit, at and about the times of Herodotus, say from 332 B.C. to 600 B.C., according to Dr. Brandis, of Berlin (whose investigations into the Babylonian measures, weights, and money before Alexander the Great, are original and most valuable), was somewhere between 20·866 and 20·670 British inches.

Don Vincent Qucipo, in his "Metrology" (vol. i. pp. 277–280), makes the same Persian cubit to be 20·670 inches long. M. Oppert establishes the same length for the Babylonian cubit in the times of Darius and Xerxes. Dr. Hincks makes that same cubit, equally too of the Babylonian, Persian, and Assyrian empires, chiefly from cuneiform inscriptions—21·0 inches. All of them, therefore, within their limits of error, coinciding sufficiently with a mean length of 20·68 inches nearly, for the Persian cubit of and about 500 B.C. And that cubit length, we may be sure, the said Persians established in Samos for as long as they had the upper hand there; seeing that from the same Herodotus we learn (Book VI. ch. 24), that no sooner were the Ionian cities under Histieus conquered by Artaphernes, than he took the measurement of their whole country in parasangs (a Persian measure of
length, based on the Persian cubit), and settled thereupon the tributes which they were in future to pay.

Hence the Samian cubit alluded to, could have been no other than the Persian cubit of the day of Herodotus; and that cubit being of the length of 20·68 British inches nearly, by modern research, we may immediately see how close to the truth the Father of History was, in declaring the length of the Egyptian and the Samian, i.e. Persian, cubits to be the same,—for the profane Egyptian cubit has been found by all Egyptological explorers to be within a few tenths, or even hundredths, of an inch, that very quantity; viz. 20·68 British inches.

Thus Sir Gardner Wilkinson, in his "Manners and Customs of the Ancient Egyptians" (vol. iv. pp. 24—34, third edition, 1847), expressly declares against the idea of there having been intentionally two different-lengthed cubits in Pharaonic Egypt; and gives the following as measures of accidental variations of the one and only profane Egyptian cubit belonging to any, and every, period between 2200 B.C. and 320 B.C.:

<table>
<thead>
<tr>
<th>Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>20·47</td>
</tr>
<tr>
<td>20·58</td>
</tr>
<tr>
<td>20·68</td>
</tr>
<tr>
<td>20·62</td>
</tr>
<tr>
<td>20·66</td>
</tr>
<tr>
<td>20·62</td>
</tr>
<tr>
<td>20·75</td>
</tr>
<tr>
<td>20·65</td>
</tr>
</tbody>
</table>

And other more recent measures by other investigators, some from cubits, and some from ancient monuments where certain parts seemed to have been laid out, so as to be even multiples of 2, 4, or more cubits,—have yielded 20·73 and 20·66 British inches.

Hence it must surely now be perfectly clear, that while there was in ancient Egypt a cubit 20·68 British inches long, there was no such thing there then, as a cubit 18·24 British inches in length; and whose multiple by 500 should, or could, amount to 9,120, as first erroneously
assumed by the Director-General of the Ordnance Survey, and then printed, published, and still practically upheld, by the Royal Society of London, in connection with, or in furtherance of, alas! degrading theories of the original scientific design of the primeval Great Pyramid.

But I have no desire to waste any precious time in triumphing over those unhappy parties; and would rather now call attention to an unexpected, and all the more important, because unexpected, result of the inquiries we have been obliged to make, in pure self-defence from so many threatening attacks and attempted extinguishment.

Origination of the one Sole and Profane Cubit of the early East, 20.68 British Inches long.

The unlooked-for result alluded to above, is this, that not only was the cubit of Samos of the same 20.68-inch length as that of all ancient Egypt, from one end of that land to the other,—but the same identical length characterized the cubits of Babylon, Nineveh, and apparently all Mesopotamia, Persia, Assyria, and Syria, with the coasts thereof.

That could hardly have been accidental in its origin, and still less so in its immense duration, for it survived those countries' wars, their empires, and even their languages; and could only have been kept up by some most active and powerful system of surveillance, on which they were all agreed; and were even sworn to uphold more fervently, more passionately, than any national distinction or political difference among them.

Now, what could such a system have been?

Something more or less connected with religion; not with its outward forms, for these had different idols, with different names and very different figures as well as attributes in every different country,—but with its original and inmost foundation, its mysteries, free-masonries, and secret abominations. And when looked at in this manner,
we see immediately that all the countries holding to that 20.68-inch cubit were, through all history, arrayed in religion against Israel and against Israel's God. But on what special point of antithesis did they chiefly unite?

Self-righteousness versus admitted guilt and the need of a Divine atonement.

That very part of the Egyptian Dead-book so scrupulously inserted in the coffin of every profane mummy throughout the Pharaonic empire, and which is intended to enable the soul, almost first and foremost of all things, to declare before Osiris that its owner had never been guilty of shortening the cubit,*—puts a long string of other declarations into his mouth, protesting him to be also perfectly free from any and every other possible sin, great or small, that was ever heard of. And whether such unhappy being also believed and trusted, as most of them did, in idols of animal-headed gods, of whom there were sometimes more, and sometimes less, in the Egyptian Pantheon, all that—dreadful as it is for human beings with souls to be saved, and special instruction from the Creator—sinks into comparative insignificance before this unblushing assertion of absolute self-righteous-ness. For this principle lasted through all their varying theogonies; and not only shows the innate, settled Cainite direction of their thoughts, but their continual antagonism also to the religion of Abel, and to the whole Revelation doctrine of the lost condition of man, with the consequent Christian necessity of an atonement by sacrifice and pardon through the blood of a Divine Mediator.

Similarly also proceeded the inhabitants of Babel, from the time when they first collected together, and said (Gen. xi.), "Go to, let us build a city and a tower, whose top may reach unto heaven; and let us make us

a name, lest we be scattered abroad upon the face of the whole earth," down to the days when (Dan. iv.) Nebuchadnezzar walked in the palace of the kingdom of Babylon, and spake and said, "Is not this great Babylon, that I have built for the house of the kingdom by the might of my power, and for the honour of my majesty?"

All the above doctrine, with the history also, besides being found in the Bible, appears to some extent in Josephus's account of Genesis times also; but where he obtained his further particulars of Cain, and how far they are to be, or should be, trusted, I know not. Yet he is a great author before the Church and the world, and his remarks on this case are pertinent to the present question, and run thus; viz. that after Cain's expulsion from a more blessed society, and after the mark was put upon him, he went on from one wickedness to another until he at last invented "weights and measures:" not, apparently, that they were sinful in themselves, but that Cain employed them as instruments of rapacity and oppression against all the peaceably inclined inhabitants round about him.

In self-defence therefore, implies Josephus, the descendants of righteous Seth, in whose line afterwards came Noah, Shem, Abraham, and Moses, betook themselves to studying astronomy, with the special approval and help of Almighty God; and when they had perfected those discoveries, he says, they set forth from their own land (which was probably in Mesopotamia), to the land of Siriad (that is, the Siriadic, or Dog-star land of Egypt), and inscribed their discoveries there on two pillars, one of stone and one of brick.

They did not therefore seek either to teach or enforce these things on the Cainite Egyptian people whom they found there; they merely recorded their astronomical discoveries in their own monumental way, for their own
internal satisfaction in that land, because it was in some way a more suitable land for that purpose than their own; or they had received a Divine command to make the record there, and obeyed the command in faith, like all the good patriarchs of old. And what such discoveries in astronomy could have been, to enable them to have a counter-effect to the bad weights and measures of Cain, unless they were connected with a principle of earth and heaven commensurability adapted to a people's measures in length, capacity, and weight, leading their souls therefore, and thereby, to think lovingly, sympathetically, harmoniously, and Abel-like, of God and with God in all his wondrous works for the benefit of man,—it is difficult to conceive.

In fact, according to the nature of the things said to be inscribed, the above alluded to stone pillar, or monument (which Whiston, wholly ignorant of hieroglyphic interpretation, proposed unhappily to identify with a Cainite obelisk of an idolatrous king of Egypt in Thebes during the long-subsequent 19th Dynasty),—can be no other than the Great Pyramid as now coming to be understood and interpreted by modern science. While the similar brick monument, said to be erected by the same Sethite parties (descendants only of Seth through the Flood), must, if ever really erected, have gone the way of all the brick Pyramids of profane Egypt; viz. subsided into a heap of decaying mould.

Hence, without by any means trusting entirely to Josephus, there is, with the help of his history of primeval times, a very suggestive view opened up of a world-wide metrological contrast, entirely agreeable with Biblical characteristics, though depending on scientific refinements of measure only understood by modern men within the last century. And it tells us, I venture to say, of a continued and most radical opposition between Cain and Abel having been carried by their descendants through the
Flood: and of these parties having been distinguished before the world (whatever were the mysteries of some of them in their secret conclaves), by the most opposite kinds of weights and measures. And when we further find by later researches that the anti-Israel, and decidedly Cainite nations in religion, spread abroad even from the Nile to the Euphrates, though often warring vehemently with each other, were yet banded together to employ one and the same profane cubit length of 20.68 inches, we must look upon that measure as the Cain-invented, Cain-descended, cubit. When, too, we find that that length is apparently incongruous to the measures of both the earth and the heavens, and not evenly commensurable thereto, or symmetrically conforming therewith,—we may at once allow that that was just what might have been expected of Cain, and any rationalistic human efforts in that age to act without God in the world;—but then, again, that very fact excites the most intense anxiety, on the other side, to ascertain whether the cubit of the descendants of Seth, in the line of Abraham, Moses, and David, as especially representative of the cause of righteous, and God obeying and acknowledging, Abel, had any similarity to, or was possessed of any of the same admirable earth-commensurability and nature-harmonious properties which have been recently discovered in, the special cubit of the hitherto hidden, but most scientific, design of the Great Pyramid, 25.0250 British inches long, and of no other length whatever, without any doubt down to four places of decimals.

The Sacred Cubit of the Sethites and Hebrews.

And here, alas for the Churches! from the time of Bishop Cumberland of Peterborough, down to the Bible Dictionaries of Kitto and Smith, down to most of the annotated Bibles of the Government printers, and even the earlier maps of Jerusalem prepared for the Palestine
Exploration Association by the Ordnance Survey establishment at Southampton. For all these hitherto supposed unquestionable authorities merely indicate, lazily, I am sorry to say, and ignorantly (both as Christians and scientists), something as follows:—"The Hebrew measures are impossible to find out by the mere words of the Bible, so we go to the Egyptians (Cainites though they were, and desperate idolaters): and we take, and give you, their (self-righteous, pagan, God-defying) measures, and bid you accept them as representing (the Inspired sacredness of) the Hebrews!" And such numbers of inches too as these modern most blinded and misleading men give, even under that guise, are more often derived from mediæval, or Grecianised, but still idolatrous, Egypt, than the Egypt of her most ancient, or even Exodus, day; and range anywhere between 18 and 22 inches.

In this dilemma of the flock's desertion, or misguidance, by its intended shepherds, how thankful should we be, that it pleased God to raise up the spirit of Newton, and enabled him to make it one of the most important discoveries of his riper years,—that while there undoubtedly was in ancient times a cubit of 20·68 inches nearly, characterizing the idolatrous nations of Egypt, Assyria, Babylonia, and Phœnicia, and which cubit Newton was gifted to call unhesitatingly "the profane cubit;" there was another which he equally unhesitatingly speaks of as "the sacred cubit of the Jews;" and shows that it was decidedly much longer than the above, and was most earnestly preserved, treasured up, and obeyed, among some very limited branches of the house of Shem. The exact date of its promulgation Newton does not attempt to fix, but alludes to the certain fact of its having become the "proper and principal cubit" of the Israelites, long before they went down to Egypt."

* See Sir Isaac Newton's "Dissertation on Cubits," reprinted in vol. ii. of my "Life and Work at the Great Pyramid."
The precise size of this remarkable cubit, and which seems eventually to have remained in the sole possession of the Hebrews, and to have been, after the Egyptian captivity, employed by them for sacred, Biblically sacred, purposes only, Sir Isaac Newton attempts to ascertain in various modes, thus:—

1. By notices from Talmudists and Josephus in terms of Greek cubits, which on calculation give, as limits, something between 31.24 and 24.30 British inches.

2. From Talmudists by proportion of the human body, giving as limits, from 27.94 to 23.28 British inches.

3. From Josephus's description of the pillars of the Temple, between 27.16 and 23.28 British inches.

4. By Talmudists and "all Jews" idea of a Sabbath day's journey between 27.16 and 23.28 British inches.

5. By Talmudists' and Josephus's accounts of the steps to the Inner Court, between 26.19 and 23.28 British inches.

6. By many Chaldaic and Hebrew proportions to the cubit of Memphis, giving 24.83 British inches. And,

7. From a statement by Mersennus, as to the length of a supposed copy of the sacred cubit of the Hebrews, secretly preserved amongst them, and concluded = 24.91 British inches.

In all these seven methods any one may observe that the Cainite cubit length of Egypt and Babylon, viz. 20.68 inches, has no standing-place whatever; neither beside the single determinations, nor within the widest limits of the double determinations. It is something totally and absolutely different. What is indicated by the whole of the numbers appears to be,—either 24 inches with a large fraction, or 25 inches with a small fraction, added to it, or something between the two; and though Sir Isaac himself concluded for 24.88 inches being the

* On the mean determination by many authors that 1 Attic foot = 12.15 British inches; and one Roman uncia = 0.97 British inches.
probable length, yet he expressly warned his readers that he was not certain of the precise quantity; and that that must be left to future measurers to settle.

There Sir Isaac Newton stopped, for in his day nothing had then transpired about the Great Pyramid's secret and scientific design formed on a cubit of a totally different length from the profane cubit of Egypt; nor had the idea of earth-size reference for a standard measure been brought forward in the then modern society of Europe with any prominence, if at all. But now, after the savants of the French nation and Revolution have indoctrinated the world at last with the intellectual and international importance of earth-commensurability in weights and measures: and now that we have had new ideas opened up by John Taylor from his researches, literary though they were only, at the Great Pyramid, we find that a length of 25.025 British inches, or a length abundantly within the conclusions to be drawn from Sir Isaac Newton's numbers for the Hebrew sacred cubit,—was the length of that cubit, and also of the cubit of the Great Pyramid's design unknown to the idolatrous Egyptians. We have also found that that cubit is earth-commensurable and nature harmonious in the best conceivable manner; or with the earth's astronomical semi-axis of rotation and by the number 10^7. So accurately, too, and in so difficult a subject, that as we have already shown in the first part of this book, no such conclusion could have been intentionally arrived at by any race or nation of men in the early age when the Great Pyramid was founded,—without their being favoured by some superhuman and supernatural, that is, Divine, assistance.

That the Hebrew race would have received such assistance from the Almighty, if they really needed it, no true believer in the Bible will doubt for a moment. And now when we find, and shall afterwards be able to confirm from other sources, that they had the very 25-inch, astronomi-
ally founded, cubit amongst them which, as the highest modern science testifies, could only have been, with intention and knowledge, a supernatural gift in that age, the further question is answered, as soon as it arises,—viz. whether the really most significant, metrologic gift may not after all have come to them originally in the manner, more or less, indicated by Josephus; i.e. through primeval Divine assistance accorded to Seth, as represented in his earlier descendants; and whether it was not also granted, not merely to improve them in astronomy, but also to strengthen them, politically and socially, against the religiously opposed descendants of Cain, banded together, as they were, under their 20·68-inch standard, for the oppression of those of an opposite principle in religion.

The Egyptians were Cainites, not only from what has already been shown from their own "Dead-book," but from Biblical history indicating that they had, like Cain, refused the sin-offering lying at their door, and had scornfully conspired together to consider the Divinely appointed means of reconciliation "an abomination unto them." Therefore, when Israel was in Egypt, Abel and Cain typically met once again, and we all know with what results of cruelty within the power of Cain to inflict. We also know in a parallel manner, by monumental and metrological research, that that Mizraite Cain held then, and continued to hold through all his national existence, to his 20·68-inch standard measure; while, through Sir Isaac Newton, the astounding information first came, that the Hebraite Abel at the same time likewise kept true, through all his persecutions, to his oppositely derived, Seth-descended, 25·025 British inch, better standard.

These two opposing standards, therefore, clashed together in Egypt, B.C. 1542, and God gave the victory then to Abel's.

But they met together again, as Sir Isaac Newton

himself points out, after the Exodus, and even in the very presence of the Tabernacle in the wilderness; for the Israelites would occasionally employ the Egyptian cubit of 20.68 inches long for many of their ordinary purposes; though Moses was always most precise, and apparently successful, in seeing that in their sacred work they employed only their truly and peculiarly sacred cubit, viz. the earth-axis commensurable cubit of 25.025 British inches long.

The Mixed and Opposing Presence of the Two Cubits, Sacred and Profane; or the 25.0 Inch, versus the 20.68 Inch.

But it may be asked, Why did the Israelites continue to employ two cubits? If, as Sir Isaac Newton states, they brought their own sacred cubit, which they had possessed of old, down with them into Egypt, preserved it when there, and took it out with them again,—why was that one not enough for all their purposes?

The first answer to this question is by Sir Isaac himself. "They, the Hebrews, brought," says he, "their own sacred measure to Egypt with them; but living for above two hundred years (four hundred according to some chronicologists) under the dominion of the Egyptians, and undergoing a hard service under them, especially in building, where the measures came daily under consideration, they must necessarily learn the Egyptian (20.68 inch) cubit."

The second answer is, "Did the Israelites succeed in freeing themselves at the Exodus from every other taint and sin of the Cainite people they had been sojourning amongst? Nay, indeed, were they free from the sins of many innate, born, and predestined Cainites among themselves? Search the Scriptures, and the proof comes up too plainly."

It was not, apparently, the purpose of God to create even his chosen people absolutely immaculate; or to make it impossible for them to sin, even if they should try.
Therefore was it that temptations to evil (though in a measure only) were left to prove them; and amongst other forms of seduction, the insidious Cainite 20·68-inch cubit, as well as the true cubit of Abel of the 25·025 British-inch length.

Now, exactly as these two cubits were contending with each other, and either ensnaring or saving men's souls in the very camp of the Israelites ruled by Moses, so is it still even in this Christian country wherein we dwell.

If the Book of the Revelation of St. John assures us so clearly as it does, that even in these present times, on the approaching termination of the Turkish mission to destroy the worshippers of idols, that idolatry shall yet raise its head, and that men will not yet repent of the works of their hands, that they should not worship devils, and idols of gold and silver, and brass and stone, and of wood; which can neither see, nor hear, nor walk,—so we may be certain that the Cainite cubit will not be forgotten, or unreverenced, by them either.

Nor was it, rather ominously and unhappily, at the already-mentioned lecture before the British Association for the Advancement of Science at Bradford, in 1873. For the lecturer there, a really mighty man in all mathematical and physical science,—standing therein next to Newton himself, though in religious views how far removed!—elected to hold up to the admiration, worship as it is now called, of his audience, and as the best possible example of a long-lived, well-cared-for, and in the present day to be imitated, ancient standard of linear measure, not the sacred 25-inch cubit of Seth, with its lasting monument, the Great Pyramid, central to all the inhabited land-surface of the earth,—but the profane 20·68-inch cubit of both the once idolatrous and now Divinely crushed, down-trodden Egyptians, and of Babylonians whose boastful city and nation have altogether disappeared. Yet much did the lecturer enlarge on the most exemplary care, far exceeding
anything known until very lately among ourselves, with which metrical commissioners from Egypt, Babylon, Nineveh, and other such empires in primeval time, must have travelled about from country to country, with examples of that Cainite cubit for instruction, comparison, and regulation; keeping every one of those heathen kings, governments, and peoples true to their ancestral, but anti-Israel’s God, covenant in metrology; binding them moreover, for secret and unhallowed reasons, to respect that 20·68-inch* cubit and no other.

But shall the British, Christian people, under the plea of being taught science, in grandly adorned halls where fashion and wealth do congregate, be exposed to the temptation of admiring, following, and patronising the profane, instead of the sacred, example in metrology?

The attempt will be made upon them, they may be sure, again and again; and in various ways; one of which is showing itself in part just now, by its being industriously circulated in various quarters, that though Sir Isaac Newton spoke of “the sacred cubit of the Jews” (as to this last name, however, meaning no doubt Hebrews or Israelites, and not the exclusive subsequent people to whom we now more properly restrict the name of Jews), he nowhere says that those Jews themselves used the term “sacred cubit;” and that such a compound word is not to be found in all the writings of Moses.

Certainly; for Moses did not write a treatise on metrology, and mentioned any such matters only incidentally. Yet he did so in a spirit which is perfectly unmistakable.

Does he not, for instance, expressly state in Exodus, * The lecturer referred chiefly to the double form of this cubit 41·36 British inches long, adorned in modern times by the name of “the Royal Cubit of Karnak,” because such a double cubit rod was found recently on pulling down part of an old idolatrous temple at Karnak in Egypt, where it had been accidentally dropped in by a mason at the building. But, just as with the English workman’s 2-foot, or 1-foot, rule, so the 41·36 inch, or double cubit, rod, means politically and religiously the same thing as the 20·68-inch single cubit rod.
that the instructions to make the several parts of the Tabernacle in so many cubits of measure, were given to him by his God, viz. God, the only one and true living God, on Mount Sinai? And that this further instruction was impressed upon him, Moses, from the same unique Divine source,—"And look that thou make them after their pattern, which was showed thee in the Mount?" (Exod. xxv. 40.)

If that is not enough to prove to any unprejudiced person that of course those cubits so announced were sacred cubits of the Lord God of Israel, and not the profane cubits of Egypt; let the doubter read first the inspired Prophet's words and denunciations when the children of Israel fell away from those Mount-announced commandments he had given them, and made themselves by preference a golden calf after the fashion of the Egyptians. And then let the same doubter compare therewith, on the other hand, the holy approval of Moses when at length the whole work of the Tabernacle, cubit by cubit of it, according to his original numerical instructions, had been faithfully completed; completed, too, by workmen specially called to it by God, and stated to be filled by Him for that very purpose "with the spirit of God, in wisdom, in understanding, and in knowledge, and in all manner of workmanship" (Exod. xxxv. 31): and then—

"Moses did look upon all the work, and, behold, they had done it as the Lord had commanded, even so had they done it: and Moses blessed them."

While finally came the still higher approval of Divine condescension, in that "the glory of the Lord filled the Tabernacle."

Hence, though the word "sacred cubit" be not written in the Bible, it is surabundantly implied, but always as restricted to a certain cubit of a most opposition length to the Cainite 20·68-inch cubit; and if the term be used here by ourselves, it is not as a quotation, but as a corol-
lary. As such, too, it is indeed so largely deducible from whole sections of the Sacred Book, that the full spirit in which that 25·025-inch cubit we have here called sacred, was looked on by Moses, cannot be expressed, or even indicated, by us in any less positive terms than the most decided and powerful ones we have been privileged to employ.

Moses, too, as we have already hinted, did not write on Metrology, but on Religion; and therefore had no occasion to give an account of the sacred, the 25·025 British inch, cubit in and for itself alone. The Great Pyramid, on the other hand, is largely a treatise on metrology; and therefore, being as to its design inspired from the same supernatural source, has at last taught us how to speak of appropriately, and reverently to understand, the one and only cubit used by Moses after he came down from communion with Omniscient, Omnipotent Divinity, on the Mount.
CHAPTER XVII.
TIME MEASURES.

WHAT affairs of mankind can prosper without attention to time? and what is history with an uncertain, or perhaps an utterly erroneous, chronology?

It is, I fear, very much like the history of ancient Egypt, as composed by the modern Egyptologists from the profane monuments which they study: viz. the hieroglyphic-bearing monuments, none of which, according to the confession of the Egyptologists themselves, are capable of fixing an absolute date. They chronicle small differences only, and those of a trivial as well as uncertain nature: viz. the year of the reign of this, or that, king, but the order of succession of those kings, and the number of lines of succession in different parts of the country, are often still under disputation.

As the Great Pyramid is not a hieroglyphic-adorned, Egyptian king-worshipping, monument, it does not fall into any of those errors touching exact chronology. But is there any time system at all there; and if there is, has it a capacity for accomplishing what the profane monuments are powerless in, viz. for fixing an absolute date?

On this important question there is but one mode of inquiry, viz. attention to the measures of the whole and its parts; coupled with the quality of the work concerned, and followed by the theory, whatever that may ultimately prove to be, which explains the greatest number of facts.
Now one time measure has already been indicated in the circumstance that the sacred, Hebrew, or Pyramid cubit is of such a length that it measures the base-side of the Great Pyramid by the number of days, and fractions of a day, in a year; while another includes a practical demonstration of our modern leap-year arrangement in the exhibition of the four sides, or years, which make up a cycle of years complete to a day. Not indeed that the residual fractions of the four years make up a whole day exactly; and accordingly the symbolism of the ante-chamber indicates, by the four grand grooves there, of which three are hollow, and the fourth only filled, and that fourth one not equal in breadth to the other three, that the residual quantity for each year is rather less than the fourth part of a day. While the exact quantity, as exhibited with so much success from the measures of the King’s Chamber already detailed (Chap. X. p. 180), is for the whole solar year in terms of solar days, not 365·25, but 365·242.

But a still grander time measure of that kind is obtained by viewing the whole Pyramid’s base periphery in the light of its equivalent circle, struck with a radius equal to the vertical height of the Pyramid; which height, by its sun-distance commensurability, symbolizes the sun in the centre of that circle; for then the interval of twenty-four solar hours, or the time elapsing between the sun apparently leaving the meridian of any place and returning to it again, by virtue of the rotation of the earth on its axis before the sun, i.e. a mean solar day,—is measured off on that circle’s circumference by 100 Pyramid inches evenly.

French Savants on the Passages of the Great Pyramid.

But if this first time-symboism of the exterior of the Pyramid is thus clear and simple enough, that of the interior presents many difficulties.
The entrance-passage has indeed already been elsewhere shown to be connected with the meridian transit of a circumpolar star; but why did the builders make both that passage and the first ascending passage so excessively low, that a man can hardly pass through them, even crawling on his hands and knees; and another, the Grand Gallery, so astonishingly high, that the blazing torches of Arab guides seldom suffice, in its mere darkness rendered somewhat visible, to show the now smoke-blackened ceiling to wondering visitors?

No approach to a sufficient answer to these questions has yet been given anywhere; and all that violent, and apparently unreasonable, contrast of heights, remains the most mysterious thing in its origin, at the same time that, in its existence, it is one of the best-ascertained facts about the whole Great Pyramid.

The French Academicians, even in their day, held forth much and learnedly on the circumstance; but could neither solve that nor many other points, about both the Grand Gallery and the smaller passages. Almost in despair at last, but the despair of an honest and well-read man, unashamed to confess the truth that such a case was too difficult for him,—M. Jomard exclaims at p. 198 of his "Description de l'Égypte," "Everything is mysterious, I repeat it, in the construction and distribution of the monument; the passages, oblique, horizontal, sharply bended, of different dimensions!" And again at p. 207 of "Antiquités, Mémoires," "We are not at all enlightened either upon the origin or the employment, the utility, or any motive whatever, for the gallery and various passages of the Great Pyramid; but do we know anything more either about the well, or much rather about the 28 square holes or cavities worked with skill along the sides of the high ascending gallery?"
Professor Greaves describes the Passages of the Great Pyramid.

Where so many great men have failed, we must proceed with caution indeed; and commencing therefore at the beginning, with what has been known to, and confessed by, most travellers for ages, I will, at present, merely call attention to the extraordinary pains that were taken by the original builders with the structure of all these passages.

Even with the first, or entrance passage, the most used and abused of the whole, both in mediaeval and modern times,—yet the regularity and beauty of its fabric, composed of whiter, more compact, and homogeneous stone than is to be seen anywhere else, and in enormous blocks admirably worked, seem to have been ever the admiration of all beholders. Professor Greaves, in 1638, exclaims (with almost a Tennysonian feeling of the romantic belonging rather to 1860 A.D.), on beholding this passage some 3,800 years after its builders had been laid in the dust, and their spirits had returned to God who gave them, "The structure of it hath been the labour of an exquisite hand."

Yes, truly; but to bring back the "tender grace of a day so very long since dead," and receive a clear intellectual explanation of wherefore these things came to pass,—how vain it would be merely to sigh, and ever so anxiously wait, for—

"The touch of that vanished hand,
And the sound of a voice that is still!"

Nor does the Savilian professor abandon himself to vain regrets; but goes on methodically to describe the mechanical elements of the excellence which he had noted; such as, "the smoothness and evenness of the work," "the close knitting of the joints," and the accuracy with which
the exact breadth of 3.463 of the English foot* is kept up through a length of 92.5 feet. But when Greaves comes soon afterwards over against a portion of that rough fragment of a side-passage forced in barbarous times of spoliation by Caliph Al Mamoun, he correctly describes that as "a place somewhat larger, and of a pretty height, but lying incomposed; an obscure and broken place, the length 89 feet, the breadth and height various, and not worth consideration." And again, "By whomsoever (among the moderns) it was constructed, is not worth the inquiry; nor does the place merit the describing; but that I was unwilling to pretermit anything, being only an habitation for bats, and those so ugly and of so large a size, exceeding a foot in length, that I have not elsewhere seen the like." †

When, on the contrary, the same Professor Greaves, by aid of that yawning hiatus in the masonry to the west of the portcullis, got round and above that granite block obstruction between the descending entrance, and first ascending, passages proper, and reached this latter work of the ancient builders,—a passage of the same breadth nearly as the entrance, or descending, passage,—he then resumes his more graceful imagery, and writes, "The pavement of this rises with a gentle acclivity, consisting

* Equivalent to 41.51 Pyramid inches, my measures in 1865 having given for extremes 41.58 and 41.46, and the mean of all, 41.49 of the same inches; or differing from my astronomical predecessor, after two centuries, by only \(\frac{1}{300} \) of the whole.

† Murteid, an Arabian author, declares, "As big as black eagles;" and that gives at once a measure of Arab veracity, to any one who will now visit the hole by day; and, catching some of the still numerous bats asleep, or knocking them down as they try to fly past,—ascertain their length precisely from tip to tip. Professor Greaves evidently did not recognise in 1638, neither indeed did Dr. Clarke in 1800, that this "incomposed hole" was the inner part of the quarried path of forced entrance made by the early Arabian Caliph; and it required Colonel Howard-Vyse's clearing away of the rubbish-mound outside, in 1837, to prove the fact, by exhibiting the outer end of the long hole as well. But the very circumstance of Professor Greaves not being acquainted with these latter-day demonstrations, makes his correct description of the interior, as he saw it, all the more creditable to him.
of smooth and impolished marble (limestone), and, where not smeared with filth, appearing of a white alabaster (cream) colour; the sides and roof, as Titus Livius Burrettinus, a Venetian, an ingenious young man, who accompanied me thither, observed, were of impolished stone, not so hard and compact as that of the pavement, but more soft and tender.” And I, in my turn, have now, 235 years after King Charles the First’s professor of astronomy left the Pyramid, to report, as an apparent consequence of that tender softness described by him, that the upper part of the walls, and more especially the roof of much of this passage, have exfoliated or decayed to the extent of a foot or more in many places,—while the floor, on the other hand, has rather hardened to the feet (usually naked feet, though) of Arabs, and exhibits a peculiar change in the surface of the limestone; hardening as it does there, until it actually verges upon the consistence of flint, yet keeping nearly true still to the ancient test-marks of the floor-level on either side wall.

And then when he arrives in the far freer and more elevated space of the second ascending passage, or the Grand Gallery; the fine old Oxford professor, who well knew what architectural beauties were, speaks of it as “a very stately piece of work, and not inferior either in respect of the curiosity of art, or richness of materials, to the most sumptuous and magnificent buildings.” And again, “This gallery or corridor, or whatsoever else I may call it, is built of white and polished marble (limestone), the which is very evenly cut in spacious squares or tables. Of such materials as is the pavement, such is the roof, and such are the side walls that flank it; the coagmentation or knitting of the joints is so close, that they are scarce discernible to a curious eye; and that which adds grace to the whole structure, though it makes the passage the more slippery and difficult, is the acclivity and rising of the ascent. The height of this gallery is 26 (more nearly
28) feet; the breadth 6·870 feet, of which 3·435 feet are
to be allowed for the way in the midst, which is set and
bounded on both sides with two banks (like benches) of
sleek and polished stone; each of these hath 1·717 of a
foot in breadth, and as much in depth.”

“Upon the top of these benches (the ‘ramps’ of Col.
Howard-Vyse), near the angle where they close and join
with the wall, are little spaces cut in right-angled parallel
figures, set on each side opposite one another, intended, no
question, for some other end than ornament.”

“In the casting and ranging of the marbles (limestone),
in both the side walls, there is one piece of architecture
in my judgment very graceful, and that is that all the
courses or ranges, which are but seven (so great are these
stones), do set and flag over one another about three inches;
the bottom of the uppermost course overflagging the top
of the next, and so in order the rest as they descend.”

In the edition of Greaves’s works by Dr. Birch in 1737,
from which I quote, there is an attempt to represent
these things graphically, by the book being “adorned
with sculptures,” and “illustrated with cuts by a curious
hand;” and in the great French work some efforts in a
high class of design are engraved in line, to represent per­
spective views looking both upward and downward in the
Grand Gallery; but they are all of them to some extent
failures. The circumstances are above the scope of ortho­
dox pictures by reason of the narrow breadth, the lofty
vaulting height, and the very peculiar sloping angle of
the long floor; a floor, when one looks from its north end
southward, ascending and ascending through the dark­
ness apparently for ever; and with such steepness, that

* By my measures in 1866, in Pyramid inches, and taking a mean of
all the variations caused by the tile-setting of the stones forming the
ceiling or roof, the vertical height between sloping floor and parallel
sloping roof was = 339·2, and the computed transverse height = 304·1,
the greatest breadth being 82·2; the lower breadth between the ramps
= 42·0; and the ramps themselves 20·97 broad, and 20·96 high in the
transverse, or shortest, direction. (See “Life and Work,” vol. ii. pp. 69-91.)
no artist's view of it, painted on a vertical plane, could ever hope to represent more than a small part of that floor, rising upward through the whole canvas, and going out at the top. While on looking northward again, from the south end of the gallery, you lose the floor instantly, and see on the level of your eyes, in the extreme distance, part of the steeply descending ceiling; descending, too, still further, and going out at the bottom of the picture, if your means of illumination extend so far. (See Plate XI.) Otherwise, it is the solemn overlappings of the high dark walls (very dark now, because blackened by the smoke of travellers' torches during a thousand years), passing you by on either side, to draw together in dim and unknown perspective beyond, which encase you in on every hand; but all on that uneasy slant, speaking of toil in one direction, danger in another, and a mountain of strength for a prison-house to an unruly spirit, if so required, everywhere.

Modern Measures of the Passages.

In the first edition of this book, I was positively puzzled to make out, let alone the mysterious Grand Gallery, the simple sizes of the smaller passages; and erred considerably in choosing among the conflicting testimonies of former travellers. But a four months' residence on the spot, most completely settled all that class of difficulties; and enables me now to speak confidently thus:—Although there are some pieces of horizontal passage in the Great Pyramid, their united length is as nothing compared with the length of the inclined passages. The angle of the inclination in a vertical plane of these passages is 26° 18' nearly, being the same whether the passages are ascending or descending (within errors partly of construction amounting to 1-120th of the whole); and the transverse size, that is, breadth and height, excepting only the utterly
diverse Grand Gallery, being also the same; or at least, having certainly been so, before the abrading and exfoliating of the more "soft and tender" of the stones began. Confining myself, however, to well-preserved portions of the ancient surface, and just now to the entrance-passage alone, I obtained the following measures for its breadth and height:

Entrance Passage.

Breadth and Transverse Height as measured in 1866.

<table>
<thead>
<tr>
<th>Place where the measure was made referred to the floor-joints.</th>
<th>Breadth from east to west.</th>
<th>Transverse Height.</th>
<th>Notes.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Near bottom of walls.</td>
<td>Near top of walls.</td>
<td></td>
</tr>
<tr>
<td>4th joint from north, or upper, end of passage.</td>
<td>Brit. ins.</td>
<td>41'61</td>
<td>47'27</td>
</tr>
<tr>
<td>7th do.</td>
<td>41'51</td>
<td>41'41</td>
<td>47'30</td>
</tr>
<tr>
<td>8th do.</td>
<td>41'59</td>
<td>41'50</td>
<td>47'33</td>
</tr>
<tr>
<td>11th do.</td>
<td>41'59</td>
<td>41'51</td>
<td>47'18</td>
</tr>
<tr>
<td>15th do.</td>
<td>41'59</td>
<td>41'46</td>
<td>47'14</td>
</tr>
<tr>
<td>21st do.</td>
<td>41'45</td>
<td>Chipped</td>
<td>47'28</td>
</tr>
</tbody>
</table>

The manner in which these numbers run, will of itself indicate to any practical man the degree of opportunity which the Great Pyramid still presents for respectable accuracy of measure, when the measuring-rods are applied by those who will trouble themselves to seek out the best-preserved parts, and endeavour to do them justice. But what is the meaning of the word *height* in the above table being qualified as "transverse height?"
These Pyramid passages being all of them inclined, have two sorts or kinds of height: First, transverse height, or the shortest distance between floor and ceiling, and which was the easier kind of height to measure accurately with the sliding scales which I had had constructed for the purpose; and, second, vertical height, or height in the direction of a plumb-line, and the more usual, indeed almost the universal, mode of measuring heights in masonry structures elsewhere.

Now, putting all the observations together, I deduced 47·24 Pyramid inches to be the transverse height of the entrance-passage; and computing from thence, with the observed angle of inclination, the vertical height,—that came out 52·76 of the same inches. But the sum of those two heights, or the height taken up and down, = 100 inches: which length, as elsewhere shown, is the general Pyramid linear representation of a day of 24 hours. And the mean of the two heights, or the height taken one way only, and impartially to the middle point between them, = 50 inches, which quantity is, therefore, the general Pyramid linear representation of only half a day. In which case let us ask, what the entrance-passage has to do with half, rather than a whole, day?

Astronomy of the Entrance Passage.

If you descend at night a certain distance down the sloping floor of the entrance-passage, and then turn round and look upwards and northwards to its open mouth, you will see any large star whose distance is 3° 42' nearly from the Pole, if it should chance to be crossing the meridian at that moment in the lower part of its daily circle:—always supposing that there is at this present time a star at that distance, bright enough to be easily seen by the naked eye; and indeed there is such a one very nearly in the required position, viz. δ Ursæ Minoris, 3° 24' from the Polar point.
But that star was not always there; being carried on and on through an immense celestial round at the rate of several whole degrees for every thousand years, by that grand mechanism of the earth and the heavens called amongst astronomers the precession of the equinoxes;—the most important too of all celestial phenomena it is for fixing the exact and absolute chronology of the earlier periods of man upon earth. It was Sir John Herschel who, in answer to a letter from Colonel Howard-Vyse on his return from his immortal Pyramid explorations in Egypt, in 1837-8, first laid down the application of this essential astronomical law with regard to the Great Pyramid. And, indeed, he did more; for, assuming the prevailing idea of his then time, that the Great Pyramid's foundation was somewhere about 4,000 years ago, he searched the starry heavens, as moving under the influence of precession, and found that, for two thousand years before, and as many after that time, only one notable star had been at the required Polar distance, so as to look exactly down the descending entrance-passage of the Great Pyramid at its—the star's—lower meridian culmination; and that star—a Draconis by modern name—was in that critical position somewhere about 2160 B.C. That date, therefore, made up with 1840 (and excluding for the time all question about one or more possibly unrecorded years at the beginning of our era), 4,000 years ago as the epoch of the passage-angle being laid; and then evidently to suit a chronological phenomenon of excellent astronomical kind, and peculiar to the Pyramid builders' day.

This near agreement of general Egyptological theory, as it was in London in 1840 A.D., with the result of computations by modern astronomy when adapted to measures of still-existing facts at the Great Pyramid, seemed to take the English world by a storm of admiration; and every one allowed, for awhile, that the whole affair was
quite settled. But, alas! those were simple, innocent days under good King William and the quiet Queen Adelaide. The up-springing of German critical and philosophical theology in this country, and the demands of natural-history science overleaping itself, and calling out everywhere for long dates, were scarcely begun; while the only opposition then ventured was from certain literary Egyptologists, who protested that the astronomy of Sir John Herschel’s paper was only an accidental coincidence with the passage-angle. And why? Because said passage, having been made, as they knew, merely to slide a sarcophagus down to its resting-place, and having been filled up choke-full to its mouth, after that was done, with solid blocks of stone, it could not have been used as an observatory by astronomers.

The first answer to this earliest Egyptologic dictum was easy enough. Sir John Herschel had not said that the passage was intended to serve as a permanent observatory; but that its cream-coloured, stone-lined, long, long tube seemed to memorialise, or further still to monumentalise, a particular phenomenon of the day when it was being built, and of that day only; a record, therefore, by memorial and monumental astronomy (whatever other practical use the passage may, or may not, have served), of a special sidereal fact, to become increasingly important in distant ages for the purpose of exact chronology.

That explanation holds perfectly true yet. But with regard to the other part of the question, as to whether Sir John Herschel’s astronomical conclusion is still to be held as confirming, and confirmed by, the date arrived at by the very latest studies of the present Egyptologists among their most mystified documents of profane and idolatrous Egypt (generally, too, long subsequent to the Great Pyramid’s foundation); alas! what a change had passed over London society by the time that it had come
to be my privilege to go out to the Great Pyramid in 1864, and my turn to print upon it in 1867, 8, and 9!

Then to talk, in ordinary scientific society, of 4,000 years ago for the Great Pyramid's date of foundation! All Egyptologists of any pretension had learned to scorn such a petty conception; and had begun to assert entirely new Egyptological epochs, ranging, most of them, anywhere between 5,200 and 6,600 years ago. Whereupon, that entire half of Sir John Herschel's hitherto applauded grounds of confirmation, for his astronomical date of the Great Pyramid, fell to pieces at once; and he was left, with his astronomy alone, in enormous opposition to, and violent discrepancy from, instead of singular agreement with, the idol-studying, Cainite proclivity-indulging, Egyptologists of our present universities and museums.

Moreover, as soon as I came to extend Sir John Herschel's computations, it appeared that when the star α Draconis had in a manner chanced to come to that passage-angle distance from the Pole in about 2160 B.C.,—it was from a nearer, instead of a further, Polar distance which the star had previously occupied. In which case, the said star must have been at some still earlier age at a greater distance, and have then passed through the passage-angle—on a former occasion also; and that occasion must have been somewhere about 3440 B.C.

Here then was a most divided duty: 3440 B.C. might satisfy some of the Neologians among our too learned Egyptologists of the last ten years; though certainly not all. But then, what case could be made out, independently of all Egyptology of the profane order, for choosing 3440 B.C., as better than 2160 B.C., or vice versa? There were no astronomical reasons then known applying to one occasion, more than the other; Colonel Howard-Vyse was dead; Sir John Herschel remained silent; a noisy military man would persist that Sir John now agreed with him in maintaining that the
peculiar passage-angle was chosen for easy sarcophagus sliding alone; and the astronomical world, whatever the reason why, would give the subject no attention.

The Great Pyramid's use of a Polar Star.

But there was happily more in the ancient Great Pyramid than any one had suspected, and it began to manifest itself thus:—

Did not the very entrance-passage, chiefly concerned in the affair, speak by its 50, in place of 100, inch height, to a half, and not a whole, day; or a 12-hour interval for some purpose unknown? And did not the axis of the passage point, not to the one, central, Pole of the sky, where, if visible at all, the upper and lower culmination of any close Polar star would be equally seen, or rather be one and the same thing,—but to a region of lower culmination only?

This was indeed the fact; and no one had yet asked, "Why did the builders memorialise, out of the two meridian passages of their circumpolar star in every 24 hours, only the lower, less visible, less important culmination of the two?" Neither had any one yet inquired, "What did any reasonable man, whether of the Pyramid, or any other, day intend or mean, if time was his object, by observing the transit, whether above or below the Pole, of a close circumpolar star; and of that kind of star only?"

Why! such a star moves so slowly, by reason of the very small size of its daily circle in the sky, that the instant of its passing the meridian is difficult to observe and decide on even with modern telescopic power; and no observer in his senses, in any existing observatory, when seeking to obtain the time, would observe the transit of a circumpolar star for anything else than to get the direction of the meridian to adjust his instrument by. But having done that, he would then turn said instrument
round in the vertical plane of the meridian so ascertained, and observe an equatorial, or at least a zodiacal, star crossing its own part of the meridian: such star moving diurnally at great speed through the sky, by reason of its large circle extending through both the heavens above, and the heavens below, the earth at the same time. And then such astronomer would obtain the time with proper accuracy and eminent certainty.

Now to myself, who have been an astronomical transit observer for a great part of my life, it immediately occurred, that the narrow entrance-passage of the Great Pyramid directed up northward, looked very like a meridian Polar pointer; while the grand gallery rising up southward at an opposite angle, but in the same meridian plane, and with its high walls scored with long and broad bands, looked amazingly like a reminder of the equatorial zone; though not pointing to the angular height of the equator; nor indeed having any aperture for actual observing astronomy of any kind. Wherefore I then ventured to argue thus:—

The ancient architect's reason why the entrance-passage points to the lower or less important culmination only, of its Polar star, a Draconis, must be because a more important star was at the same moment at its upper culmination, or crossing the meridian above the Pole; and for chronological purposes such more important star must be a zodiacal, if not absolutely an equatorial, one; and to be seen southward, rather than northward, of the zenith, or summit of the Pyramid, to a base-central observer there. Was there then at either the earlier date 3440 B.C., or the later 2160 B.C. (at each of which dates, but at no other for 25,827 years, a Draconis was, when crossing the meridian each day below the Pole, equally at the entrance-passage angle of height), was there any notable zodiacal or equatorial star in the exact southern vertical of the grand gallery?
Now here was a question put by the Pyramid's actual construction, and to be answered by astronomy alone; or without any of the Egyptologists, with all their learned lore of false gods and animal idolatry, having anything to do with it.

The answer too might have come out, either that there was no signal zodiacal star in such a position at either date; or there might have been such stars at both dates, and then no discrimination could have been effected. But the answer that did come out was, that no such star existed at the circumpolar star's lower transit of 3440 B.C., but that there was one most eminently and exactly in position at the 2160 B.C., or rather 2170 B.C., circumpolar transit; and that well-fitting zodiacal star was the Pleiades, or its chief star Alcyone. (See Plates XXI. and XXII.)

The Pleiades Year.

Now Alcyone, or η Tauri as the stricter astronomical observers choose at present to call it, is not a very large or bright star in itself, but then it is the centre of a group of stars more bound up with human history, hopes, and feelings than any other throughout the sky, viz. the Pleiades; and there have been traditions for long, whence arising I know not, that the seven overappings of the grand gallery, so impressively described by Professor Greaves, had something to do with the Pleiades, those proverbially seven stars of the primeval world, though already reduced to six (i.e. six visible to the ordinary naked eye), so early for certain as the time of the Latin poet Virgil; and probably, according to poetic tradition, as the siege and burning of Troy.

Here then is what those overappings had to do; viz. to symbolize the Pleiades both on the celestial meridian and to the south, though not at their actual
altitude therein, and as part of the memorial, rather than observing, astronomy of the Pyramid, at the time of its construction; for the Pleiades evidently were, de facto, the superior, southern and equatorial, or time, star to be taken in concert with the inferior transit of the circumpolar α Draconis star on the opposite or northern side of the sky, and 12 Polar hours distant therefrom. And how well they performed their part, as well as how capable they were of it, appeared from this further result of calculation, that when they, the Pleiades, crossed the meridian at midnight above the Pole, at the same instant that α Draconis was crossing below the Pole, and at the particular distance from the Pole indicated by the entrance-passage,—then, in the autumn season of that one year of the northern hemisphere, the equinoctial point of the heavens coincided with the Pleiades, as to their respective meridians.* That autumn night, therefore, of that particular

* We have spoken of only one equinoctial point, when of course every one knows that, from the opposite intersections of two great circles of the sky,—if there is one, there must be two such crossings; and these two are already popularly termed the vernal, and autumnal, equinoxes. Which of these two, then, are we alluding to?

To that usually, but in a manner incorrectly as to the best time of observation for it, called the vernal. And from inattention to this practical condition, some needless difficulties have arisen elsewhere in certain prehistoric studies of mankind.

Thus M. Thomas Brunton, of Paris,—finding by his otherwise most praiseworthy researches that it is the equinoctial point in the constellation of Taurus, which was generally referred to in primeval times, and which is now denounced “the Vernal Equinox” by the moderns (basing on the Alexandrian-Greek, or Pagan Astronomy),—he at once declares that the beginning of the ancient year of mankind, and indeed the epoch of the Creation of Adam, must have occurred in the spring-time of the northern hemisphere. Whereby he, M. T. Brunton, fights against both much of ancient tradition, as well as the Bible itself; which describes that the evening and the morning, not the morning and evening, were the first day; therein leading to the idea of the sacred Biblical year beginning with its evening or autumn, not its morning or spring.

But the Great Pyramid method of observing settles the whole difficulty. For in place of vainly trying, like the Greeks, to see what stars the sun was amongst, and whereabouts exactly, when the sun was amongst them and was extinguishing their light right and left of him through the whole breadth of the sky, by his brilliancy of daylight; the Great Pyramid Architect observed the anti-sun, or the point of the heavens opposite to the sun at midnight. Wherefore his time of the year for
year, was not only, in the primeval fashion, the beginning of that year,—but that year was, with the Pleiades to lead it out in that significant manner, the beginning of the first human and historic example of the grand cycle called the precession of the equinoxes; destined thenceforward to progress continually through all the 24 hours, and 12 signs of the zodiac, though only at the rate of about 3 seconds of time every year, so as not to repeat itself until 25,827 years have come and gone.

This peculiar celestial cycle, the grand chronological dial in fact of the Great Pyramid, is further defined at that Pyramid, but at no other Pyramid throughout all Egypt, by, amongst other intentional features, the length of the two diagonals of the base, which so eminently lay out its whole position; when their sum is reckoned up in inches, at the rate of a Pyramid inch to a year. For each diagonal, duly computed, gives 12,913·26 of those units; or the two, 25,827 nearly.

Further still, this feature is memorialised again at the King’s Chamber’s level of the Great Pyramid; for that chamber’s floor being by measure 1,702 inches above the base of the whole building, Professor H. L. Smith has shown, that the circuit of the Pyramid at that level = 25,827 Pyramid inches. And if the whole vertical height of the Great Pyramid, 5,813 inches, typifies the sun-distance, the partial vertical height from the King’s Chamber level upwards, 4,110, indicates the radius of the precessional circle of the equinoxes, in years.

During the very little portion of human history which is all that modern astronomy can claim to have flourished in, the following are some of the principal attempts of making his observations of those Taurus stars which the sun is amongst in spring, is evidently in the autumn. He observed them in the crucial position of the meridian cutting through the crossing of the invisible, but yet definable, equatorial and zodiacal circles, at midnight on the 21st of September; or in the autumn of the hemisphere of the earth containing the Great Pyramid, the Holy Land, and the whole of the countries wandered over by Abraham, Isaac, and Jacob.
mankind to state the full length of this period of the precession of the equinoxes:—

<table>
<thead>
<tr>
<th>Astronomer</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tycho Brahe</td>
<td>25,816 yrs</td>
</tr>
<tr>
<td>Riccioli</td>
<td>25,920</td>
</tr>
<tr>
<td>Cassini</td>
<td>24,800</td>
</tr>
<tr>
<td>Bradley</td>
<td>25,740</td>
</tr>
<tr>
<td>La Place</td>
<td>23,816</td>
</tr>
<tr>
<td>Bessel</td>
<td>25,868</td>
</tr>
</tbody>
</table>

No one whatever amongst men, from his own, or school knowledge knew anything about such a phenomenon until Hipparchus, some 1,900 years after the Great Pyramid’s foundation, had a glimpse of the fact:—and yet it had been ruling the heavens for ages, and was recorded by measure, and utilised too, in Jeezeh’s ancient structure.

Virgil, 200 years later still than Hipparchus, just as might be expected of a poet, was greater in tradition than astronomical observation; and when he uses the phrase, that it is “the constellation of the white Bull with the golden horns which opens the year,” many of our own scientific commentators have wondered what Roman Virgil could mean, by claiming as a phenomenon for his own day, that which the precession of the equinoxes had caused to cease to be true 2,000 years before his time, and had, during his day, given to the next zodiacal constellation, Aries, instead.

No profane philosopher or academic observer of any country in the world is known to have lived at the epoch when that Virgilian phrase about Taurus was true. In fact, as recently well shown by M. Thomas Brunton, of Paris (who has proposed that the angular place of the equinoctial point in the zodiac, for the time being, shall form a general chronological system for all nations), the location or presence of the equinoctial point in Taurus was chiefly a feature of Antediluvian times. Thus it was in the front part of the constellation, the very tips of the horns.

* "Candidus auratis aperit cum cornibus annum Taurus."
at the Biblical date of the Creation of Adam; and from thence it proceeded backwards through the zodiacal figure as yet drawn on our globes, so that at the date of the building of the Great Pyramid, the equinoctial point was still in Taurus, but at that last part of the figure, just issuing out of a cloud, where the Pleiades stars appear. Wherefore then we may be inclined to wonder how it came about, according to the documents collected with so much rare skill and research (and partially published many years ago) by Mr. R. G. Haliburton, of Halifax, Nova Scotia, that amongst the origines of almost all nations, and among many unaltered savage tribes still, such as Australians, Fijians, Mexicans, and many others (peoples never reached by the Greeks or Romans), a similar beginning of the year to that described by Virgil is still perpetuated; the Pleiades, or the star group chiefly characterizing for those nations the constellation of Taurus, being annually appealed to for the purpose; and in Australia, most strange to say, by precisely the Pyramid method, in so far that the natives there do begin their year on the night when "they see most of the Pleiades;" otherwise, when they continue to see them all the night through, from their rising at sunset to their setting at sunrise; and that must be when they, the Pleiades, cross the meridian at midnight."

But, just as the Romans adhered to those stars in themselves alone, and saw not that they had left the fiducial and chronological test of coinciding with the meridian of the equinoctial point by two hours of the equator, or

* The New Zealanders, a more inventive race, seem to have departed further than the Australians from the primitive practice, but yet greatly astonished the Venerable Archdeacon Stock, of Te Aro Parsonage, Wellington, New Zealand, by remarking, on the conclusion of the last Colonial war, that that was a most auspicious occasion for making peace, because it was the beginning of the year. "The beginning of the year," asked the Archdeacon, "in the month of May?" "Yes," answered an old chief, "because the year which we hold to amongst ourselves, and as our fathers did before us, is regulated by an appearance of the Seven Stars (the Pleiades)."
zodiac (equivalent to a month of error),—so the Australians adhere to them still, implicitly, not seeing that the same point is now more than three and a half of those hours (7 weeks behind the true autumnal day) removed from them; and also, that on account of the residual, or transverse, effect in declination, of 4,000 years of precession, the Pleiades stars, though so admirably seen by us in the north, no longer rise high and gloriously in those southern skies. But that, in itself, is a test, in so far, of when those peoples first received the Pleiades system of sidereal chronology to hold; a grand system for the longest national periods, which is only found in all its completeness, and with testimony as to the date of its beginning, and equal fitness then for all inhabited lands, laid up in the Great Pyramid building. (See Plates XXII. and XXIII.)

Transcendentalisms of the Great Pyramid Astronomy.

Now the only source from whence one uniform system of sidereal chronology, and which, though endued with some change in respect to the seasons, yet alters so slowly year by year and generation after generation as to require 25,827 years before it passes through all the seasons,—the only source, I say, from whence it could have emanated in that early age of the world, and been impressed upon the origines of all races of mankind, is, was, and can only be, Divine inspiration and Divine intention touching that mystery of God, the human race on earth.

But not by any means that the terrestrial human race is the only object cared for by God, throughout all the sidereal universe. For had it been so, the stars might have been created for man's chronological purposes only,—instead of man being taught, as in this case, to make the best practical use of pre-existent, and otherwise created, means.
Here, accordingly, what we are called upon to observe, may rather remind us of that which Josephus records of the descendants of Seth, viz. that they studied astronomy (the laws of the stars as they already existed), of themselves first; though eventually under the approval of, and with some peculiar assistance from, the Almighty. And on pushing calculations to the extreme of modern science, we shall undoubtedly find that those stars were by no means in themselves absolutely perfect. But take them as they were 4,000 years ago, and after they had been already set in motion by the Divine power since on ages of ages before the Pyramid day,—and you will find that they did, at that epoch, come quite near enough to form an excellent practical chronological system of the kind indicated; and no better mode of utilising those actual phenomena of the starry sky, nor any better choice among the stars, ever has been imagined since then, in any country of the world.

Thus, to moderate observation (and with far greater accuracy than the annals of the profane history of mankind have been kept to), all these hereinafter-following features may be said, in ordinary terms, to obtain,—

1. The Great Pyramid is astronomically oriented in its sides; and its passages are in the plane of the meridian.
2. The entrance-passage points 3° 42' vertically below the Pole of the sky.
3. In the year 2170 B.C. a Draconis was 3° 42' from the Pole of the sky, and therefore looked down the axis of the entrance-passage, when at its lowest culmination.
4. When a Draconis was so looking down the entrance-passage, η Tauri, the chief star in the Pleiades group, was crossing the local terrestrial meridian, at a point high up in the sky, near the equator,
and simultaneously with the celestial meridian of the vernal equinox.

5. That whole stellar combination had not taken place for 25,827 years previously, and will not take place again for 25,827 years subsequently. It has not consequently repeated itself yet in all the history of the human race; though the Sothiac cycle, the Phœnix cycle, and other chronological inventions of the profane Egyptian priests, long after the Pyramid day, have done so again and again, to the lamentable confusion of dates in the old Pagan, and modern Egyptological, world.

But if the calculations on which the above Pyramid results are founded, shall be pushed to much greater refinement, or to portions of space invisible to the naked eye,—it then appears that (1) the Pole-star, when it was 3° 42' from the Pole, (2) the equatorial star opposite to it, and (3) the celestial meridian of the equinox, were not all of them on the Pyramid's meridian, below and above the Pole, precisely at the same instant, either in the year 2170 B.C., or in any other year; and this most probably from failure of the physical stars to be mathematically accurate.

But our present difficulty is not by any means entirely confined to the stars, in their places, not being as exact as if they had been created originally for no other than the above purpose; for there are hindrances also to modern astronomy, in precisely realising every single thing in number, weight, and measure, that has taken place in Nature during the last 4,000 years. Two astronomers, for instance, using the same data, may compute back the place of a given star 4,000 years ago from its present place, and they shall agree to a second in the result; but it does not therefore follow that the star was as precisely there at that time, as though a contemporary astronomer
had observed it then; for proper motion, and variations of proper motion, may exist, quite unknown to the short period of surveillance over the stars yet enjoyed by modern astronomy, and totally overturning the physical accuracy of the calculations. Some of the quantities, too, of the celestial mechanics concerned, such as the precise amount of the very precession of the equinoxes itself, and its accompanying phenomenon of nutation, may have been erroneously assumed, and never can be ascertained perfectly by man. The accepted numerical values of such quantities do, in fact, vary at the same time between one astronomer and another (unless both were brought up in the same school), and also from one generation to another of astronomers in the same place; just as most of the living directors of Observatories are disputing at this present moment as to what is the precise distance of the earth from the sun; and all of them differ, even by a large total quantity, from what all their brethren, and themselves too, used to hold, as quite settled, only twenty years ago.

After, therefore, doing my best with the Pyramid star calculations, and publishing my result, together with a repetition of Sir John Herschel's, so far as it went, I advertised, after a manner, in the name of Science, for help from other astronomers,—in the way of each of them computing the whole of the quantities with the data he now thinks best, and also with the data most approved in the astronomical world of his youth, as well as with the quantities thought correct at the end of the last century.

But none of them have ventured to expose to modern society the weaknesses of their favourite science, multiplied by 4,000 years; and I should have been left without anything whatever to show from other modern quarters, but for the kindness of Dr. Brünnow, Astronomer-Royal for Ireland, who, kindly and without needing any second asking, performed the first part of my request: that is,
with the quantities which he now thinks should be adopted as correct, he most ably, and by special methods of astronomy which no one in all the world understands better than himself, computed the following numbers:

(1) α Draconis was for the first time at the distance of 3° 41' 50" from the Pole in the year = 3443 B.C.

(2) It was at the least distance from the Pole, or 0° 3' 25'', in the year = 2790 "

(3) It was for the second time at the distance of 3° 41' 42" from the Pole in the year = 2136 "

(4) η Tauri (Alcyone of the Pleiades) was in the same right ascension as the equinoctial point in the year = 2248 " when it crossed the meridian above the Pole, 3° 47" north of the Equator, with α Draconis crossing below the Pole, nearly, but not exactly at the same instant; and α Draconis was then nearly 90° (89° 16') from Alcyone in the meridian, measured through the Pole.

(5) α Draconis and η Tauri were exactly opposite to each other, so that one of them could be on the meridian above the Pole, and the other on the meridian below the Pole, at the same absolute instant, only at the date of = 1574 " but when all the other data diverged largely.

We have now to deal with the last three dates. Of these three, the first two evidently include between them my own previous mean quantity of 2170 B.C.; but the third differs extravagantly. Nevertheless, the visible effect in the sky of that one apparently very large difference in absolute date, is merely this, according to Dr. Brünnow's computation; viz. that when η Tauri, or the Pleiades, were crossing the meridian above the Pole, at my Pyramid date of 2170 B.C., α Draconis was not doing the same thing, exactly beneath the Pole, at the same instant; for the star was then at the distance of 0° 17' west of the meridian. But it would have been doing the same thing perfectly, according to an entrance-passage observation of it, if the northern end of that passage had been made, by the builders, to trend 17' westward, still keeping to its observed angular height in the vertical plane; viz. 26° 18'.
Whereupon comes the question whether,—granting temporarily that Dr. Brünnow's excellent calculations in modern astronomy replace everything that has happened in Nature during the last 4,000 years,—whether that 17' of the Pole-star's west distance from the meridian was a thing of moment;—and if so, is this the first occasion on which the divergence has been discovered?

Seventeen minutes of space, or less than the thousandth part of the azimuthal scale, is but a small quantity for any one to appreciate in all the round of the blue expanse, without instruments; and the first effort of Greek astronomy 1,800 years after the Pyramid was built, is reported to have been the discovery that the Pole-star of that day, then 6 degrees from the Pole, was not as they, the Greeks, had previously held, exactly on the Pole.

Greek and other profane nations, then, had been in the habit of overlooking, long, long after the epoch of the Pyramid, an error twenty times as great as this which is charged on the Great Pyramid astronomy by the science of precision which has now been elaborated amongst men after a consumption of 4,000 valuable years.

And yet it was not all error either, on the part of the Great Pyramid. For here we should take account of the results of my observations in 1865, when I succeeded in comparing the directions of both the outside of the Pyramid, the internal axis of the entrance-passage, and the axis of the azimuth trenches separately and successively with the Polar star. These observations were made with a powerful altitude-azimuth instrument, reading off its angles with micrometer-microscopes to tenths of seconds; and the conclusions from them were, that everything at the Great Pyramid trended at its north end towards the west,—the azimuth trenches by 19 minutes, the socket-sides of the base by 5 minutes, and the axis of the entrance-passage by more nearly 4 minutes and a half.

What could all these features have been laid out for with this slight tendency to west of north? was a question which I frequently pondered over at the Great Pyramid, and sometimes even accused the earth's surface of having shifted with respect to its axis of rotation during 4,000 years. But now the true explanation would appear to be, that the Seth-descended architect, knowing perfectly well the want of exact correspondence between his Polar and equatorial stars (though they were the best in the sky), had so adjusted in a minute degree the position of the Great Pyramid when building it, as to reduce any error in his Pleiades system of chronology, arising out of the stellar discrepancy, to a minimum. Whence the fact of the western divergence of the north pointing of the entrance-passage, as detected by the modern astronomy observations in 1865, combined with the computation in 1871,—becomes the most convincing practical proof of intention, and not accident, having guided all these time-arrangements at the Great Pyramid.

Further still too I may perhaps be allowed to mention in this Third Edition, that on discussing recently with some of the astronomers who were sent to Egypt in December, 1874, to observe the Transit of Venus (as a stepping-stone towards attaining a knowledge of the sun-distance),—the palm of merit for the best time observations seemed to be unanimously accorded to those of them who had adopted a new method of using their transit instruments, recently elaborated by M. Otto Struve, of the Central Russian Observatory; and which consisted in observing, not exactly in the plane of the meridian (as usually done or tried to be done), but in the vertical of the Pole-star at the instant;—or, as nearly as possible, on the very method of ultra-refinement adopted at the ancient Great Pyramid. Hence the object of this chapter is now fully obtained; for not only does the ancient monument fix an absolute date for itself, viz. something very close to
2170 B.C., which all the profane monuments were confessed to be incapable of even approximately attempting, but it does so by methods unknown of old elsewhere, and only recently begun to be appreciated in the best European astronomy.
CHAPTER XVIII.

MOSES AND EGYPTIAN WISDOM.

In the circles of those very learned men in modern society who go on studying with zest the idolatrous contents of the Egyptian galleries in the British, and many other, museums (and are known as hierologists, hieroglyphiologists, Egyptologists, anti-Biblical archaeologists, &c.), are found the doughtiest of those champions who are so ready in these days to insist, that "whereas Genesis was written by Moses, and Moses was for many years of his life a priest among the Egyptians, who were a wealthy and civilised nation when the progenitors of the Israelites were still merely wandering shepherds; while moreover, according to the New Testament itself (Acts vii. 22), Moses was learned in all the wisdom of the Egyptians," — that therefore Moses must have borrowed all the best things he has put into Genesis, and his other books also, from the Egyptian priests.

On this question, much defence of the Divine inspiration, versus the Egyptian education, of the responsible author of the Pentateuch has been written in the modern world, from the literary side; but not always with so much decided effect as might have been done from the scientific point of view, as now established by the Great Pyramid investigations.

Mere literature, for instance, is nonplussed at once by the hierologists when they contend with positivism, for
a civilised Egypt during 13,000 years and more; some of them even mounting up to 300,000 years, and declaring that they are just as firmly convinced of Egypt's history so obtained, as of any event in English history, say under the reigns of the Stuarts. These men also allege points of community between the laws of Moses and those of ancient Egypt; which laws they say he must have read, because they were actually written and spread about in books long before his time, together with a vast amount of literature, including even novels, and something very like the story of Joseph, in the highly polished society flourishing, according to them from time truly immemorial, on the quiet banks of the Nile.

The refuge here (and in so far, a very proper one) of the pro-Biblical literary men, seems to be chiefly, that those tremendous hierologist and Egyptologist imagined dates have never been extraneously proved; while, as for the points of community, or similar complexion, between the far more modern Egyptian and the Mosaic laws, they exist only in certain subsidiary forms required for social order and political independence; and are such as a common humanity, with a like geographical position, chronological epoch, and traditional information from Babel, would have infallibly produced, more or less, amongst any set of people endowed with ever so little desire to amend their position in the world. And then there comes also, to every real believer in the fundamental doctrine of Christianity, this further and grander result, flowing from an inductive investigation into the two systems as wholes; viz. that the real religious essence of the Mosaic law is as totally distinct from that of the Egyptian, as any two antagonisms in this world can possibly be. For while the Egyptian system bases on Cainite assertions and reassertions of self-righteousness, and a multitude of gods, half animal and half man—some of them, too, not a little abominable—who is there, of
those who have felt the saving grace of Christ's Divine sacrifice, who cannot see, as the ruling principle in Moses, the most magnificent, and particular, rebellion against all the would-be power of man to theo-technicize heavenly things, and a grand assertion both of the one, true, only living God, the Creator of all things, and the sinfulness of man in His sight? Over and above which, how grandly distinct is the great preparation begun in the time of Moses, of setting aside a peculiar people in the midst of whom, or rather of one section of whom, Christ himself was to appear and suffer 1,500 years afterwards as the Divine Mediator and all-essential Atonement; and in the midst of the other sections of which people and His Church, He is still to appear as Universal King on earth!

The holy zeal, too, of Moses, and his earnest self-sacrificing for the cause of God, and his anxiety to show Him at once accessible by prayer, through an appointed method of sin-offering and mediation to every one, both rich and poor, are the liveliest contrasts that can well be imagined to the sordid routine of an Egyptian priesthood, placing itself immovably, for its own gain, between the people and their gods, such as they were.

Of the Number Five.

But the most decided overthrow of the modern hierologists comes involuntarily from themselves, when they attempt to handle the mechanical part of the question; for, to a great extent, what they, the hierologists, have succeeded at last in proving,—is precisely that which enables us to say most positively that a cubit measuring-rod of the Mosaic, and Newton-proved, length of 25 Pyramid inches, and which has such extraordinary scientific value in its earth-axis commensurability, and was made so much of by Moses in the Tabernacle of the Wilderness,—was no part or parcel of the wisdom of the
profane Egyptians during any portion of their historical career; and could not, therefore, have been learned or borrowed from them by either Moses or any one else.

And though the best ethnological theory of the Egyptians be that which makes them, not Ethiopians descending the Nile from the interior of Africa, nor Indian Aryans migrating by sea from Bombay and landing on the eastern coast of Africa,—but North Asiatics and Caucasians entering by the Isthmus of Suez into Lower Egypt, and ascending the course of the river—that there seems no reason whatever to conclude that they had previously, wherever such previous existence had been passed, either received or adopted that peculiar measure of 25 inches, which Sir Isaac Newton considers the Israelites possessed, long before their going down into Egypt.

Not only, too, may it be further said, from this cubit-measure side of the question, that recent researches have proved the astonishing vitality of standards of measure through enormous intervals of time: and that an involuntary change of a free people’s standard from the undoubted Egyptian 20·68, to the Hebrew and Pyramid 25·0 inches, or vice versa, was never yet seen in the history of the classic world; but it may be argued, that the ancient Egyptians, whatever faults they may have had, were both politically and socially a most conservative, methodical, and orderly people, with an immense taste for mechanics, a most commendable industry, and a marvellous appreciation of measure; so that they would be the last nation in the world, let alone their religious ideas on the topic, to lose or mistake their hereditary standards. In fact, one of the chief accusations which a late French writer brings against those ancient Egyptians is, that they had no genius, no invention, no love of change; that they were only dull plodders at routine work; and, besides never having produced a great poet
or a first-rate warrior, they were actually so low in the scale of his Gallic ideas of advancing, civilised humanity, so debased in fact among mankind, as never to have had a revolutionist of any kind or degree amongst them.

We may therefore with perfect safety, and hierologists' support too, regard the length of 20.68 inches as the veritable and admitted hereditary measure of all Pharaonic Egyptians; and the one which, if they had been really copied from by any other nation or individual, would have been the length imitated and faithfully reproduced.

Moses, consequently, in making the distinguished use which he did, not of that length of 20.68, but of the very different length of 25 inches, was decidedly not taking anything there out of the known wisdom-book of the Egyptians.

And not only so, too; for if, with the absolute length of the Pyramid standard, Moses adopted its Pyramidic subdivision also into \(5 \times 5\) parts, he was adopting something which was particularly hateful to the Egyptians. Why it was so, does not appear; but Sir Gardner Wilkinson speaks of \(5\) as being the "evil number" in Modern Egypt* still; it is marked by 0 on their watches; and \(5 \times 5\), or anything made up of 5, would seem to have been always repulsive there.

Particularly galling, therefore, to the old Egyptians it must have been to have seen the Israelites, when they escaped from bondage and went out of the country "with an high hand," itself a symbol of 5,—especially galling to their spirits to see their late slaves go up, marshalled by "5 in a rank," out of the land of Egypt; for so is the literal translation of the word expressed "harnessed," in Exodus xiii. 18 of the English Bible.

The whole of that affair must, no doubt, have been hateful, as well as disastrous, to the Egyptians; and

they indulged themselves afterwards in some very contemptuous phrases about it. They said, for instance, as appears from the relics of Manetho, handed down to us from various authors, that some persons, under a renegade priest of Heliopolis named "Moyses," had been thrust out of Egypt by the king; and they were a very shocking set indeed, for not only were they all lepers and unclean, but their number is given as the very evil one of 250,000, or $5 \times 50,000$.

Their real number is indicated by the Bible as something very different from this, as well as their state; but it was a mode of blackening them to the Egyptians for Egyptian purposes in more ways than one; and similarly, when the "Hyksos," or "Shepherd Kings," also much abominated by the Egyptians, established themselves in Avaris, in a remarkably inconvenient manner to Egyptian polity, they were described as men "of an ignoble race," and in number also "250,000."

Of the Book of Job.

But Moses had none of this unwise and anti-Pyramid hatred of 5, and times of 5; and though his first arrangement of years was the Sabbatical one of a "week of years," his next, and by far the most important one, the grand standard, in fact, of sacred time, was the jubilee of 5×10 years; a number which, with the similar arrangement of days for the feast of Pentecost, brings up again the number of inches frequently referred to as an important standard in the King's Chamber and the passages of the Great Pyramid.

It is also worthy of note, that the whole of the sacred law was arranged on a system of five books; five, too expressly so called in the "Pentateuch;" and this over-

* "Penny Cyclopædia," p. 113.
† Gliddon's "Ancient Egypt," p. 63.
shadowing of Israel, in this place, by the number 5, seems even to have had some special intention in it. For when the best critics have pronounced so decidedly as they have done, and on entirely other grounds, that the Book of Job was either completely written, or finally put into its present shape, by Moses, and by no one else, in spite of some modern theories,—yet cannot find the smallest reason for its anomalous position in the Bible, far away from all the other books of the same inspired writer,—it may be suggested that one reason was, to prevent the unity and proportions of the five books of the "Pentateuch," as a system and symbol of 5, being interfered with.

Each of the books of the "Pentateuch" depends on the other; or, at least, Deuteronomy refers to Exodus, Leviticus, and Numbers, and they refer to Genesis; but not one of them refers to Job, and Job does not refer to any of them.

Yet surely the Bible itself would have been incomplete without the Book of Job, and all its lessons of supreme piety, humility, and proofs of high mental capacity in that early day, which go far to refute the modern evolution theory of the progressive development of man from a lower condition by his own unaided efforts. In the "Pentateuch," somewhat fettered to a particular purpose, the full genius of Moses and the whole of the wisdom he was privileged to receive from on high, had not their full range; but in the Book of Job there came an opportunity, which was not lost or slighted, of alluding more clearly to man as the creation of God, to the immortality of the soul, and the necessity of a Divine redemption.

Again, to return to more moderate subjects, it was not till lately that any one scientifically understood, and thoroughly appreciated, the full tenor of some of the concluding passages of that remarkable book. In Job xxxviii., the Lord, "with whom is terrible majesty," proceeds to
answer Job out of the whirlwind; confounding him in a moment with the grandeur of elemental phenomena, the form and size of the earth, the laws of solids and fluids, of light and darkness, of sea and air, of clouds, sunshine, rain, frost, and lightning; the series of wonders is appalling, their magnitude and duration verging on the infinite. But, then, though softened by a gradation of truest descriptions of the tender herb springing forth all the wide world over,—there had seemed, to every mathematical scientist's ideas, something like a descent from sublimity, in the Biblical account coming down to, and concluding with, a description of two or three particular animals.

What the Egyptian wisdom, with its infantile knowledge of physical science and cosmical relations, would have said to that, is hardly worth a serious inquiry; but this is what modern wisdom in the scientific age of the earth has involuntarily illustrated very lately, or in the last-published number of one of those large book-sized Reviews, which undertake to show existing intellectual society, through the medium of the ablest writers, whatever the best minds have been producing within the latest few months of time.

The author reviewed on the occasion alluded to, treated of the new science of thermo-dynamics; showing that heat is a mode of motion; and, from that simple beginning, enumerating the laws of the earth's atmosphere, and the medium filling space; calculating the store of useful mechanical and chemical work still in the world; predicting the duration of sun, moon, and all material things; and then boasting, quite in the profane Egyptian manner, that now that this new principle in natural philosophy,—i.e. mere solar radiation, computed by a particular formula—is proved to be the one principle which supports everything we see,—that it may be said to "create the muscle and build the brain of man; to be
heard in the roar of the lion, and the song of birds; is seen in the gliding of the serpent,” &c. &c.

Whereupon comes down the reviewer, with a higher philosophy and more religious truth, regretting that the author does not see that, to whatever extent he can compute some few changes in the form of mere dead matter, or inorganic elements,—extending though they may through space,—he has not made the smallest approach to accounting for a single organic phenomenon: the mystery of life of any kind is left wholly untouched by him; so is any attempt, even, at an explanation of how fibre is joined to fibre in the animal structure; and infinitely more, wise Job's idea, "how wisdom is put into the inner parts," and by what means the different created beings take up their appointed characters in life's varied drama.

In fact, the best and latest of modern science has here represented the difficulties of nature for man to explain, to be culminating precisely in the manner they were described to do, in the sacred Book of Job 4,000 years ago.

Moses, then, in that inimitable work, instead of copying anything from the profane Egyptians of his day, was rather anticipating the march of science in the latest Christian ages of the world. And when we further find that in other important things, he was likewise going directly against the standards of the Egyptians, but coincidently with those of the Kosmos of God and also the long secret, but now being manifested, design of the Great Pyramid; of those very innermost parts of it, too, which the Egyptians knew nothing about, and which he, Moses, as a man, could never have seen—when we meet with all these telling circumstances, and so many parallel features between the inspired writings of the Bible, and the construction by number, weight, and measure of the Great Pyramid; they two on one side, census on the other all profane Egypt, together with Babylon, Assyria, and
Greece also, it certainly would appear that we must be coming close to the Biblical source of the truly high and transcendent knowledge displayed by that mighty fabric.

While as to the oft-repeated quotation that Moses was learned in "all the wisdom of the Egyptians,"—the particular question which that most provokes in the mind of one who has closely studied the Great Pyramid, and compared it carefully by mensuration and science with every known work of those same idolatrous Egyptians when working freely and voluntarily for themselves,—is, and pray what did all the wisdom of the Egyptians amount to? The quoted passage does not say that they possessed all wisdom; but only that whatever they knew, Moses knew also.

He knew therefore, doubtless, that the profane Egyptians believed the earth to be flat, and represented it in their hieroglyphics, still to be seen, as a flat cake of bread: and had no ideas of earth and heaven commensurability for their cubit measure. But Moses was not led by knowing that ignorant wisdom of the Egyptians, to follow it,—rather, on the contrary, to avoid it, and fight against it, arming himself therefor out of the very treasuries of Divine wisdom imparted to him from on high. And, first of all, let us see how he proceeded in that particular matter of his, or his God’s, sacred cubit length, as expressive of the earth we live on; first in size, and next with its contents and all that is therein.

Of the Sacred Ark of the Covenant.

The length of the Great Pyramid’s cubit having been 25·025 British inches cannot, I presume, now, after all that has preceded in this book,* be resisted; and, to all minds capable of grasping the subject, Sir Isaac Newton’s testimony for the Mosaic cubit having also been close to

* Chap. X. pp. 180, 188; Chap. XIV. p. 260.
that length,* is probably equally conclusive; yet at the
same time, those able minds may desire to hear if there
is any further direct Biblical evidence for that end, over
and above what Sir Isaac Newton adduced in his invalu­
able Dissertation? Now something of this sort there
does appear to be in the Pentateuch’s account of the Ark
of the Covenant, the most sacred feature of the whole of
the Tabernacle’s arrangement under Moses.
That ark was kept in the Holiest of Holies, occupied
its chief place of honour, and was never to be looked on
by any but the High Priest alone, even during a journey.
Near it was placed an ephah measure; and immediately
outside its compartment, as Michaelis has shown, were
various other standards of measure; though no metro­
logical purpose, that I am aware of, has been hitherto
assigned to the Ark itself.
As its original name, arca, implies, the Ark was a
box or chest; and its first stated purpose as such was, to
hold the Divine autograph of the law written on stone.
This Ark-box, then, made of shittim, or acacia, wood,
was further lidless, so far as anything attached to it was
concerned: though a crown of gold was afterwards added
round about the rim, and a separate or loose lid was made
for it of pure gold, called the Mercy-seat. The actual
seat, however—said to be occasionally occupied as a
throne, by an expression of the Divine presence—was not
that lid, but was formed by the wings of two angels,
constructed in gold, at either end of the lid; which lid, at
such time, together with the Ark below, then formed
the footstool.†

* Chap. XVI. p. 316.
† "The lid, or cover, of the ark was of the same length and breadth,
and made of the purest gold. Over it, at the two extremities, were two
cherubim, with their four faces turned towards each other, and inclined a
little towards the lid (otherwise called the Mercy-seat). Their wings,
which were spread out over the top of the ark, formed the throne of God,
the King of Israel, while the ark itself was the footstool." (Exod. xxv.
10—22; xxxvii. 1—9.)—Kitto’s Bible Cyclopædia, p. 214.
With the lower part only of this arrangement, or the Ark itself, have we now to do; and the Ark, on its loose lid of gold being removed, was merely a box—a lidless, rectangular, and rectilinear box, made of a hard and tough wood common to the hills of Sinai.

Now in so far, there was nothing new or peculiar in this arrangement of Moses; for of boxes there was already an abundance in the world, even in the very temples of Egypt, when time had waxed so late in human history as 1500 B.C. In fact, those very purposes of "rapacity," in subservience to which Josephus relates that Cain invented weights and measures, would seem to require that he should have made big and strong chests, wherein to keep the fruits of his organized spoliation and oppression of mankind; as well as the stone strongholds, banks, or "oers," of which more presently, for the custody of the said chests.

The only feature, therefore, of distinctive importance which we need expect to find in the particular box constructed by Moses for a sacred purpose, should be something akin to that which distinguished his sacred cubit from the profane cubit of the Egyptians. Mere measuring-sticks were both of them to the outside, contemptuous world; and yet one, not only of a different length from the other, but implying by the amount of that difference a commensurability with the Divinely grand in nature, far too difficult for man to have discovered for himself, or even to have fully appreciated when explained to him, in that age. Now the size of that Ark-box of Moses is given in Holy Scripture as being 2·5 cubits long, and 1·5 cubits broad, and 1·5 high; which measures being reduced to Pyramid inches, on Sir Isaac Newton's, or more exactly our own, evaluation of the sacred cubit of Moses, = 62·5 \times 37·5 \times 37·5 of those inches.

But was this outside measure, or inside measure? for that must make a very material difference in the cubical result.
Outside measure, without a doubt, and for the two following reasons:

1st. Because the vertical component is spoken of as height, and not depth.

2nd. Because the lower lid of gold, or the Mercy-seat, being made only of the same stated length and breadth as the Ark itself, it would have stood insecure, and run a chance of tumbling down to the bottom of the box, if that length and breadth had signified the top of the box's inside, and not its outside, area.

Hence, with the true length of the sacred cubit (obtained now after so many mediæval ages of error), and the above understanding how to apply it, we may now approach the cubical contents of the Covenant's Ark. We are not, indeed, informed in Scripture what was the thickness of the sides, and therefore do not know exactly how much to subtract from the outside, to give the inside, dimensions; but the outside having been given, and the material stated, the limits within which such thickness must be found are left very narrow indeed. Let the thickness, for instance, be assumed 1·8 Pyramid inches; then the length, breadth, and depth will be reduced from an outside of 62·5 × 37·5 × 37·5 to an inside of 58·9 × 33·9 × 35·7; which gives 71,282 cubic inches for the capacity contents of this open box without a lid.

Or, if we consider the sides and ends 1·75 inch thick, and the bottom 2 inches,—also very fair proportions in carpentry for such a sized box in such a quality of wood,—then its inside measure would be 59·0 × 34·0 × 35·5; which yields for the cubical contents 71,213 cubic Pyramid inches.

Thus, in any mode almost of practically constructing the Ark-box, on both the name and number data given by the Bible, and the sacred Hebrew cubit value first approached in modern times by Sir Isaac Newton, we
cannot avoid bringing out a cubical capacity result almost identical with that of a still older box, known for several centuries past to moderns as a lidless box, but never known at all to the ancient Egyptians; viz. the coffer in the King’s Chamber of the Great Pyramid.

Wherefore, with that coffer’s cubic capacity, (ascertained by the modern measures already given in Chapter VIII. p. 147, and amounting to 71,250 cubic Pyramid inches,) the Ark of the Covenant immediately acquires all the commensurabilities of that coffer’s interior, with the capacity and mean density of the natural earth as a whole: a something both utterly distinguishing it from any profane Egyptian box yet measured; and most appropriate to the Scripture-stated use of the Ark under circumstances of Divine presence as a footstool; agreeably with the words of the Lord in Isaiah and Acts, “the earth is my footstool.”

Such, then, looked at in the light of science, 3,300 years after its day of construction, must have been the sacred Ark of the Covenant, built according to the inspiration commands received by Moses after he had left Egypt for ever;—and that was the Ark which subsequently overthrew the idol gods of the Philistines, and was a source of safety to Israel, when used by permission of God, on many and many a national occasion. Yet what eventually became of it, or what was its latter end, Scripture does not inform us. The Eastern Churches have their traditions, but I do not know on what they found.

The Abyssinians, too, have much to say about the Ark, and I believe claim it to be now in their country: while the Apocrypha, on the contrary, declares that, together with many other sacred vessels of the Temple, it was carried away and hidden by Jeremiah in Mount Nebo, to prevent its falling into the hands of Nebuchadnezzar at the destruction of Jerusalem by him.
Meanwhile the rising tide of national thought, inquiry, and growing belief in this country, touching the identity of the British nation with the lost 10 tribes of the kingdom of Israel, is now leading, under the guidance of Mr. Edward Hine, Rev. F. R. A. Glover, and others, to the conclusion, that subsequently still to what is described in the Apocrypha, the Ark of the Covenant was brought, together with a daughter of the Royal house of Judah in the direct, hereditary line of David, to these Isles of the West, by Jeremiah, in his latter days; and was finally deposited by him in the hill of Tara in Ireland; and is there still, in very secure masonic preservation.

Papers on this subject are appearing almost every week in Mr. Hine's journals, "Life from the Dead," and "The Nation's Glory Leader," as well as in Messrs. Bird and Cookson's "Banner of Israel." Subscriptions, too, have even been sent in, though not desired yet, to pay for the expense of a search by excavation.

If this most remarkable, really miraculous, relic should ever be found, either at Tara or anywhere else, it is evident from all that has been already written here, that by its exact and scientifically measured size it may prove its own case. And in the same category I may as well mention a further piece of solid information made out by the metrological researches of John Taylor and others in past years; viz. that within narrow limits of uncertainty, the brazen lavers of Solomon's Temple were also of the same cubic capacity as the coffer in the Great Pyramid; and measured on the Hebrew system, 40 baths, or 4 homers; while each of those homers was equal to the Anglo-Saxon "quarter," used for corn-measures amongst that people, viz. ourselves. Those lavers, then, through the coffer, were—what no human science could have intentionally made them in that day—i.e. earth-commensurable in capacity, combined with weight.
Of Solomon's Molten Sea.

But there was still a far larger capacity vessel in the same Temple of Solomon: was it, also, earth-commensurable, and harmoniously proportioned with the world of God's creation?

This vessel, by name the "Molten Sea," was grandly cast in bronze, though of a shape and size which have defied all essayists hitherto to agree upon. Even in the Bible, something of what is there said about it, is stated variously in different books thereof; as in that of Kings, the cubic contents are given as 2,000 baths, while in Chronicles they are set down as 3,000. The latter account being but fragmentary, I adhere to the former; and then find, according to the simple statement in baths, that the "molten sea" would have contained the contents of a laver 50 times; or a Pyramid number at once.

Next we are told (1 Kings vii. 23-26) that the "molten sea" "was ten cubits from the one brim to the other; it was round all about, and his height was five cubits; and a line of thirty cubits did compass it round about; and it was an hand-breadth thick."

The first point here, is to realise the shape. Some good men have imagined it cylindrical; some of a swelling caldron form; but the greater numbers, a hemispherical shape; and this, perhaps, is most agreeable (1) to the phrase "round all about," (2) to its diameter being twice its height, and (3) to the traditionary testimony of Josephus that it was hemispherical.

This point settled, are the measures given, of the inside, or outside, denomination? By the rule established for the Ark, the breadth and height are outside, of course; but in that case, what is the meaning of a circle of 10 cubits in diameter, having a circumference of 30 cubits?
That is a total impossibility; and wholly against the chief part of the teaching of the Great Pyramid itself, which proves in various ways that the circumference of a circle having 10 for diameter, cannot be less than 31.4159, &c.

In this dilemma, I venture to conclude (especially as here an indication of the thickness of the vessel is given, viz. at a hand-breadth) that the inside circumference was alluded to, but the outside diameter.

Take, then, a hemisphere with an inside circumference of 30 Pyramid cubits, its diameter would be 238.73 Pyramid inches, giving, with an outside diameter of 10 cubits, nearly 5.5 inches for the thickness (or a space which the hand of a strong man spread out would easily cross). The cubic contents, then, of such internal hemisphere will be 3,562,070 Pyramid cubic inches; and divided by the Pyramid number 50, give 71,241 of the same cubic inches; i.e. within a seven-thousandth part the same as either the Ark of the Covenant, or the coffer of the Great Pyramid.

But why did Solomon go to such pains and expense in making the “molten sea” so very much larger than his already large brazen vessels, the lavers; and larger, too, by the exact multiple of 50?

No profane Egyptian would have chosen that number, as we have already seen; but in the Great Pyramid, planned certainly by a Seth-descended, Abel-following, God-inspired teacher, and by no Cainite Egyptian, or any priest or seer respected by modern Egyptology,—the lowest course of the King’s Chamber has been so adjusted in height, by the removal from sight of its lower 5 inches, that the cubic contents of that lowest course, as it now stands above the floor, amount, as already shown at p. 153, to 50 times the coffer’s contents; or, as we now see, were exactly equal to the contents of Solomon’s molten sea; unless we should rather say that Solomon’s molten sea.
was made to be equal to the lower adjusted course of the King's Chamber of the Great Pyramid. The cubit used by Solomon at the building of the Temple being also of the same 25-inch length as that employed by Moses on the Tabernacle in the Wilderness; and that again identical with the cubit employed in the secret and scientific design of the Great Pyramid.

Yet if we have been already obliged to conclude that Moses, though he lived long in Egypt, could never have been inside the Great Pyramid, and had, therefore, no opportunity of humanly copying the cubic contents of the coffer; or humanly supplying himself with a note of the length of the cubit; vastly more certain may we be that King Solomon was never inside the Pyramid either, or in a position to note the exact amount of cubic contents of the lower course of the coffer's containing chamber, or to copy the cubit length and its subdivisions from the granite leaf in the ante-chamber.

Whence, then, came the metrological ideas common to three individuals in three different ages; and involving reference to deep cosmical attributes of the earth, understood by the best and highest of human learning at none of those times? And the answer can hardly be other, than that the God of Israel, who liveth for ever, equally inspired to this end the Seth-descended architect of the Great Pyramid, the prophet Moses, and King Solomon.

The Ark of Noah.

Wherever, too, throughout the Bible, Divine commands were given in terms of linear measure, we may now confidently expect that one and the same length of cubit is always alluded to, viz. the now to be well-termed "sacred cubit," 25 Pyramid inches long; and this equally in the parts of Scripture referring to the still unaccomplished future, as the primevaly remote past.
Hence, when in Ezekiel (chap. xl. 5) the descriptions are given of the future temple which is still to be erected on the mountains of Israel, when her two houses, Judah and Ephraim, are once more to be joined together under one king,—the cubits of the measuring-rod employed are expressly described as "the cubit and an hand-breadth;" that is, the profane 20·68-inch cubit of the Babylonish country Ezekiel was then in, and a hand-breadth added to bring it up to 25 inches.

And hence, also, when in early Genesis the most important event, next to the appearance of Christ, in all the history of man upon earth is being prepared for,—viz. the Deluge for cleansing the earth of the wicked,—the commands of God to Noah respecting the size and shape of the Ark of Safety which he was to build, being given in cubits, they cannot be reasonably expected to be any others than the sacred 25-inch cubit of the Great Pyramid, the Tabernacle, and the two Temples.

But can it be demonstrably shown that the cubits were the same?

I believe that it can, in a line first opened up by Mr. F. Petrie, though afterwards and independently discovered and more fully worked out by the Rev. C. W. Hickson, of Bristol.

Contrasts and comparisons between Noah's Ark and the Great Pyramid have long been indulged in by many. Both of the constructions evidently are primeval in date, but the one, the greatest work ever executed in wood for floating temporarily on the waters; and the other, the loftiest and heaviest work ever prepared in stone for standing securely on the solid rock almost for ever.

Both of them have been attempted to be surpassed in their own lines within recent years by modern wealth and power, though with more of misfortune than success to those concerned; but the one lives only in story, the Divinely inspired story of Genesis; while the other,
little mentioned and only indirectly alluded to in the Bible, offers itself still in all the fact of existence for scientific modern measure in all its parts. One of them is everything for those who believe by faith; the other is for those who must practically test and prove for themselves.

In the simplest manner, however, or by linear measure, there is no comparison between the two great works; the three hundred cubit length of the Ark having no sensible agreement with the 365.242 cubit length of a base-side of the Great Pyramid.

In capacity measure, however, there need be no similarity in linear dimensions; over and above which, while the whole purpose of the Ark of Noah was eminently its large internal capacity, in order to be an Ark of Safety to all those appointed,—the Great Pyramid is almost entirely a solid mass without any capacity hollow, or the next thing to it. But the Great Pyramid's mass contains as its central pivot and treasure a small hollow box or capacity vessel, the coffer. On the principle, therefore, of like with like, in species, quality, and purpose, the great Ark of Noah may be compared in matter of capacity with the relatively very small, but most exactly sized Ark-box or Coffer of the Great Pyramid; and when that is done, behold the one is exactly commensurable with the other by the sacred and precise Pyramid number of 100,000 or 10^5; that is, when we assume that the cubits which were commanded to Noah by God were the Newton-proved sacred cubits of Israel, and had nothing to do with the much shorter profane and Cainite cubits of Egypt, Babylon, and Nineveh. For it thus comes about:—

The capacity contents of the Great Pyramid's coffer are 71,250 cubic Pyramid inches. (See Chap. VIII.)

The capacity contents of Noah's Ark are to be found, from the Biblical statement, $300 \times 50 \times 30$ cubits; and these being reduced to Pyramid inches, at the rate of 25 for each cubit $= 7,500 \times 1,250 \times 750 = 7,031,250,000.$
That quantity, however, is not exact; nor does it, as yet, include a very peculiar addition which the Bible describes to the Ark, viz. "and a window shalt thou make to the ark, and in a cubit shalt thou finish it above."

It was well enough for the coffer in the Great Pyramid to remain so long an open lidless box; but that would not have been suitable to the Noah’s Ark’s far larger box, whose very object was to afford shelter to those within from the preternatural rains which were to descend from above, and, with the other miraculously supplied waters, destroy all of man left outside.

Of this window, the venerable John Taylor had already written in his book, "The Great Pyramid," p. 308:—

"The window extended, probably, the whole length of the Ark, along the roof, and acted as a ventilator, being covered over by a ridge roof." And Mr. Hickson further imagined a double but low sloping roof extending lengthwise, open at the ends, and raised along its middle line to the same height, "in," or within, a cubit.

If, moreover, we ask, how much within, we can hardly do otherwise than remember the Pyramidal 5-inch space taken off the height of the walls in the King’s Chamber, and say therefore 5 inches. In which case 20 inches are left for the central longitudinal height; and with that computing the additional capacity contents which such a window-roof would give, it amounts to 93,750,000 cubic Pyramid inches. And this quantity, added on to the larger quantity obtained before for all the hollow box part of the Ark, gives for the final result 7,125,000,000 Pyramid cubic inches; or exactly 100,000 times the 71,250 measured cubic inches of the interior of the Great Pyramid’s coffer-box or ark; and if of that, then also of the Ark of the Covenant in the Tabernacle of Moses, and the lavers in the Temple of Solomon as well.
Of Stone Sanctuaries and Pyramids.

So far for the vessels contained in the several sanctuaries, whether Pyramid, Tabernacle, or Temple. But something now requires to be said, touching these sanctuaries themselves; and chiefly on account of the new light thrown on them by Mr. Henry Tompkins.*

The chief instrument with which he voluntarily works is indeed linguistic only, and therefore rather outside my methods of procedure; but involuntarily he brings to bear certain necessary business features essential to the very existence of any, and every, community of men, whether large or small. All such, for instance, must have amongst them, in whatever age they live or have lived, something approaching to a safe, or treasure-stronghold; even, and perhaps much more so, if they be a community of robbers, rather than of peaceful men.

Now the first builder of such a safe, according to this new author, was Cain; and Moses told us of it long ago, though bad translations have hidden the fact from our eyes, by speaking rather of "the city" which Cain built in the land of Nod. Yet Moses only said an "oer," meaning thereby, some chambered tumulus of earth and stones, which one man might possibly, or even easily, have built single-handed; and might then with full right "call it after his son's name." Such an "oer" was rude probably, yet exactly adapted to serve both as a stronghold and strong room, or a necessary practical addition to what Josephus tells us of Cain, at that very period of his life, too, when "he invented weights and measures, and used them for the purposes of rapacity and oppression."

Hence every few Cainites might well have an "oer"

* "The Pyramids and the Pentateuch," by Henry Tompkins, of 2, Augusta Place, Lansdowne Road, Clapham Road, London, October 22, 1873.
amongst them, but not "a city;" and in freeing us from this latter word, where Moses wrote "oer," Mr. Tompkins seems to have done excellent service; though when he proceeds further, to call every "oer" a Pyramid, he wanders from the provable stone facts.

The word Pyramid (by sound, of course, rather than by letter) is not very distinctly read in any of the early Pharaonic hieroglyphics, nor proved to have been known before the visit of Herodotus to Egypt in 445 B.C. There too, the word Pyramid,* when used at last, was applied to a particular form of the "oer" seen nowhere else; and the progress of mathematics since then has still more strictly confined the word's application. Hence, when we read in Genesis of the rebellious and Cain-following men, after the Flood, uniting together to build "a city and a tower whose top may reach unto heaven," according to King James's translators,—and when Mr. T. tells us rather to read, "Let us build a Pyramid, and one of great extent, whose top," &c.,—let it be our part to endeavour to ascertain mechanically what was built.

Nor is this very difficult; for though Babel's old structure may long since have been buried in the soft alluvial earth of its foundations, yet the researches of Layard, Botta, Loftus, and others in Mesopotamia, all unite in showing, that the buildings which served the purposes of "oers" next in order of time to Babel, in that part of the world, were invariably oblong, elevated, terraced temples, and not to be called pyramids in any degree; while their astronomical orientation was of the very opposite kind to the example set by the Great Pyramid of Jeezeh.

* The following conclusion of Dr. Brugsch, one of the best hieroglyphic scholars of the day, has been recently communicated by my friend, Dr. Grant, of Cairo:—

The Egyptians signified a pyramid by a certain group of hieroglyphic characters, which gave the sound abumer, and meant a vast tomb. The Greeks, by a kind of metathesis, made it abunda, then bura, and next baram, or μπαοις, a pyramid.
Similarly, too, the chambered tumuli of the Lydians, Etruscans, Pelasgi, and many other early people, were all of them "oers," and many of them treasury "oers" too, but not one of them a pyramid. In Egypt only did the "oers" become truly pyramidal; and though in that land, their primitive Cainite purpose of strongholds for treasure rapaciously acquired, was gradually overshadowed by sepulchral service, yet they were not always wholly merged therein, whatever the modern Egyptologists choose oracularly to declare. For,—

Besides the many early local traditions, which can hardly but have some foundation, of treasure having been deposited in the Egyptian Pyramids by kings who lived close before, or after, the Flood,—Colonel Howard-Vyse and Mr. Perring (on pp. 45, 46, of the former's 3rd vol. of "Pyramids of Gizeh"), give an account of a chamber in the Great Terraced, and rather oblong, Pyramid of Saccara, closed in the ceiling by a granite stopper; of the shape of what is employed in a "stoppered" glass bottle of the present day, but of four tons weight; and that peculiar chamber was confidently declared by those authors to have been "a treasury," "a secure and secret treasury," and one that had certainly "never been put to tombic use."

To the intense Cainites, that all Egyptians were, some form of "oer" was most necessary in their early national life; and though they did perhaps begin in two or three small examples with chambered tumuli, or Babel terraces, or circular Lydian mounds, or even round towers,* the captivating, crystalline, example of the Great Pyramid soon led them off into that shape alone; and they put its mark so effectually on themselves, that the really Sethite character of the Great Pyramid was soon lost to general view in Egypt, among newly pyramidized Cainite "oers" there.

* The round towers standing beside Christian churches in Ireland are an architectural picture of Cain and Abel over again.
And yet to a deeper insight there was, even in the mere putting together of the material, the most essentially different character in the one Great Pyramid original, and all its supposed subsequent copies.

The Egyptians, for instance, according to Dr. Lepsius's law of their Pyramid building (pages 89 and 90), proceeded in exactly the same exogenous manner as all Cainites with their chambered tumuli; i.e. beginning with a chamber centre, and extending the structure around and above, more or less, but continuously, as opportunity offered or accident determined at last.

But the Great Pyramid, as testified by the facts of construction and measure, detailed through the whole of this book, and by the accounts of Herodotus also, was commenced on the opposite, or endogenous method; viz. by the laying out of a long previously settled plan, and building up within that outline only.

While, therefore, the Cainite Egyptian Pyramids were "Epimethean," or such as spoke to hasty act, and then, after that, thought, when thought was too late to be of any real service,—the Great Pyramid was essentially Promethean, or the result of previous wise and provident thought, and then careful act following thereupon.

The Epimethean, even according to classic tradition, brought infinity of ills on all humanity; but the Promethean told mysteriously, from far earlier ages, of one who should, in the fulness of time, voluntarily sacrifice himself in order that he might (in antagonism to the false gods of heathen idolatry), bring down sacred fire, or regeneration life, from heaven to men.

But of this almost primeval phase of the inspired foundation of the Promethean myth, long before the Greeks polluted its purity and branded its chief actor as impious, because he was opposed to all their own invented obscene rout of gods and goddesses of Olym-
pus,* we shall have further positive evidence, on studying more advanced features of construction found only in the Great Pyramid, and utterly unknown to profane Egypt throughout all its historic days.

CHAPTER XIX.

MECHANICAL DATA.

Air Channels.

FROM time to time in the modern history of the Great Pyramid, faults have been found, or improvements suggested, or difficulties raised with regard to its construction; and where such remarks have been the produce of able minds, it is well for instruction's sake, in the present day, to turn back to their very words. Also, if such criticisms have, since they were uttered, been answered by further discoveries at the Pyramid, to note how they have been answered.

A case in point is offered by the conversation of Dr. Harvey, the learned discoverer of the circulation of the blood, with Professor Greaves, in or about 1640. The doctor, unable to leave his patients in this country, had revolved at home in his truly capacious mind, and from his own peculiar scientific point of view, one of the descriptions given to him by the great Eastern mathematical traveller of that day, and had seen a difficulty which had not struck him.

To one so well versed in biological phenomena (though living long before the day of a knowledge of oxygen, or the nature of gases, or, indeed, any sort of scientific chemistry), it seemed strange to Dr. Harvey, "how several persons could have continued so many hours in the Pyramid and live. For," said he, "seeing that we
never breathe the same air twice, but still new air is required to a new inspiration (the succus alibilis of it being spent in every expiration), it could not be, but by long breathing, we should have spent the aliment of that small stock of air within the Pyramid, and have been stifled; unless there were some secret tunnels conveying it to the top of the Pyramid, whereby it might pass out, and make way for fresh air to come in at the entrance below."

Now that was a remark full of wisdom in every way, and if duly received and respected, might have led to invaluable discoveries at an early period,—but Professor Greaves, a good linguist, and with eminent dexterity at solving algebraic equations, unfortunately could not see the vital importance of Dr. Harvey's succus alibilis of common air; neither had he considered very accurately the motion of aërisiform fluids, when he thought that both the old air might so easily go out, and new air as easily come in, by one and the same lower entrance-passage, of small bore and crooked, almost "trapped," in the course of its length; and finally, he was certain, as one who had been at the Pyramid twice, and was therefore not to be lightly contradicted, that, "as for any tubuli, or little tunnels to let out the fuliginous air at the top of the Pyramid, none could be discovered within or without."

To this Dr. Harvey replied most discreetly, "They might be so small, as that they could not be easily discovered, and yet might be sufficient to make way for the air, being a thin and subtile body."

But Professor Greaves simply answered, "The less they, the tubuli, were, the sooner they would be obstructed with those tempests of sand, to which those deserts are frequently exposed;" and considered that he thereby obliged the stay-at-home medical doctor, in a popular Oxford University phrase of that day, "To shut up all."*

* Page 161, vol. i. of "Greaves," by Birch.
Yet what would Professor Greaves have thought, if he could have known before he died, that 200 years after his remarkable conversation with the discoverer of the most important anatomical and physiological fact even yet known to science,—Colonel Howard-Vyse would actually have proved the existence of, and found, exactly two such tubuli, leading to the upper parts of the Great Pyramid: and formed for no other purpose than that which Dr. Harvey had indicated, i.e. to serve as ventilating channels: and that he, Professor Greaves, had himself actually seen their lower extremities in the walls of the King’s Chamber; and proved the fact, by inditing the following almost photographic likeness of them:—

"The ingenious reader will excuse my curiosity,* if, before I conclude my description of this Pyramid, I pretermit not anything within, of how light a consequence soever. This made me take notice of two inlets or spaces, in the south and north sides of the chamber, just opposite to one another; that on the north was in breadth 0·700 of the English foot, and in height 0·400, evenly cut, and running in a straight line six feet and further, into the thickness of the wall. That on the south is larger, and somewhat round, not so long as the former, and, by blackness within, it seems to have been the receptacle for the burning of lamps."

Upon which he indulges in a classical speculation upon "the eternal lamps, such as have been found in Tulliola’s tomb in Italy;" and regrets (in so far, just like a mediæval scholar, rather than a modern physicist), actually regrets to think how much better Pliny might have filled his pages, if he had described therein the composition of one of those lamps of "noble (human) invention," rather than occupied them with descriptions of natural phenomena.

* The exact meaning of this word has altered greatly within the last two hundred years.
But the blackness adverted to at the Pyramid would seem to have been caused mainly by the fires which were occasionally made in the hole, since Caliph Al Mamoun's time, by Arabs of an inquisitive turn of mind; while, during the two following centuries, a further fashion grew up for each visitor and tourist to conclude his sightseeing of the Great Pyramid, by firing his pistols into these holes.

What for?

For something, it would appear, which every one used to consider the right thing at that time. Wherefore even the decorous Dane, Captain Norden, who wrote in 1740 to explain how ingenuous young men going out to the Great Pyramid "should join in a company with their seniors, that, by the discourses they hear on the road, they may be more emulous to observe everything in a better manner, and make more exact remarks;"—even he, the worthy countryman of the learned Arabian traveller, Niebuhr, and then acting as cicerone in chief of the Great Pyramid, explains,—"When you are in the saloon (the King's Chamber) you commonly make some discharges of a pistol, to give yourself the pleasure of hearing a noise that resembles thunder; and then, as there is no hope of discovering more than what others have already remarked, you resume the way by which you came, and return in the same manner, as well as with the same difficulty."

Innumerable persons, therefore, besides Professor Greaves, had had portions of the air-channel system in their hands; but, through not respecting sufficiently the design of the Great Pyramid, they went away no wiser than they came; and the realising at last of the best-ventilated, or rather, as it is now, ventilable, room in the world remained to another age.*

* The following further detail is from Dr. J. A. S. Grant, under date March, 1877:—"I wrote you about the zigzag course of the lower portion of the northern air-channel of the King's Chamber, through the solid
Ceiling of King's Chamber.

Again, certain early authors of a critically mechanical turn, looked up at the ceiling of the King's Chamber, formed of horizontal beams of granite blocks, and expressed their thoughts in the manner of a judgment and condemnation, that "those beams had a vast weight to bear" (all the weight of the upper two-thirds of the Pyramid above them); and, with some allusion to the "arch," and no knowledge of any of the numerical and physical symbolisms required in this chamber, nor the means of relief adopted by the architect above that ceiling, they rather hinted "that they could have made a better disposition of the material."

It has been supposed that the boastful legend inscribed by King Asychis on his pyramid of brick at Dashoor, one thousand years after the building of the Great Pyramid, referred to the invention or earliest construction of arches in brick.

Contemporary science applauded that invention, and seemed to think it perfect; but contemporary science, even up to the present hour, is always marvellously well pleased with its last and latest performance, however imperfect the next generation may find it to have been; and in the case before us, 4,000 years have reduced nearly all the brick pyramids to rubbish: giving us reason for thanks, that that scientific improvement was not invented early enough to have been adopted in the Great Pyramid. By itself, and in quiescent times, no doubt the arch was good; but on occasions of earthquakes, the arch, "which masonry. In my opinion this favours much your theory about the King's Chamber being intended for a physical and scientific observing-room, for the tortuous course of the channel would thoroughly cool down the outside hot air coming along it. At the same time it is manifest that the builders must have had some important end to fulfil, by introducing such a disturbing element as a zigzag channel into the solid masonry. Ventilation did not require tortuosity."
is said never to sleep," is in an instant antagonizing its buttresses, and all about it, to the ruin of many a building of antiquity in the East; wherefore neither a brick arch, nor an arch of little stones, has stood so long as a beam of solid granite in circumstances similar to those of the King's Chamber.*

But these circumstances are very peculiar, or were wisely planned; and our Plate XIII., prepared from Colonel Howard-Vyse's explorations and discoveries, gives an idea of the arrangement adopted; as thus:—Besides the large, and pyramidal typical, number of five hollow, closed spaces or pseudo-chambers, one over the other, and the topmost one roofed with opposed sloping plates,—it will be observed that the upper surface of every set of long horizontal blocks, in place of being formed into a flat floor, is left rough, and even rising into natural hummocks; though the under surface is true and square enough.

The latter feature was necessary for the solidity and steadiness of the structure; but the former, while a saving of labour and no loss for strength, was a further proof of these closed spaces not intended for chambers for any human beings to enter and walk over.

Modern Promiscuous Quarrying.

Then again, no one seems hitherto to have had any respect, and that because no understanding, of why the mass of solid masonry was so overwhelmingly large, compared with the hollow portion of the Pyramid; the latter being only about 1-2000th of the former.

* Although Egypt is generally considered a non-earthquaking country, yet it is visited at intervals by such phenomena even still. So that Mr. Sopwith records in his "Notes on Egypt," in 1856-7, finding the house of his friend the railway engineer between Alexandria and Cairo, partly in ruins from the effect of a then late earthquake. And more recently, in December, 1874, Dr. Grant, of Cairo, informs me that on the evening of the day of the Venus Transit, three distinct shocks of earthquake were felt in that city, and excited much alarm.
Firmness of construction, they thought, would have been given by a far less amount of solid substance; wherefore, and for that mere fancy, bred of their own brain alone, feeling sure that there must be many chambers still undiscovered, they immediately began ruthlessly boring and cruelly blasting here, there, and everywhere into the exquisitely arranged, squared, limestone blocks, and to a depth often of a great many feet, merely to see what blind chance might possibly lead them to. Forgetful, also, of a really very sage piece of advice, said by an Arab tradition to have been engraved on the ancient casing-stone surface of the Great Pyramid by its unknown architect: "I have built them, and whoever considers himself powerful may try to destroy them. Let him, however, reflect that to destroy is easier than to build."

But the travellers went on with their mischief; and even the excellent Sir Gardner Wilkinson, when describing the Queen's Chamber in the Great Pyramid, says with the most inimitable calmness, and without a pang on his conscience for the destruction he had committed in that white-stoned chamber of precious symbolisms, "I excavated in vain below in quest of a sepulchral pit." And an awful pit, indeed, I found in 1865 he had made it!*

† Of the difficulty of restoring, after destroying, the following further account is given from the Arabian author, Abd Allatif, who wrote more than five hundred years since, and who, in times of boasting and romance, described his own exploits in such modest terms, but terrible truth, as these:—"When I again visited the Pyramids, I entered this passage with several people, but having penetrated about two-thirds into the interior, and having through fear completely lost my senses, I returned half dead."

A bad explorer, then, but an unflinching historian, Abd Allatif relates in the latter rare, but most commendable, capacity:—

"When Maleh Alaziz Othman Ben Youssuf succeeded his father, he was prevailed on by some persons of his court—people totally devoid of sense and judgment—to attempt the demolition of the Pyramids. He accordingly sent miners and quarrymen, under the superintendence of some of the officers and emirs of his court, with orders to destroy the red pyramid, which is the least of the three. They encamped near it, collected labourers from all parts of the country at a vast expense, and endeavoured, with great assiduity for eight months, to execute the commission with which
A Secret Doorway in the Entrance Passage.

Yet infinitely more blamable were those before Sir G. Wilkinson, who made similar, but yet more destructive, excavations, with the absurd idea of finding a passage leading to the Sphinx! As if there was any community in science or religion, feeling or age, between the pure and blameless Great Pyramid and the carved stock, stone, or idol-rock called the Great Sphinx.

As if, too, I may add, there was anything in the original design of the Great Pyramid's structure, and of importance for men to know of in this latter day, which had not had both a proper and a regular access prepared to it, requiring no smashing with sledge-hammers or splintering by cannon-balls, when the proper time should arrive, to open it up to view and use.

The passages lined, or rather built, with blocks of whiter stone different from the bulk of the masonry, and leading thereby right on to the ultimate point required through the whole mountainous mass of the building, are a case directly in point; and are admitted by, and known now to, every one, even including the Egyptologists. But there are more minute features also, not so generally known; yet showing equal design and intention, in these very Pyramid passages.

Thus every one has been told how Caliph Al Mamoun, after blasting his way from the middle of the northern they were entrusted, removing each day, with great difficulty, one or two such stones. At length, having exhausted all their pecuniary resources, their resolutions grow proportionally weaker as their labour and difficulties increased, and they were obliged at last to give up the undertaking as hopeless. While they were still engaged in the work, observing one day the extreme labour it required to remove one of the blocks, I asked an overseer, who was superintending the operation, whether, if a thousand pieces of gold were offered to him, he would undertake to replace the block in its original position: he answered, that if he were to be given many times that sum, he could not do so."—Col. Howard-Vyse's second vol. of "Pyramids of Gizeh."
side into the solid fabric of the Great Pyramid for six weeks, was just about to give up the research when he heard a stone fall in a hollow space close on one side; and breaking on further in that direction, he presently found himself in the entrance-passage; while the stone which had fallen at that precise instant, was a *prism*-shaped block that had been anciently inserted in the ceiling. There it had for ages formed, to all external appearance, a merely ordinary part of the ceiling, and yet was covering all the time the butt-end of the granite portcullis at the bottom of the first ascending passage, now at last exposed to view.

Would that first ascending passage, then, never have been discovered, if that faithless, perhaps timeous, block had not fallen out, whether in Al Mamoun's or any other day? Let the following facts indicate:—

When measuring the cross joints in the floor of the entrance-passage in 1865, I went on chronicling their angles, each one proving to be very nearly at right angles to the axis, until suddenly one came which was *diagonal*; another, and that was diagonal too; but after that, the rectangular position was resumed. Further, the stone material carrying these diagonal joints was harder and better than elsewhere in the floor, so as to have saved that part from the monstrous central holes and ditches perpetrated in other parts of the same inclined floor by some moderns. Why then did the builders change the rectangular joint angle at that point, and execute such unusual angle as they chose in place of it, in a better material of

* In earlier descriptions, this stone has been miscalled a *triangular* stone; and much did the phrase stick in the throat of an elderly gentleman who was at the Great Pyramid in 1866, but could not make out how a triangular stone could ever have filled up "that hole" which he then saw in the ceiling right before him; for that hole was four-sided, and nearly square. "Yes," I answered him, "the space to be filled up by the base of the stone is square, but the two sides, parallel with the sides of the passage, require to be triangular, on account of the angle at which the bottom of the portcullis block of the ascending passage meets the ceiling of this entrance, and descending, passage."
stone than elsewhere; and yet with so little desire to call general attention to it, that they made the joints fine and close to such a degree that they had escaped the attention of all men until 1865 A.D.?

The answer came from the diagonal joints themselves, on discovering that the stone between them was opposite to the butt-end of the portcullis of first ascending passage, or to the hole whence the prismatic stone of concealment, through 3,000 years, had dropped out almost before Al Mamoun’s eyes. Here, therefore, in a peculiar relation of position to something concealed, was a secret sign in the pavement of the entrance-passage, appreciable only to a careful eye and a measurement by angle, but made in such hard material that it was evidently intended to last to the end of human time with the Great Pyramid, and has done so thus far.*

Had, then, that ceiling-stone never dropped out at all, still the day might have come when the right men at last, duly instructed, would have entered the passage, understood that floor sign, and then, simply and quietly, removing the ceiling-stone opposite to it, would have laid bare the beginning of the whole train of those ascending and subaërial features of construction which are the Great Pyramid’s most distinctive glory, and exist in no other Pyramid in Egypt or the world.

A once-concealed Chamber.

But if in this simple manner of a small trap-door in the ceiling of the descending entrance-passage, it came to pass that the ascending system of the Great Pyramid was so long concealed, there was once, and further on in that ascending system, viz. at or just inside the lower end of

* This matter has been looked into in 1871-2 still further by Mr. Wayman Dixon, who finds that the interstitial stone, between the two diagonal joints, is composed of a sensibly different material or quality of stone, from that which is employed on either side of them.
the grand gallery, and in, or beneath, the floor thereof,—
a more extensive trap-door, which concealed the access to
the Queen's Chamber and the horizontal passage leading
to it.

At present, when the traveller enters the north end of
the grand gallery from the sloping difficulties of the first
ascending passage, he is delighted to meet with a level
floor; but following that southward, he finds that it guides
presently, not to the farther end of the grand gallery, but
to a hole under a steep escarpment of that gallery's true
floor a few feet further on; in fact, to the beginning of
the low horizontal passage leading to the, in modern
times, so-called Queen's Chamber. (See Plates VII., X.,
and XI.) The floor surface of the grand gallery itself
is inclined at the typical angle of 26° 18',* and runs
nearly, or did once run, from the lowest north end right
up, through 150 feet of distance, to the great step at the
south, or upper, termination of the gallery, in one con-
tinued slope, except for the interruption now caused by
the absolute removal of that portion of the floor near the
north end, which allows the sub-floor horizontal passage
to the Queen's Chamber being approached on a level from
the extreme north end. But there are traces still
visible in the masonry on either side of that hole in the
gallery's floor, well interpreted, first by Mr. Perring, and
more recently by Mr. Waynman Dixon, engineers both;
showing, that a neatly laid and joist-supported flooring,
nine inches thick, did once exist over that hole, completing
thereby the whole long slope of the grand gallery's floor;

* This floor of the grand gallery being the longest and best constructed
of the inclined surfaces of the interior of the Great Pyramid, I was at
much pains to introduce larger and more powerful instruments to measure
the angle accurately, both from one extreme to the other, and at short
intervals all the way along, than had ever been employed before. The
instruments themselves being fully described, and all the observations
given in vol. ii. of my "Life and Work," I may confine myself here to
stating that the mean resulting angle from observations was 26° 17' 37";
and the signification of this angle will be shown further on.
and in that case entirely concealing and utterly shutting up all approach to, or knowledge touching the very existence of, the Queen's Chamber.

Who amongst mediaeval men pulled away that concealing floor, removed its supporting cross-beams, and pushed on into the Queen's Chamber, is not known now, any more than why it was so concealed by the original builders. Mr. Perring imagined that the chamber must have been used as a store-room during the building of the Pyramid, for the big blocks of stone which were, at the finishing, slid down into the first ascending passage until, from the portcullis at its lower end, that passage was full up to its very top; and the workmen then escaped by the deep well, and its subterranean communication with the entrance-passage.

Quite willing am I to allow to the honest working engineer, that such a store-room purpose may have been served: but was that all that the place was intended for? And if so, to what end are all the following features; features, too, which are much more certain than that use; for the features exist still, and can be seen every day; but who ever witnessed the alleged use?

1. The central axis of the niche in the east wall (and that niche this Queen's Chamber's only architectural adornment) is strangely not in the central vertical line of that wall, but is removed southward therefrom, and by just the quantity of 25·025 British inches; or one scientific Pyramid, or sacred Hebrew, cubit length.* (See Plate IX.)

* This result was stated as only approximately indicated by the measures in the second edition, and accompanied by the statement that the top of the niche was the same. But the last turns out to be a mistake, and, as indicated in ‘Life and Work,’ vol. ii., was a guess only at a part not then within hand reach, and therefore not actually measured; and its real breadth is only 19·65 inches. This was ascertained in 1874 and 1876 by Dr. J. A. S. Grant, of Cairo, Mr. Waynman Dixon, and their friends, on several visits of great enthusiasm, for the special purpose of inquiring into this error, and making a point of it, so that there can be no doubt about the result; and, by the obliging consent of the editor, who further
2. The height of the niche, multiplied by that grandly fundamental quantity in the Great Pyramid, \(\pi\), and that multiplied by the Pyramid number 10 = the height of the Great Pyramid; or 185 \(\times\) \(\pi\) \(\times\) 10 = 5812, in place of 5813.*

3. The height of the niche, less the height of its inner species of long shelf, equals similarly the half of the base-side length of the Great Pyramid; or 185 - 39.6 \(\times\) 10 \(\pi\) = 4568, in place of 4566 inches.†

4. The height of the north and south walls of the Queen's Chamber measured = 182.22 Pyramid inches \(\pm\) 1 inch, and assumed 182.62, give—

\[
(1) \quad \frac{182.62 \times 10}{2} = 9131 = \text{length of Great Pyramid's base-side in P. in.}
\]
\[
(2) \quad 182.62 \times 2 = 365.24 = \text{solar days in solar tropical year.}
\]

5. The breadth of the Queen's Chamber measured = 205.6, assumed 205.0, gives—

\[
182.62 : 205 :: 205 : 230.1 = \text{height of King's Chamber from floor to ceiling.}
\]

6. The square root of 10 times the height of the north or south wall, divided by the height of the niche = \(\pi\); or,

\[
\pi = \sqrt{\frac{182.62 \times 10}{185}}
\]

had a woodcut specially prepared to assist the illustration, I printed the unexceptionable information so obtained in the London *Athenaeum* Journal, on May 13th, 1876. Mentioning also, that decidedly as all the measures disproved a sacred cubit breadth for the top of the niche, so did they all the more establish precisely that length, for the eccentricity or displacement of the niche out of the vertical of its containing wall; the last mean actually giving the measurers, even to their own surprise, for their individual measures were rather rough, 25.026 British inches exactly.

* This very close approach must, however, be accidental, for the height of the niche is uncertain, on account of the roughness of the floor, by 2 or 3 inches; and though mensuration quantities of a remarkable order are indicated, they are never demonstrated in this Queen's Chamber with its soft and salt-incrusted stone to anything like the close accuracy which is found with the clean and hard granite surfaces of the King's Chamber.

† The shelf's height is, by the very rough measures, between 38 and 40 inches.
All the above theorems, save the first two, are the discoveries of Professor Hamilton L. Smith (of Hobart College, Geneva, New York), who, without having been to Egypt, and without any other Pyramid measures than those contained in "Life and Work," has, by successfully interpreting them, constituted himself in a most unexceptionable manner the citizen-king of the Queen's Chamber.

A fuller account of his researches has appeared in the November number of the American Journal of Science and Art, for 1873. Some of them will indeed be shaken, by my unfortunately erroneous breadth of both the top of the niche and the smaller overlappings immediately underneath it. But quite enough remains to justify Prof. H. L. Smith's remark to me in a private letter,—that, even half of the scientific findings really proved to be contained in the lasting masonry in the chamber, were enough to form a most serious dilemma of two horns, on either of which he left the opponents of the sacred and scientific theory of the Great Pyramid to impale themselves, as they preferred.

"Either," said he, "there is proof in that chamber of supernatural inspiration granted to the architect; or—

"That primeval official possessed, without inspiration, in an age of absolute scientific ignorance, 4,000 years ago, scientific knowledge equal to, if not surpassing, that of the present highly developed state of science in the modern world."

Newly discovered Air Channels in Queen's Chamber.

Now in what is just passed we have seen a whole series of connections between the actually existing measurable facts of the Queen's Chamber, and scientific portions of the ultimate, and originally secret, design of the Great Pyramid; a design utterly unknown to the ancient
Egyptians, and alien to everything that belonged to them and their "wisdom," such as it was; testè the Egyptologists themselves; features, too, all of them entirely unnecessary to a mere store-room for stone blocks, or to a chamber for holding a simple sarcophagus. Therefore, although some of the early travellers have spoken fearfully of "the grave-like smell and noisome odour of this room, causing them to beat a rapid retreat," the room must have acquired that revolting character from modern vilifying, rather than ancient construction; for what its builders put into it, as we see above, is not of a nature to experience any fleshly corruption.

Indeed, in its ancient planning, the Queen's Chamber would appear to have been, still further, intended some day to be ventilated. For the chief item of latest discovery at the Great Pyramid, is that one which was made last winter (1872) by Mr. Waynman Dixon, in company with his friend Dr. Grant, and with the assistance of one of his English workmen from the bridge he was then erecting over the Nile; and is to the effect, that this Queen's Chamber has in a peculiar state of readiness, though never yet brought into action, two ventilating channels in its north and south walls, nearly similar to those in the King's Chamber.

Perceiving a crack (first, I am told, pointed out by Dr. Grant) in the south wall of the Queen's Chamber, which allowed him at one place to push in a wire to a most unconscionable length, Mr. W. Dixon set his carpenter man-of-all-work, by name Bill Grundy, to jump a hole with hammer and steel chisel at that place. So to work the faithful fellow went, and with a will which soon began to make a way into the soft stone, when lo! after a comparatively very few strokes, flop went the chisel right through into somewhere or other. So the party broke away the stone round about the chisel hole, and then found a rectangular, horizontal, tubular channel, about 9
CHAP. XIX. MECHANICAL DATA.

by 8 inches in breadth and height, going back 7 feet into the wall, and then rising at an angle of about 32°.

Next, measuring off a similar position on the north wall, Mr. Dixon set the invaluable Bill Grundy to work there again with his hammer and steel chisel; and again, after a very little labour, flop went the said chisel through, into somewhere; which somewhere was presently found to be a horizontal pipe or channel like the other, and, at a distance within the masonry of 7 feet, rising at a similar angle, but in an opposite direction, and trending indefinitely far.

Fires were then made inside the tubes or channels; but although at the southern one the smoke went away, its exit was not discoverable on the outside of the Pyramid. Something else, however, was discovered inside the channels, viz. a little bronze grapnel hook; a portion of cedar-like wood, which might have been its handle; and a grey-granite or green-stone ball, which, from its weight, 8,325 grains, as weighed by me in November, 1872, must evidently have been one of the profane Egyptian mina weight balls, long since valued by Sir Gardner Wilkinson at 8,304 grains.*

These relics approached so nearly in character to the ordinary nick-nackets of most men's modern archaeology, that they excited quite a furore of interest, for a time, in general antiquarian, and dilettante, circles in London;

* A month after I had made the above measure and deduction, and communicated them to Mr. John Dixon, who had kindly sent me the articles to examine, the ball was weighed by the Warden of the Standards, found to be 8324.97 grains (see his paper in Nature, Dec. 28, 1872); whence by a further process he also eventually concluded that the stone may have been an old Egyptian mina weight. A closeness of agreement, especially in the weight, which is remarkable, if the Warden of the Standards had not heard of my previous measuring and conclusion, and which he certainly does not allude to.

Thin flakes of a very white mortar, exuded from the joints of the channels, were also found; and on being recently analyzed for me by Dr. William Wallace, of Glasgow, were proved to be composed not of carbonate, as generally used in Europe for mason's mortar, but sulphate, of lime; or what is popularly known as "plaster of Paris" in this country.
but nothing more has come of them. The ball and the hook are supposed to have been dropped down the channels unintentionally by some of the mason's labourers or boys at the passages' upper ends, when the place of those ends was still open and accessible; but the things thus strangely found, belong merely to the forced labourers, the hodmen, of profane Egypt; not to the architect and head administrator of the scientific and inspired design; and which design had supplied a much more serious problem for solution, as set forth below.

An unexplained Feature in the Queen's Chamber's Air Channels.

This chief mystery of these newly discovered air-channels of the Queen's Chamber, may be described thus:—

When their inner ends, or ports, were proved to have been separated from the air of said chamber merely by a thin* plate of soft limestone (so easily pierced by Bill Grundy's chisel), every one leaped to the conclusion that they had originally been in use, but had been stopped up by some mediaval interloper with a paltry stone patch. But this was not the case; for Dr. Grant and Mr. Dixon have successfully proved that there was no jointing, and that the thin plate was a "left," and a very skilfully and symmetrically left, part of the grand block composing that portion of the wall on either side.

That block, therefore, had had the air-channel tube (9 X 8 inches) sculptured into it, neatly and beautifully so far as it went; but that distance was not quite through the whole block, by the typical quantity in the Great

Thin by comparison with the colossal masonry around, but really five inches thick, by subsequent measure, and equally of the north as well as the south air-channel tube.
Pyramid of five inches. The whole air-channel then, save that little unmade bit, was in place; but could never have been used. Not, too, that it had been tried, found inconvenient, and was then stopped up by the original builders; for they would in that case, according to their usual style of masonry, either have filled the port with a long plug, or would have replaced the whole block carrying the inner end of the channel, with another block quite solid. But, as before remarked, the whole air-channel is in place, yet with a left film of stone over the inner, or chamber, end of it, preventing its being used as a practical channel of communication.

How far the channel's courses are carried through the 300 feet of masonry which separate this chamber from the outer air, is not yet known. But, in the meanwhile, what we do know of the channels in the walls and immediate neighbourhood of this chamber may, in a building like the Great Pyramid, be suggestive in a variety of ways of man's life upon earth,—and may be taken as reminding of a deaf ear. There are the tubes for the conveyance of sound, but the entrance to them is sealed.

This idea would go for very little in a purely scientific explanation of the Great Pyramid; but we shall find before long that many of its symbolisms, and this one among them, yield to religion alone.

Scheme of the Masonry in First Ascending Passage.

Besides the above strange discovery, in concert with his friend Dr. Grant, of Cairo, Mr. Waynman Dixon performed a great work in the first ascending passage of the Great Pyramid.

My examination of that passage in 1865, was confined to little more than its angle of slope and its floor length; partly on account of the bewildering varieties of the jointing, as they appeared to my non-engineering eyes on a
cursory examination. But Mr. Waynman Dixon, in 1872, applying himself long and steadily to this special task, and mapping down everything measurable, presently perceived a most admirable order pervading the apparent disorder, and tending also to good masonic construction. For the chief discovery was, that at stated intervals the blocks forming separately the walls, floor, and ceiling of the passage, were replaced by great transverse plates of stone, with the whole of the passage's hollow, or square bore cut clean through them; wherefore, at those places, the plates formed walls, floor, and ceiling, all in one piece.

As an engineer he admired the binding and solidity of this masonry. But he had not perceived, until I was recently enabled to point it out on his own careful measures, that the intervals of passage length at which these remarkable stone plates were introduced, were no other than breadths of the King's Chamber.

The first interval, indeed, at the top of the passage was a double one, and when measured from the beginning of the passage, to the further side, not the middle, of the stone plate, equalled, though approximately only, the length of the King's Chamber; but the plate there was followed by three others with that chamber's breadth, or 206 inches, nearly, between every pair of similar surfaces; and after that, or in the lower part of the passage, near the granite portcullis plugs, the plates were contiguous.*

* The above arrangement is shown approximately in the lines and numbers engraved on the entrance-passage of Plate VII.

A more detailed description, furnished by Mr. Waynman Dixon, is as follows:

From the top, or southern beginning (though, according to others, the end) of this said passage, the walls are composed of nine ordinary stones, and then as the tenth comes one of the transverse plates, whose south face measures 386, and its north face 417, inches from south beginning of the passage.

Then come four ordinary stones, and for the fifth, a transverse plate, whose sides, measured as above, are at 592 and 625 inches from the zero of these measures.

Four more stones, and for the sixth, a transverse plate, at 799 and 831 inches.
This unexpected illustration of the builders working, not only by measure, but in terms of that one chamber which is now confessed to be the focus of the whole scientific design,—was followed soon after by Professor H. L. Smith pointing out, most successfully, that one of the special natural problems of the Great Pyramid, the number of days of the solar year, is brought out by the application of that chamber standard of measure to these passages when taken at their peculiar angle of inclination.

This angle had been determined for them long since, as will presently be explained, at

\[26° \ 18' \ 10''.\]

And if you lay off, along exactly such a slope, twice the length of the King's Chamber, viz. \(2 \times 412.132\), as already well determined by modern measure (see Chap. X. p. 175), you will find that the vertical amount by which the floor has risen, at the end of that distance (technically the sine of the angle \(26° \ 18' \ 10''\) with the radius \(412.132 \times 2\) \(= 365.242\), or the true number of solar days in a solar year to an accuracy not known amongst men for 3,000 years after the Great Pyramid was built.

A striking discovery was this, which Mr. James Simpson

Four more stones, and for the fifth a transverse plate at 989 and 1,047 inches.

Then follow four transverse plates in contact with each other, and found at 1047 to 1086, 1096 to 1133, 1133 to 1171, and 1171 to 1212.

The next space, 1247 to 1289, is jointed regularly; but after that the plates seem to begin again, but cannot be traced far, on account of the granite portcullis plug still in place. The upper or southern end of the granite portcullis is now fragmentary, and is near the 1291 inch of floor distance; while its lower or northern end is 1470 inches of the same distance.

On the east side of the wall small stones are let in, at distances from the top of the passage, of firstly 235 inches, and secondly 645 inches. While similar let-in stones appear on the west wall at 442 and 860 of distance. Approximately, again, at differences of distance equal to King's Chamber length; but not with much accuracy, nor with the more skilled workmanship of the more significant portions of the Great Pyramid.
further capped with the following \(\pi \) relation of the whole system of passages:—From the top of the entrance-passage down to the beginning of the first ascending one (988 inches) there is only one line of passage; but from that point there are two lines, one ascending and the other descending. The total length of the ascending line is by measure \(= 1542 + 1881 = 3423 \); and the length of the descending line, starting from the same point of bifurcation, is believed to be also 3423, but has not been so well measured. Take, however, the 3423 known, and divide it by \(\pi \) (viz. 3.14159, &c.), and you have 1089.6; which is the length as close as it has yet been measured, from the bifurcation along the floor of the single entrance-passage upwards, and past its present termination (at 988 inches), to the ancient finished face of the Pyramid.

Details of the Entrance into the Great Pyramid.

We have now reached a portion of the mechanical details of the exterior of the ancient monument more discussed of late in the world than any other; viz. what sort of entrance had the Great Pyramid originally? The front and chief gate, or door, of almost every other species of public building, from temples to churches, and castles to palaces, is usually the most elaborated and ornamental part of the whole of the structure to which it belongs;—but, excepting only the obscure mention of a movable stone in Strabo’s time, by which a man might just creep into the descending entrance-passage,—it is believed there was nothing to mark any entering-in place at all at the Great Pyramid; but that the smooth planed-down surface of the casing-stones covered, and concealed, all that region.

In the present day, indeed, men do point to the grand anticlinal stones which are seen over the doorway (shown in Plate VIII.), and expect that something like that must
have been on the exterior of the building too. But these stones are far within the ancient face of the Pyramid, and so were also two or three other sets of similar stones once in front of them, on piers or abutments which are still to be seen; and so is also the end of the white-stone flooring of the entrance-passage. Nothing, therefore, of what we see now connected with the internal arrangements, ever projected through the casing-stone film; and the very fact of Caliph Al Mamoun making his excavation in a different place, may be taken as a proof that nothing ever did, in any conspicuous manner, externally mark the place.

Then why did the builders commemorate the entrance in the interior masonry, and so grandly with, at least, those four inclined stones, which we see now?

Not to relieve the entrance-passage from the superincumbent weight of the Pyramid; for, as Colonel Howard-Vyse well demonstrated in his day, there is no great weight to support at the place where they are, so much closer to the exterior than the centre of the fabric. Moreover, as the basement for these stones is horizontal, in place of inclined, their trend would rapidly leave the line of descent of the entrance-passage, if they went further into the building; but that they do not, for, according to Mr. Perring, there is ordinary course-masonry at the back of the single set of stones, the last of their fellows, which we see. Why then, again, if there was no mechanical advantage to be gained from them, and no necessary connection with the entrance-passage, why were those most Cyclopean blocks built in just there?

Chiefly to typify, said Professor H. L. Smith, the ruling angle of the great \(\tau \) Pyramid; the angle enclosed by the stones being, he considered, twice the angle of rise of the sides of this \(\tau \) Pyramid, viz. \(51° 51' 14'3'' \).

That idea was sent out to some friends in Egypt, who measured the angle under the stones, and pronounced it
too small for the hypothesis. But the stones, though
grand, are rough, and somewhat out of adjustment; and,
as they were really only backing stones to at least two
other sets, which were once in front of them—though
within the outer surface of the Pyramid—much accuracy
was not to be expected. At all events, the measurers
were subsequently requested to measure the middle and
the upper angle lines as well as the bottom one; and also
the angles to which the stones themselves are cut at the
parts where they bear against each other.

As these further measurements have not yet been taken,
I have specially examined a large copy on glass of one of
my original photographs of the front of the Great Pyra-
mid; taken, indeed, from the ground below, but from a
considerable distance off, and with a leveled camera, so
that I do not immediately see that there is any necessary
perversion of the angle of the stones one way or the other,
their front face being vertical. Now there are eight corners
to have their angles measured, four acute, and giving the
angle required at once; and four obtuse, and yielding the
same angle when subtracted from 180°. And this was
the result of the measurings, with an ordinary transparent
protractor:

<table>
<thead>
<tr>
<th>Angle Description</th>
<th>Measured Angles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Two acute angles on the right-hand side</td>
<td>52° and 52°</td>
</tr>
<tr>
<td>Two acute angles on the left-hand side</td>
<td>61° and 52°</td>
</tr>
<tr>
<td>Lower obtuse angle on the right</td>
<td>$129^\circ - 180 = 51^\circ$</td>
</tr>
<tr>
<td>Upper obtuse angle on the right</td>
<td>$128^\circ - 180 = 52^\circ$</td>
</tr>
<tr>
<td>Lower obtuse angle on the left</td>
<td>$128^\circ - 180 = 52^\circ$</td>
</tr>
<tr>
<td>Upper obtuse angle on the left</td>
<td>$129^\circ - 180 = 51^\circ$</td>
</tr>
</tbody>
</table>

Whence, apparently, Professor Smith's idea is borne out,
at least as well as could be expected from such very rough
work; and we may regard these stones as, as the centre
of a symbolic diadem over the forehead of the scientific
design of the primeval monument. A riddle set up on
high 4,000 years ago; kept secret for 3,000 of those
years, but revealed to mankind during the last 1,000,
and guessed by no one until three short years ago.
Emplacement of the Entrance into the Great Pyramid.

Supposing the entrance-passage of the Great Pyramid continued upwards and outwards from its present known residual portions, until it should reach the ancient surface of the building,—it would evidently find itself there both very high up above the base, and a long way on the eastern side of the middle of that flank; wherefore the question is, in the present metrical age, how much, either way?

I regret to say that neither of these quantities is accurately known in the existing day; nor will it be, until the rubbish-heaps are cleared away on the north side of the building, and the whole is well and thoroughly surveyed. For the present, therefore, we must assist such measures as we have, by theory.

The theory which I propose to employ is that which is exhibited on Plate XIX., and to which I was led in 1864, and have had the satisfaction of seeing since then its chief feature, viz. a square of the area of the Pyramid's vertical meridian section, and 5151·65 Pyramid inches long in the side, recognised by Mr. Simpson and other calculators as being, when divided by 10, exhibited with almost absolute precision by the cubic diagonal of the King's Chamber and various other internal features.

By placing that square centrally and symmetrically on the centre of the base of the Pyramid's section in that plate, trisecting its upper semi-diameter, and bisecting its lower, a remarkable approach is at once and simply gained to the general positions of all the chambers. While by taking into account, in the manner there shown, the height of the building as well, we obtain the dominant angle of all the inclined passages, viz.:

\[26^\circ 18' 10''\]
This is the theoretical angle; and my measured angles in 1865 came out thus:*—

<table>
<thead>
<tr>
<th>Passage</th>
<th>1st Method</th>
<th>2nd Method</th>
<th>3rd Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entrance-passage, descending angle</td>
<td>26 27 0</td>
<td>26 28 7</td>
<td>26 25 20</td>
</tr>
<tr>
<td>First ascending passage, angle</td>
<td>26 5 30</td>
<td>26 6 40</td>
<td></td>
</tr>
<tr>
<td>Grand gallery, ascending angle</td>
<td>26 17 28</td>
<td>26 17 4</td>
<td>26 17 53</td>
</tr>
</tbody>
</table>

None of the passages are, therefore, far from the angular expectation; while the Grand Gallery, the longest, best preserved, and most suitable for measuring, comes out the closest of all; and the exact theoretical angle is amongst the observed ones,—as near an agreement as could be expected.

The vertical height, on the other hand, at which the floor of the so-inclined entrance-passage would, if produced, cut the ancient casing-stone surface is less certain; depending as it does, without altering the angle, on some further points, which can only be obtained with accuracy by a close study of the building itself. Howard-Vyse's rough measure of this vertical height, duly corrected for the missing portions of the Pyramid face, would amount to about 650 inches. This is nearly 20 inches different from my theoretical conclusion, and not professing to much exactitude.

But the Colonel's measure of the eastern displacement of the whole plane of the passages, from the vertical meridian plane of the building itself, not having to deal with one end of a degraded and sloping line, but with the two well-preserved walls of the entrance-passage, running parallel with the plane from which they are to be mea-

* The details of these measures are given in full in vol. ii. of "Life and Work."
sured, cannot be so much in error. He accordingly makes that eastern displacement =

296 inches.

And if a new theory should say that the quantity was, or should be, 300, or more exactly 300.216 Pyramid inches, then, looking to the percentage of error on the Colonel's measure of the length of the northern base-side, I should say that his evidently roughly measured 24 feet 6 inches, in this case, may be taken as not overpowersingly opposing the theory. But what is the theory? for that described on Plate XIX. has evidently nothing to do with horizontal displacement.

Mr. Cockburn Muir's Hypothesis of the Passage-plane's Side Displacement.

Many theories have been started to account for the quantity by which the passage-plane of the Great Pyramid is to the east of the central meridian plane of the building, but none have fully commended themselves to my mind, or justified the measures, except one recently brought out with signal effect in the February number of Mr. Hine's "Life from the Dead," by Mr. Cockburn Muir, C.E.

The view which occurred to him was, that the displacement concerned had reference to a memorialisation of the obliquity of the earth's axis to the axis of the ecliptic,—as being the main agent in producing the contrasts of summer and winter while the earth annually revolves around the sun.

The merely typifying rotation on the axis and revolution round the sun, so as to mark the length of a 24-hour day and a 365.242-day year, as already abundantly proved, was enough for mere chronology. But the physical life of man demands more; and if the passage
height was lately held to indicate (see page 333) a 12-hour interval only, with height up and the same height down, or 12 hours of daylight and 12 hours of night; and the scheme of the Great Pyramid was further considered to be rich in showing all the chief agencies of God in preparing the earth as the abode of intellectual man,—where was there anything typifying the night and day of the year, or the winter and summer of the whole terrestrial revolution round the sun, so necessary to the repair of the activity of the vegetable world first, and of the animal existences next?

A glance primarily at the plane of the equator on a globe, passing centrally through the largest part of the earth; and then at the latitude plane of the northern tropic, parallel with the equator, but at a little distance from it, and passing through a smaller section of the earth,—is no bad approximation in idea to the central vertical meridian plane of the Great Pyramid passing through its largest part, and the plane of the passages parallel thereto, but passing through a smaller part, i.e. a part of the Pyramid less high than the central portion; and the place of the plane of one of the tropical latitudes on a modern geographical globe, is simply an expression of the obliquity of the ecliptic at the present time.

But the obliquity now, is not what it was in the day of the Great Pyramid; and though we may compute it accurately from modern astronomy, that will be of no practical importance to this question, unless we can obtain an equally accurate measure of the passage displacement which the computed numbers are to be tested against; and there is no such measure made yet, or likely to be made for years.

Under these circumstances a happy idea seems to have struck Mr. Cockburn Muir. He had seen, in my own unworthy hands, the marvellous help which the reaction of the interior, on the exterior, of the Pyramid lately gave, when the well-measured length of the King's
Chamber was shown to typify the length of the base-side of the whole monument. Therefore he now likewise sought the exact expression of the displacement of the passage-plane, in the same interior King's Chamber.

In Plate III. (copied from one which I had already published in 1872) the reader may see that the eastern side of the coffer in the King's Chamber (proved by the measures on p. 139 to be of exquisite accuracy) is apparently in the central meridian plane of the whole Pyramid building; and as the parallel passage-plane enters that same chamber by the low doorway, then, from the centre of that doorway to the east side of coffer produced to north wall,—there exactly is the displacement sought for, if the coffer's existing position can be guaranteed.

In the present day it cannot be, as already indicated at pp. 131 and 137; but is yet excessively close to some remarkable symbolic quantities: the north side, for instance, is at the 100th part of the Pyramid height from the north wall, the south side the same from the south wall, and the west side the 100th part of the side of square of equal area (see pp. 230, 231) from the west wall. But the other estimate of another symbolic quantity between the east side of coffer, and the central transverse plane of the room, did not exactly suit, though by the quantity only of a fraction of an inch.

Then, said Mr. C. Muir, let us place the east side of the coffer the 100th part of the base-side length of the Pyramid from the west wall of the chamber, which only alters the former symbolical and measured position of the west side, from the west wall, by a little more than an inch; and the coffer has the King's Chamber's flat floor to be moved about upon, seeming to offer thereby a still more powerful method of solving many problems in a very contracted space, than even the two heights of the walls of the said chamber, already enlarged on in Chap. X. But everything is to be circumscribed in this case within
the length of the King's Chamber, known now to be 412.132 Pyramid inches.

Subtract, therefore, from that quantity half the measured breadth of the doorway, viz. 20.606 Pyramid inches, at the east end, to get the place of the central plane of the passages themselves; and then subtract from the other end 100th of the Pyramid's base-side, or 91.310, and we have left 300.216 Pyramid inches, as Mr. C. Muir's believed displacement of the passage-plane, east of the meridian plane of the whole Great Pyramid; and he believes it also to be the horizontal distance from the north-east corner of the coffer to the central vertical axis of the Pyramid, in meridian direction. That is not at present to be tested accurately, but it cannot, by our former plate, be far from the truth; and if it places the north-east corner of the coffer in a very remarkable position vertically over the Great Pyramid's base, it reminds us also that the north-east corner socket of the four corner sockets of the base, is the largest of the whole of those sockets; and that of that north-eastern socket's own corners, its north-east corner is the most accurately finished, and is the one which defines the ancient place of that corner of the whole base. (See Plate III.)

What then shall we make of the 300.216 Pyramid inches quantity obtained in this manner?

The first use is to multiply it by 10, as with the cubic diagonal of the King's Chamber, to translate it into whole Pyramid proportions; and then to use it as the sine for its overlying radial quantity, the inclined height of the Great Pyramid, otherwise determined = 7391.55 Pyramid inches; when it yields the angle = 23° 57' 50''. Which is within 49 seconds of arc, says Mr. C. Muir, of what the obliquity of the ecliptic was in 2170 B.C., the date of the Great Pyramid's foundation.

This 49'' of difference follows from Mr. C. Muir's computed obliquity for that date being 23° 58' 39''. But the
same element computed both independently, previously, and far more carefully, by Mr. John N. Stockwell, M.A., United States, printed also in the Smithsonian Contributions to Knowledge for 1872, amounts to 23° 57' 50·2"; which is a closer agreement with the 23° 57' 50" of the Great Pyramid, than there is between the best modern authorities on the present observable obliquity in the heavens of our own times.*

Next, seeing that the above result comes out by means simply of the proportion which the displacement of the passage-plane bears to the slanting height of the Great Pyramid, and has no dependence on the units of measure employed, let us see what may be further indicated by using the very numbers given by the Pyramid unit of linear measure, the inch.

That quantity is 300·216; and considering the symbolism of the parts to which it is applied, may be well taken, I believe, to express the compression of the earth at the Poles, or rather the protuberance at and about the equator. The proportion of such protuberance, or the increased length of the earth's equatorial, over its polar, radius,—has long, and otherwise, been known to be something excessively close to $\frac{1}{360}$, and is an essential agent in that grandly slow, but awfully regular, and unceasing angular movement of the earth's axis, producing those apparent displacements of the stars known to astronomers as the precession of the equinoxes; for, as Mr. Stockwell truly writes, "Were the earth a perfect sphere, there would be no precession or change of obliquity arising from the attraction of the sun and moon."†

* The obliquity of the ecliptic at present is stated by various authorities at from 23° 27' 18·98" to 23° 27' 17·88" by modern observation; and its limits of variation through its cycle of about ten thousand years, are computed by physical astronomy to be between 24° 35' 58" and 21° 58' 36".

† In further connection with the above subject, seeing that the pre-
Additional Relations between King's Chamber and Coffer.

And now the length which this chapter has already reached prevents my doing more than locating here among "the mechanical data," the following additional points of identity between the King's Chamber and the Coffer, which have been discovered separately and quite independently of each other by Professor Hamilton L. Smith and Mr. James Simpson; and may be stated thus:

1. The coffer belongs to the King's Chamber, because...
its height squared = \(\pi \) (Pyramid number) of the area of the chamber.*

2. Again, the coffer belongs to the King's Chamber, because all three of its dimensions, external, are given by the half of the chamber's magistral radius (i.e. the half of its solid diagonal), 128·79 inches, when typically divided, or thus:

\[
\frac{128.79 \times 10}{\pi} = 40.996 \quad \text{central height of coffer} = 41.13 - x
\]
\[
\frac{128.79 \times 3}{10} = 38.637 \quad \text{breadth of coffer outside} = 38.61
\]
\[
\frac{128.79 \times 7}{10} = 90.154 \quad \text{length of coffer outside} = 89.92\text{†}
\]

Of which multipliers, while \(\pi \) is evidently the Pyramid number, 3 and 7 are very important coadjutors to it.‡

3. The coffer was not necessarily intended for nothing but a coffin, as the Egyptologists assert, merely because it is long enough for a man to lie down in; for the above is one of its many consistent, numerical, and scientific features, which demand its actual full length; and another still is shown by Professor Hamilton L. Smith thus:

Let the number of inch-days in a year, or 365·24 inches = 360°; then

Coffer's inside width measured = 26·73 in. = 26° 18' = angle of Pyramid passages.

" depth " = 34·34 in. = 33° 48' = upper culmination of a Draconis.

" length " = 77·93 in. = 76° 48' = Summit angle of Pyramid nearly.

Whereupon, and with reference to previously noted commensurabilities, Professor H. L. Smith remarks, rather

* The measured height of the coffer, as already given, lies between 41·23 and 41·13, and the breadth and length of the chamber are respectively 206·07, and 412·13 Pyramid inches, to within less than the tenth of an inch, which will enable any one to compute how near the above-stated proportions come.

† But 90·09, on the removal of the anomaly from the west foot, already mentioned.

happily, if this stone box was intended for nothing but a coffin, what a nice kind of a coffin it must have been; and are there any of our modern mathematicians who would undertake to give the dimensions of such another coffin, combining as many scientific data; especially, too, in order to make it a parallel case in everything,—scientific data not yet known to mankind, but to be known 4,000 years hence?

4. Lastly, of the coffer's cubic contents, its most important element as a vessel of capacity.

I have already published, as the result of my direct measures taken in combination with the earliest commensurabilities discovered in 1868, the following quantities:

\[
\begin{align*}
71,178 & \\
71,292 & \\
71,317 & \\
71,160 & \\
71,266 & \\
71,268 &
\end{align*}
\]

But all the last three of these should probably be slightly increased for that anomaly in the measure of the lower west side of the coffer (see p. 118, vol. ii. of "Life and Work"), which has just been brought into more evident existence by the light of some of Mr. James Simpson's more recent commensurabilities; and he now adds the following results of coffer-contents from his own calculations:

\[
\begin{align*}
A & \text{ First wall-course of King's Chamber} \div 50 = 71,470 \\
B & \text{ The same when height is made to correspond with } \pi \text{ proportion} = 71,421 \\
C & \text{ Outside contents of coffer deduced from cubic semi-diagonal of King's Chamber, and } \div 2 = 71,400 \\
D & \text{ From the same, made to correspond with } \pi = 71,388 \\
E & \text{ Square of inside breadth (measured } \times 26.703 \times 10) = 71,307 \\
F & \text{ Product of interior measures} = 71,318 \\
G & \text{ Solid diagonal of Queen's Chamber } \times 200 = 71,304 \\
H & \text{ United length of the 8 arris lines of the Great Pyramid} = 71,276
\end{align*}
\]

The mean of all the quantities, first and last, being near 71,310; and the resulting figure for the earth's
mean density, on the principle mentioned in Part II., being 5·705. And Mr. James Simpson further adds, that whereas the cube-root of 71,310 = 41·468, and the cube-root of the earth's bulk in cubic Pyramid inches* \(\div 10^7 \) (the cubit into earth's semi-axis of rotation number) = 40·389, these numbers include the height of the coffer between them. Whereupon, dividing the height of the King's Chamber 230·4247 by the earth-bulk derived quantity of 40·389,—there comes out as the number, which we may assume in symbology to represent the earth's mean density, 5·70511; i.e. confirming the previously arrived at 5·705 so far as it goes.

Earth's Density, closely approximated to.

Now these corrections by Mr. Simpson of my earlier 5·70, I venture to regard as of extreme practical importance: for if the Pyramid weights and measures had to be re-enacted by ourselves for national use, we should require to know most accurately either the contents of the coffer, or the mean density of the earth, or both.

But the poor coffer is now so broken by mischief-mongers (positively too more broken in 1873 than it was in 1865 A.D.) that no improved measures will in future be obtainable from it, over those which have already been procured; and the earth's mean density is too difficult a subject for modern science to deal with to the requisite accuracy.

From the Great Pyramid, I had deduced for that earth feature, in 1867, the quantity 5·70: expressly saying that it might be considered certain to ±01 of unity; and that it certainly was not so small as 5·69, nor so large as 5·71; and now behold, after Mr. James Simpson,

* Computed very carefully by Mr. Petrie for the ellipsoidal earth, and corrected for the terraqueous level, a refinement not yet adopted even in the best geodesy of the day, at 65 | 892,118 | 000,000 | 000,000 | 000,000 Pyramid cubic inches. (See my "Antiquity of Intellectual Man," p. 472.)
with admirable skill and quite unknown to me, has made all the correction he can through his further discoveries of Pyramid data, his efforts do not alter the final quantity beyond 5·706.*

And what has modern science to compare against

5·700, and
5·706?

She has two results; her last two, and in so far they should be her best. One of them is by Sir George Airy, Astronomer-Royal, representing the Greenwich Observatory and all the men and money power of the mighty British Admiralty; and the other is by Captain Ross Clarke, R.E., C.B., under the superintendence of General Sir Henry James, R.E., representing the Ordnance Survey, and all the men and money power of the equally mighty British Army War Office; and these two great national efforts of modern times stand thus,—

5·565, and
5,316.

Well, these two quantities evidently include a long way between them all the Pyramid results; but are so absurdly far, one from the other, that they not only do not serve to test the Pyramid's accuracy, much less to replace it in any very practical question, but they may assist too well in showing some Joseph Hume redivivus, that much money of our country both has been, and still is being, expended

* By referring to a letter of Prof. H. L. Smith in April, 1874, I find that he had also arrived at 5·706 for earth's density; his conclusion for the contents of the coffer in Pyramid inches being thus:

Interior contents	71,377 cubic Pyramid in.
Half exterior	71,306
Sum of bottom and sides	71,300
One-fifteenth of King's Chamber's lowest wall-course	71,336
Mean	71,330
over and over again in getting, by most awfully long and difficult methods, bad results in physical science.

They may also succeed in salutarily proving, at least to some of the modern science-so-called men, and in the effective words of the Rev. F. R. A. Glover—

"That science of every kind is after, and not before, God (Job xxxviii. 4, 5, 6): and, that the right use of all Science is, to make the human mind capable of appreciating God—the God of Revelation—God of the Dispersion—God of the Exodus—God of Calvary—The God due to come,—and not by it to attempt to dethrone Him" (Isaiah xxix. 14; 1 Cor. i. 19).
CHAPTER XX.

SACRED, AND PROPHETIC, TIME.

THERE was once a well-supported piece of special flooring in the Grand Gallery, near its northern end, concealing from view the horizontal passage leading to the Queen's Chamber. Just so much indeed was stated in the last chapter, p. 387; but there was also a manner of performing the work peculiar to the Great Pyramid, which still remains for description, assisted by Plates VII., X., and XI.

Thus the supporting beams or joists, as shown by the holes for them on either side, within and below the level of the ramps, were 5 in number; a Pyramid, and a human hand, 5, too, inasmuch as one of them was larger and thicker than the other four. But more noteworthy is the height of the present beginning of the Grand Gallery's permanent stone floor just beyond the former site of that now vanished, once supported, piece, and looking almost like a little cliff; for, together with the dark passage mouth it overhangs, it measures no less than 86·25 inches high to any one standing on the level area in front of it.* But that rather rough though level space is 6 inches higher, nearly, than the very beginning of the Grand Gallery;† and the escarpment itself is under-estimated at its extreme northern end by the amount of nine inches, that depth having been removed for a short distance to allow of an over-

* "Life and Work," vol. ii. pp. 70 and 71; also for height, p. 59.
† Ibid. vol. ii. p. 61.
lapping of the special floor, which once covered the present hole or pit. The entire height, therefore, of the remarkable frontal cliff for symbolical purposes is not much short of 101·25 inches; and this quantity, though in rough approximation only, stands before us here very much in the guise of the leading Pyramid symbol for a day: viz. 100 inches.

But is there anything else at this point concerning a day?

If of days at all, it should be of seven days, seeing that the feature of the Grand Gallery most usually attractive to travellers, next after its commanding height, is, the seven overlappings of its walls.

Now the Pyramid's entrance-passage has already been shown to have something to do with days, and the inclined passage which enters the north end of the Grand Gallery is very similar in size to it, being by measure 53·2 inches high vertically. The passage, however, which exists from the south end of the Grand Gallery, is only 43·6 inches high vertically; and as we cannot use either one or other exclusively in referring to the Grand Gallery between them, we have to take the mean of the two, or 48·4; and then find, that that quantity goes seven times, exactly to a hundredth, into 339·2, which is the vertical height of the Grand Gallery at a mean of 15 points in its whole length; specially measured, too, with a grand 3 to 400 inch slider measuring-rod, presented to me for this very purpose by Andrew Coventry, Esq., of Edinburgh, in 1864.*

Now this result may, or it may not, be intended in this part of the Pyramid to assist in typifying 7 days (more

† See "Life and Work," vol. ii. pp. 84—86. Former travellers' measures of the height of the Grand Gallery vary from 270 to "about 600" inches, and are given without detail. The inclined floor length being by my measures 1881 Pyramid inches, the angle 26° 17' 37'', and the horizontal length computed 1686·4 Pyramid inches, Mr. James Simpson has pointed out that the typical fifth part thereof = 337·3 Pyramid inches: a close approach to the 339·2 measured, seeing that the variations, in places, amounted to anything between 333·0 and 346·0, by reason chiefly of the tilt of each of the long roof-stones to the general slope of the whole roof.
strictly 7 half-days taken twice over); and is of only subsidiary importance in itself; because 7 days merely, is a pagan mystical number which any one might hit upon, and without its having anything to do with the Sabbatical week of Scripture: for that was an institution which, though including or spanning over 7 days in its entirety, was far more notable for commemorating 6 working days and one day of rest; that one day, too, being endued with a totally distinct character, and having a special ordination by inspired command to be held sacred to God, the Creator of all.

The Biblical Week.

We have not, therefore, yet found anything in the Great Pyramid touching, in any clearly discriminative manner, on the week of the Bible. But if we now follow along that level passage which has the hundred-inch day—symbol overhanging its entrance, viz. the horizontal passage leading to the Queen's Chamber,—the last part of that passage is found to be one-half nearly greater in depth than the rest; and the length of that deeper part is one-seventh of the whole length of the floor from the beginning of the Grand Gallery up to the Queen's Chamber itself.* This looks like a beginning of a possible Sabbatical week symbolism; and has this further link of connection with the Queen's Chamber, that the seventh and deepest part of the passage, and which has a length of 215·9 inches, is found to be roughly a mean between the length and breadth (226·5 and 206·) of the floor of that chamber on the same deeper level.† (See Plate IX.)

* See "Life and Work," vol. ii. pp. 65, 61. The whole distance = 1517·9, and the smaller distance with the lower floor-level = 216·9 Pyramid inches, with an inch of possible error.

† Salt incrustations prevent very accurate measures in this room, but the 206· width is almost a reproduction of the King's Chamber breadth; which feature would have been lost, if the chamber had been made 216· square in plan.
In that chamber behold we a fair, white stone apartment, exquisitely built originally (except as to its present floor, which, for some reason or other, is rough, and composed of mere rudely worked building blocks); but with this special and overriding feature accompanying and distinguishing it from the other Great Pyramid chambers; viz. that by reason of its having for ceiling a double inclined slope, the whole room may be said to have seven sides; of which seven, the floor, which has not had a tool lifted up against it within the building (though the others, of more finished character, had), is decidedly larger than all the rest in area.

Those other sides, however, are not quite equal and similar amongst themselves, unless reductions are made, founded on some features which do exist, marked into the wall;* but whose full signification has yet to be accurately made out. It may be better, therefore, at present, to conclude this part of the argument for the Sabbatical week of Scripture being indicated in this chamber, from Mr. James Simpson's sums of the squares, and which are given by the chief proportions of the room to a higher, though not an absolute, degree of certainty.

Taking the room, then, with an artificial ceiling, assumed in place just beneath the angular beginnings of the roof (or at the greatest height to leave the apartment with six sides, such as ordinary rooms possess), the sums of the squares of its radius into every dimension amount to 60; or, says Mr. Simpson, to 6 working days of 10 each. But next take the major height, or that central and superior height which effectively gives the room its seventh side, and the sum of the square there, and there alone, is 7;† or typical of the

† Mr. Simpson's sums of the squares are not quite so cogent in the Queen's as the King's Chamber, already given in Chapter X.; and his radius length for it, 92.17 inches, is not so well proved; which indeed is not much to be wondered at in this chamber of soft white stone and saline
divinely ordained day of rest; and without interfering with what has already been ascertained for this chamber's indicating the π proportion of the Pyramid, its angles, its absolute size, and the length of the sacred cubit $= 25$ Pyramid inches.

In connection with this last feature, not only does this chamber stand, with its original, or intended finished floor, on the 25th course of masonry composing the whole Great Pyramid, but its cubic contents, carefully computed by Mr. James Simpson, after allowing for the saline incrustations of the walls, which had made my measures the fraction of an inch too small, amount to ten million cubic Pyramid inches. A result to be compared with the King's Chamber, taken as typifying a length of two sacred cubits, or 50 inches, and found to be standing on the 50th masonry course, and to be of the cubic capacity of two ten-millions of cubic Pyramid inches. (See p. 232.)

Grand Gallery's Cubical Commensurabilities.

Let us now return from this Queen's Chamber, so called (which to ordinary corporeal research is a cul-de-sac, even in spite of its newly discovered air-channels), and we incrustations; not so well adapted, therefore, for scientific proofs of precision, as for some general symbology in religion of which more will appear further on. The proportions, however, which are more certain than the absolute lengths, run thus:

<table>
<thead>
<tr>
<th></th>
<th>Height, divided by radius of chamber</th>
<th>Breadth</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$= 2$ square $= 4$</td>
<td>$= 2.2361"$ $= 5$</td>
<td>$= 2.4495"$ $= 6$</td>
</tr>
</tbody>
</table>

Sums of the squares $= 15$

<table>
<thead>
<tr>
<th></th>
<th>Diagonal of end</th>
<th>Diagonal of side</th>
<th>Diagonal of floor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$= 3"$</td>
<td>$= 3.1623"$ $= 10$</td>
<td>$= 3.3166"$ $= 11$</td>
</tr>
</tbody>
</table>

Sums of the squares $= 30$

<table>
<thead>
<tr>
<th></th>
<th>Solid diagonal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$= 3.8730"$ $= 15$</td>
</tr>
</tbody>
</table>

Sums of the squares of all the dimensions, except the major, or gable, or central height of the chamber $= 60$

<table>
<thead>
<tr>
<th></th>
<th>Major, or gable, or central height</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$= 2.6458"$ $= 7$</td>
</tr>
</tbody>
</table>
shall find a certain amount of connection between it and the Grand Gallery. Only a small amount, but of a somewhat similar kind to what there is between a week and a year; inasmuch as both of them are measures of time, though the week does not march along evenly and decimally with the year in questions of history and the chronological fixation of events.

In this manner, then, while the Queen's Chamber, with its cubit-defining niche, contains cubic inches to the typical number for that cubit of ten-millionth earth-reference—the Grand Gallery contains 36 millions of cubic inches; or one million to every one of the 36 inclined stones forming its long sloping roof.

The number of these Grand Gallery roof-stones had been given in 1837 at 31 by Colonel Howard-Vyse, and at 30 by the great French work, so that I was a little disconcerted in 1865 at finding them 36. But as those authors gave no particulars, and as I took much pains (duly described in "Life and Work," vol. ii. pp. 86—88), there can be very little doubt about the larger number. And in 1872, Mr. Simpson seems to confirm it as an intentional feature of the architect, by finding the round number of one million cubic inches to be repeated just 36 times in the contents of the whole Grand Gallery, carefully computed for every overlapping.

Mr. Simpson has a further speculation on the apparently 50-inch length of each roof-stone, making the length of the Grand Gallery, along its ceiling only — 1800 inches. But as the successive lengths of the stones struck me at the place as irregular, there is not much dependence probably to be placed on that conclusion.

On the whole, a more noteworthy feature has been called attention to by Mr. Hartwell A. Powers, of Warsaw Pike, Cincinnati, Ohio; viz. that taking the length of the Grand Gallery accurately along the floor, from north wall to south wall, as 1881.4 Pyramid inches; then the length...
along a certain intermediate part between the floor and ceiling, marked once by a shallow groove (see Plate XI.) which has now nearly disappeared by exfoliations of the stone, was 1878.4 of the same inches. Now 1878.4 ÷ 36 (the number of the roof-stones) = 52.177; and the number of days in a year, 365.242, divided by 7 (the number of the overlappings of the walls), is also 52.177; wherefore he takes that as "one prophetic day in terms of weeks," and to which we may have to direct our attention further on.

The Ramps, and the Well’s Upper Mouth.

Let us next attend to the ramps, or inclined stone benches on either side of the Grand Gallery’s floor, running from the very north end right up to the great transverse step which forms the south end thereof. They are alluded to so conflictingly in the great French work, as containing sometimes 26, and sometimes 28 holes, that I recorded, in “Life and Work,” several sets of measures of various kinds, to place this very simple point beyond all dispute.

If the ramps are supposed to include the great stone step at their upper or southern end—and which stone step has an almost similar kind of hole at either inner corner—then there are actually and positively 28 holes, clear and distinct, along the eastern wall of the Gallery (27 in the ramp itself, and 1 on the step); and there are as many along the western wall; for though the lowest and northernmost hole is not very clear, that is merely from the greater part of the end ramp-stone which once held it being now broken away. Of these 28, too, on either side, 25, viz. all except the lowest two and upper one, are distinguished by a piece of stone 13 inches broad and 18 high, being let into the wall vertically and immediately over them; while of those 25, no less than 24 (on either side) are crossed
slantingly, says Dr. Grant, not by another let-in stone, but by a broad, transverse, shallow groove, measuring about 22 inches long, 12 broad, and 1 deep. (See Plate X.)*

Something may come of that, in the hands of future explorers; but meanwhile we have to notice another feature, and a most important one, already established or brought to light by the removal of part of the ramp-stone in the lower north-west corner of the Grand Gallery; for the removal of that mass just there, long ago disclosed a constructional secret of the original builders; viz. the upper end,—or rather a small and low outlet leading to the upper end,—of a very deep and solemn kind of shaft, usually called “the well,” in the annals of early Pyramid exploration.

At those times nothing was known of the Pyramid’s entrance-passage further down than its junction with Caliph Al Mamoun’s forced hole and the entry to the first ascending passage. Therefore, when men ventured to look into the well-mouth from the north-western corner of the Grand Gallery, at or near the broken ramp-stone as above, they found themselves not far from overhanging a dark and dismal abyss, no one knew how deep or where leading to.

What Caliph Al Mamoun and his immediate followers thought of it, is not recorded; but soon after his time, “the well” begins to figure in Arab accounts, as an open pit of preternatural depth and fearful qualities. A party of twenty men, from the Faioum district, was once formed to investigate the mystery, but was frightened by one of their number falling down the aperture such a terrible distance that he was said to have been three hours in the

* This matter was particularly reported on by Dr. Grant on December 6, 1874, after a lengthy examination, and statement for every ramp-hole. Of the 26 holes on either side which have the vertical let-in stone, the single one of them which has not the transverse broad groove is the third from the north end of the gallery, as shown in Plate X.
act of falling, uttering horrible cries all the time; wherefore his friends fled, and he was never afterwards heard of, except in an apocryphal manner, and as having then become an enchanted being.

Again, a Sultan of Cairo, of impatient character, and determined to know all the secrets of the Great Pyramid in his own day, elected to blow it up by filling this same well with gunpowder: and only relinquished the design on being assured by his Italian architect, that the explosion of so vast a quantity of powder would endanger the safety of all the buildings in Cairo.

Again, at a later age, the celebrated Cambridge traveller, Dr. Clarke, visited the place with a large military party, and on throwing a stone down the well, and hearing it end by splashing, as they all considered, trusting entirely to their fallacious ears, in water,—he called impressive attention to the admirable truth and perfect faithfulness of classic authors: for had not Pliny duly written that there was a water-well in the Great Pyramid, 80 cubits deep? and here it was, both before their eyes, and testified to by their hearing as well.

Again, in 1818, Signor Caviglia cleared out the entrance-passage of the Great Pyramid throughout the whole distance right down to the deep subterranean chamber; and lo, near the bottom of it, on the western side, was a low doorway leading into a dark passage: by pushing into which, and following its lead, and clambering in the darkness higher and higher, and yet higher, or 170 feet vertical altogether, he at length found himself at the same well-mouth, where Dr. Clarke had thrown down the stones, and entering the lower north-west corner of the Grand Gallery. Very thirsty, too, as well as hot and tired was he, for not a particle of water existed in any portion of the so-called well; the whole of which, including the lower end of the entrance-passage and the subterranean chamber, is far above the level of the Nile.
inundation, the only source of water in that scorched and almost rainless land. (See Plate XV.)

Again, in 1830 and 1837, came in the age of explorations, i.e. Egyptological and builders' explorations, with Sir Gardner Wilkinson, Colonel Howard-Vyse, and Mr. Perring. For they set forth, as already indicated, that the ancient workmen who had filled up with stone plugs the first ascending passage, above the granite portcullis, must have afterwards escaped by this long and deep well-like hole, or vertical shaft, to the lower part of the entrance-passage, and then by ascending its long northward slope, have attained to the outward air once again.

The Missing Ramp-stone.

Perhaps they did. But in that case let us ask, "In what state would they have left the ramp-stone over the well's mouth?"

Certainly not blown from within outwards, as if by uncontrollable explosive force, breaking off part of the wall with it, and leaving the hole's mouth exposed; for that would have defeated their whole object. They would, on the contrary, have contrived a temporary support for the stone when in a position impending over the hole, partly in the floor and partly in the wall; or a support such, that when the last man had come away, the prop would be easily withdrawn, and the stone would fall neatly into a seat already cut for it, and cemented round the edges with freshly applied lime to make the work permanent and secure. For then such stone would be flush with the rest of the ramp, and would utterly conceal from any one who should ever enter the Grand Gallery by the regular method of the first ascending passage, that there was any well-mouth whatever behind the surface of the ramp. (See Plate X.)
The original builders, then, were not those who knocked out, from within on the well side, that now lost ramp-stone, and exposed the inlet to the well-mouth as it is presently seen, near the north-west corner of the Grand Gallery. Neither was Al Mamoun the party, for no one could have done it except by entering the well from the very bottommost depths of the subterranean region; and he, the son of Caliph Haroun Al Raschid, and all his crew, did not descend further down the entrance-passage than merely to the level of his own forced hole, which is not subterranean at all. Nor is the credit claimed for any of his Arab successors, who rather allude to the well as an already existing feature in their earliest time, and one they did not understand; in large part, too, because they had only seen, and only knew of, the upper end of it in the north-west corner of the Grand Gallery floor.

Who then did do it?

Who indeed! For the whole band of Egyptological writers we have mentioned, appear to be convinced that ages before Caliph Al Mamoun made his way by blundering and smashing, long ages, too, before Mohammed was born, and rather at and about the period of Judah being carried captive to Babylon,—the Egyptians themselves had entered the Great Pyramid by cunning art and tolerable understanding of its mere methods of construction, and had closed it again when they left.

Either some fanatics of the later dynasties of Ethiopic intruders, or the following Persian conquerors, are considered to have been those spoilers and sealers-up again: and not only of the Great, and all the other Pyramids too, but of every royal tomb throughout Egypt, in whatever style of architecture it may have been built, whether subterranean or subaerial. The spoilers also they were, and at the same time, of those far more repulsive tombs and bigger sarcophagi, the profanely sacred ones of the deified Egyptian bull Apis; recently brought once more
to the worshipful regard of all Egyptologists by Mariette Bey's too successful excavations of ancient idolatries.

Precisely who those earlier men were, as Colonel Howard-Vyse well remarks, who committed that first spoiling, "will now never be known;" but that the royal tombs were spoiled, and that both early Mohammedan and later Christian explorers throughout both Upper and Lower Egypt, equally found nothing but emptied sarcophagi, is positive matter of fact. By the aid, too, of features still existing, it can be mechanically demonstrated how those mysterious intruders may, in the case of the Great Pyramid, have descended to the subterranean depths of its entrance-passage, entered the bottom of the well, ascended the said well to its mouth, knocked out part of the closing ramp, ascended the then clear and open Grand Gallery, entered the King's Chamber, made what changes they could there; and then, descending again the same way, closed all the passages behind them so effectually that no one else ever attempted to follow their steps, until after a lapse of 2,000 years, or close within our own times.

Of the Sacred, touching the Great Pyramid.

That is the end, then, of the first use which the Great Pyramid's Grand Gallery, deep well, but not a water-well, and entrance-passage, served. But that was evidently not all which those features were intended for.

In the course of the summer of 1872, in a correspondence with Mr. Charles Casey, of Pollerton Castle, Carlow (then preparing his work "Philitis"*), that straightforward and vigorous thinker considered himself called on to tell me, that while he had followed and adopted all that I had attempted to explain as to the metrology of the Great Pyramid being of more than human scientific perfection

* "Philitis: A Disquisition." By Charles Casey, Esq. Published by Carson Brothers, Grafton Street, Dublin. 1872.
for the age in which it was produced,—yet to call it therefore Divinely inspired or sacred, seemed to him to be either too much, or too little. It might have been sufficient in a previous day, but not in these times in which we live; for with rationalism continually extending on every side, the only vital question left in religion, the only question really, efficiently, sacred, is, "What think ye of Christ? Whose Son is he?" The question to which we must all of us, sooner or later, come at last.

"Now," said Mr. Casey, "unless the Great Pyramid can be shown to be Messianic, as well as fraught with superhuman science and design, its 'sacred' claim is a thing with no blood in it; it is nothing but mere sounding brass and a tinkling cymbal. That idea seized me the other night," said he, "when I was thinking on my bed, and took me with such a giant's grip that I have never been able to get quit of it since."

"You are not the first student of the Great Pyramid," I was obliged to reply, "to whom the same idea has been vouchsafed; for it has long formed a matter of frequent and earnest discussion among several of them; but they have not published on it yet, thinking the necessary preliminary part of the subject, or the Pyramid's attestation to superhuman scientific abilities for its age, not yet brought up to the required degree of exactness to command the respect of, and induce assent from, sceptically minded men of education and ability."

At the time I wrote to Mr. Casey, the uncertainties of the base-side measure of the Great Pyramid, by modern surveyors, were simply horrible; the best of them both erring to almost any extent between 9,100 and 9,170 inches, and laying the fault thereof upon the Pyramid. At that period, therefore, the only solution of the difficulty seemed to be, to beseech some superlatively rich men, and such petitions were accordingly presented, to expend of their spare thousands, first in clearing the four base-
sides of the Great Pyramid from their impracticable hills of rubbish, and then in measuring between the terminal points with proper accuracy. And there, at those rich men's luxurious doors, the matter stood; and had stood uncared for by them or treated with base contumely for seven long years, until at last the Pyramid's purpose could wait no longer. So, partly in 1872, and still more signally in July, 1873, it passed them all by; and in revealing the reason why the King's Chamber was made in measured length 412·132 Pyramid inches, has shown both the true base-side length and the vertical height of the structure, its \(\pi \) theory and the inch and cubit metrological system, to a degree of accuracy* some 700 times greater than before obtained: combined, too, now with a proved certainty of intention, which leaves nothing more to desire; and makes Great Pyramid studies quite independent henceforth of all those rich men and their long wasted or squandered or unused riches, confided to them by Providence for some better purpose than mere luxurious living. They had had, in this Pyramid cause, such an opportunity of doing high, pure, and noble good to all the ages, as wealth had never enjoyed before, since the foundation of the world; but the opportunity has from this time departed from them for ever. Wherefore the least that can be said is in terms of James v. 1—3, "Go to now, ye rich men, weep and howl for your miseries that shall come upon you. Your riches are corrupted, and your garments are moth-eaten. Your gold and silver is cankered; and the rust of them shall be a witness against you." But mankind may well rejoice, for the flood-gates of the Great Pyramid's sacred history, or the last pages of what that primeval monument has to tell,—and has had, in "the sure word of prophecy," to relate, ever since the beginning of human life and story,—are henceforth open to all.

* Compare Chapters III. and IV. with Chapter X. pp. 179, 180.
The Sacred pronounced to be Messianic.

It was in 1865 that a letter reached me at the Great Pyramid, transmitted, with some high recommendations of its author, by that most upright, knightly man, the late Mr. Kenmure Maitland, Sheriff Clerk of the county of Edinburgh. "He is a young ship-builder," said he, "a son of a ship-builder, an accomplished draftsman, and I hear that he lately turned out, from his own design, one of the most perfect ships that ever left Leith Docks: and from his childhood upwards he has been an intense student of whatever could be procured concerning the Great Pyramid."

This well-prepared individual then, it was, who first, to my knowledge, broke ground in the Messianic symbolisms of the Great Pyramid, so intensified subsequently by Mr. Casey: and, after long feeling his way in a humble and prayerful spirit,* at length unhesitatingly declared that the immense superiority in height of the Grand Gallery over every other passage in the Great Pyramid, arose from its representing the Christian Dispensation, while the passages typified only human-devised religions, human histories, or little else.

From the north beginning of the Grand Gallery floor,

* "—that most mysterious edifice, the Great Pyramid, which has been a puzzle to all ages. It is a very serious view indeed which I entertain of its purpose, and not one to be approached in a spirit of levity. I have endeavoured, largely led by a careful perusal of Mr. Taylor's book, and your own upon the subject, to follow out much further than you do, the Scriptural allusions to the Great Pyramid, with a result which appears, slightly as I have dipped into it, truly astonishing. Extreme caution is requisite in Biblical research, for, as Peter says, 'No scripture is of private interpretation.' I have humbly and prayerfully endeavoured to avoid anything which may be misconstrued, and if my humble remarks are of any assistance to you in the elucidation of this grand and holy mystery, I shall be truly glad.

"Leith, February 26th, 1866."

The name of the writer is now omitted, in deference to a letter from him written in May, 1877.
said Mr. Kenmure Maitland's friend, there, in southward procession, begin the years of the Saviour's earthly life, expressed at the rate of a Pyramid inch to a year. Three-and-thirty inch-years, therefore, or thereabout, bring us right over against the mouth of the well, the type of His death, and His glorious resurrection too; while the long, lofty Grand Gallery shows the dominating rule in the world of the blessed religion which He established thereby, over-spanned above by the 36 stones of His months of ministry on earth, and defined by the floor-length in inches, as to its exact period. The Bible fully studied, shows that He intended that first Dispensation to last only for a time; a time, too, which may terminate very much sooner than most men expect, and shown by the southern wall impending.

Whereupon I went straight to the south wall of the Grand Gallery, and found that it was impending; by the quantity too, if that interests any one, of about 1°; while the Coventry clinometer I was measuring with, was capable of showing 10°;* and where the writer could have got that piece of information from, I cannot imagine; for the north wall is not impending: he, too, was never at the Great Pyramid, and I have not seen the double circumstance chronicled elsewhere. The first ascending passage, moreover, he explained as representing the Mosaic Dispensation. I measured it, and found it to be, from the north beginning of the Grand Gallery, the natal year of Christ, to its junction with the roof of the entrance-passage northward and below, or to some period in the life of Moses, 1,483 Pyramid inches: and when produced across that passage, so as to touch its floor, 1,542 inches.t

† The Rev. W. B. Galloway, M.A., Vicar of St. Mark's, Regent's Park, in his “Egypt's Record of Time to the Exodus of Israel,” after deeply studying the question, more from Alexandrian Greek than Egyptian profane sources, makes the date of the Exodus 1640 b.c. (see his p. 371). And at p. 429 he arrives at the conclusion that the birth of our Saviour was actually in the course of our reckoned year b.c. 1, and needs only a
The Floor Roll of Human Religious History.

But the chief line of human history with our new correspondent was the floor of the entrance-passage. Beginning at its upper and northern end, it starts at the rate of a Pyramid inch to a year, from the Dispersion of mankind, or from the period when men declined any longer to live the patriarchal life of Divine instruction, and insisted on going off upon their own inventions; when they immediately began to experience that universal "facilis descensus Averni" of all idolaters; and which is so sensibly represented to the very life or death, in the long-continued descent of the entrance-passage of the Great Pyramid, more than 4,000 inch-years long, until it ends, at a distance from the top of the passage equal probably to 4,446 Pyramid inches, in the symbol of the bottomless pit; a chamber deep in the rock, well finished as to its ceiling and the top of its walls, but without any attempt at a floor.

One escape, indeed, there was in that long and mournful history of human decline; but for a few only, when the Exodus took place in the first ascending passage, which leads on into the Grand Gallery; showing Hebraism ending in its original prophetic destination—Christianity.

The full length of the entrance-passage of the Great Pyramid is not so well known by modern measure as it might be. My own very careful measures in duplicate, and sometimes triplicate, of every joint-line from the northern beginning downwards, described in "Life and Work," do not extend further than Al Mamoun's hole, or a third part only of the whole length. Under these circumstances Colonel Howard-Vyse is the only authority. He gives for "the total length of inclined entrance-passage" 3,850 British inches, but with the remark that this passage "has lost more than 23 feet of its original length, owing to the dilapidated state of the exterior of the building;" wherefore we must add at least 276 inches, and 3850 + 276 = 4126. Further, before this inclined passage falls at its lower end into the subterranean chamber there is a cessation of the incline, but a continuation of length in the horizontal direction = 324 inches; wherefore 4126 + 324 = 4450 inches as the distance by the descending entrance-passage to the subterranean chamber. How far this measure can be depended on I cannot say.
And the manner of progress of that first ascending passage is noteworthy. "The name of the Lord is a strong tower: the righteous runneth into it, and is safe" (Prov. xviii. 10). And so in the earlier part of the passage, representing the Theocratic period of the Hebrew people under their judges, the great stone plates which surround that lower end of it, and make walls, ceiling, and floor, all in one piece (see p. 396), are close one to the other, almost continuously. In the middle of the passage, representing the regal period, David, Solomon, and Hezekiah, and other occasional kings acknowledged by God, these surrounding safety plates appear only at successive breadths of the King's Chamber. But when the voice of prophecy was closed with Malachi, then follows the last part of the passage, where for 400 years and more there is no reminder of the same refuge from on high.

But it was not Hebrews alone, descended from those under Moses, who were to be saved by Christ; for besides the special Hebrew passage,—another, though far less conspicuous mode of escape from the descent into the bottomless subterranean pit, was also eventually provided, to prevent any immortal soul being necessarily lost. For, before reaching the dismal abyss, there is a possible entrance, though it may be by a strait and narrow way, to the one and only gate of salvation through the death of Christ—viz. the well representing his descent into Hades. This locality is not the bottomless pit of idolaters and the wicked, lying at the lowest point to which the entrance-passage subterraneously descends, but a natural grotto rather than artificial chamber in the course of the well's further progress to the other place; while the stone which once covered that well's upper mouth is blown outwards into the Grand Gallery with excessive force (and was once so thrown out, and is now annihilated), carrying part of the wall with it, and indicating how totally unable was the grave to hold Him beyond the appointed time.
That sounds fair and looks promising enough, so far, said Mr. Casey; but it is not enough yet to be the turning-point with me, when interests so immense are at stake. We must have more than that, and something not less convincing than a proof of this order. Measuring along the passages backward from the north beginning of the Grand Gallery, you find the Exodus at either 1483 or 1542 B.C., and the dispersion of mankind in 2527 B.C., up at the beginning of the entrance-passage. Now you have already published, years ago, that you have computed the date of building of the Great Pyramid, by modern astronomy, based on the Pyramid's own star-pointings, and have found it, as nearly as you can ascertain, 2170 B.C. That date, according to this new theory, and the acknowledged measures of passage lengths, must be somewhere about three or four hundred inches down inside the top or mouth of the entrance-passage. Is there, then, any mark at that point? for I feel sure that the builder, if really inspired from on High, would have known how many years were to elapse between his great mechanical work in the beginning of the world, and the one central act of creation in the birth of the Divine Son; and, though not using any letters of inscription or devices of sculpture throughout the monument, he would have marked it there as the most positive and invaluable proof that he could give, of the truly Divine inspiration under which the building had been planned and executed.

The Crucial Test.

Now it had never occurred to me before to confront the sacred and scientific theories in this manner; the idea was Mr. Casey's entirely. But if any trial was ever to be considered a crucial one, surely it was this. So away I went to my original notes to satisfy him; and, beginning at the north end of the Grand Gallery, counted and
summed up the length of every stone, backward to the direction in which I had measured them, all down the first ascending passage, then across the entrance-passage to its floor; then up that floor-plane towards its mouth, and soon saw that the 2170 B.C. would fall very near a most singular portion of the passage—viz. a place where two adjacent wall-joints, similarly, too, on either side of the passage, were almost vertical; while every other wall-joint both above and below was rectangular to the length of the passage, and therefore largely inclined to the vertical.

This double joint fact, in itself most easy to see, though not, I believe, recorded before 1865, has frequently since then been speculated on by various persons as possibly pointing to some still undiscovered chamber; and it may do so, just as the diagonal joints in the floor at a lower level are now clearly seen to point, and long to have pointed before unheed ing generations of men, to the upper ascending passage, and all that it leads to. But while no such fourth chamber has yet been discovered, and no Egyptologist attempts to give any explanation of the anomalous joints, and there are few important features in the Great Pyramid which have not meaning within and beyond their first meaning wonderfully incorporated into them,—these quasi-vertical joints seemed from their upright position,—at least to one who believed from theory that they were very near, and shortly before, the Great Pyramid's date of building,—to have something representative of a setting up, or preparations for the erecting of a building. And we are told by Herodotus, that many preliminary years were consumed in preparing the stones and subterraneous excavations of the Great Pyramid; while, on the other hand, Dr. Lepsius assures us, in modern times, with all the lights, whatever they may be, of the Egyptologists, and his own, or Mr. Wild's, theory of profane Pyramid building, that preliminary preparation was never practised by any chance, in any case whatever,
of all ordinary and idolatrous Pharaonic pyramid building. For their work was *Epimethean* only, or from hand to mouth, year by year, and each year in itself, and by itself only, just as each king chanced to live on and on.

Neither of these *quasi*-vertical joints, however, in the Great Pyramid's entrance-passage, would exactly suit the 2170 B.C. date; they were both of them too early. But on the surface of the stone following the last of them, and containing the 2,170 distance somewhere or other within its length, *there* was a more unique marking still. Something it was, more retiring, more difficult to discover, and yet commending itself still more when discovered, though not having the slightest approach to either letter of language, or form of drawing, and certainly not to any species of idolatry.

This mark was a line, nothing more, ruled on the stone, from top to bottom of the passage wall, at right angles to its floor. Such a line as might be ruled with a blunt steel instrument, but by a master-hand for power, evenness, straightness, and still more eminently for rectangularity to the passage axis. I had made myself a large square at the Pyramid in 1865, a wooden square well trussed and nearly the whole height of the wall, and therewith tested the error of rectangularity of every masonry joint therein; and in each case had found some very sensible quantity of such error; but on coming to the ruled line, I could find no certainly sensible error in that. If I suspected it occasionally, a reversal of the square then and there proved that heat or strain had caused some very slight temporary twist in my instrument's wooden frame; but it could not positively and permanently accuse the ancient line on the stone of *anything* wrong.*

* See "Life and Work," vol. ii. p. 29.
of quasi-vertical joints were not exactly so; and the other joints in the walls pretended to, and generally had, no correspondence whatever; nor was any such agreement required for mechanical considerations in the masonry, for that was indeed rather in favour of the joints on one wall "breaking joint" with those on the other. All things, therefore, both in symmetry, beauty of truth, and correctness of position, culminated in favour of these two thin lines; viz. the one anciently ruled line on the west wall, and the similarly ruled line on the east wall; and I looked at them with still more interest afterwards, when there appeared good reason to consider them the work of the very same hand that laid out, in forethought, Prometheus manner, the entire proportions of the whole Great Pyramid. For when Messrs. Aiton and Inglis excavated and (with my assistance in finding its site) laid bare the south-west socket of the Great Pyramid in April, 1865,—there, upon the fair white flattened face of the said socket rock, while three sides were formed by raised edges of stone, the fourth and outer side was defined simply by a line; but a line ruled apparently by the very same hand and selfsame tool which had also drawn these other truthful lines in the entrance-passage.

Yet though I had admired these lines so much,—witness the pages of "Life and Work," published in 1867,—I had never thought of them before in connection with possible indications of date, or, indeed, of anything else, by virtue of their precise and absolute place; and hence it was, that when Mr. Casey required in 1872 to know exactly where, on the floor, the line on either side wall touched that plane (measured, too, not from the top of the entrance-passage comparatively close by on the north, but from the beginning of the Grand Gallery far away to the south), there was no ready prepared record to say. That is, nothing more than the readings of the masonry joints next above and below the spot, together with a mere
memorandum that the ruled line was within "a few inches" of one of them. Every intervening measure by joints between the two extremes, and over scores of joints, had been procured, printed, and published to the world in 1867, and I had got abused too in London reviews for printing so many particulars about trifles which their editors could see no use in and despised; but just the last item now required, merely the small distance from the nearest joint to the drawn line, was wanting. (See Plate VIII.)

So I wrote out to my friend Mr. Waynman Dixon, C.E., then (1872) actively engaged in erecting his brother's bridge over the Nile, near Cairo, requesting him to have the goodness to make and send me careful measures of the distance, whatever he should find it to be, of the fine line on either passage wall at the Pyramid, from the nearest one of the two quasi-vertical joints; not giving him any idea what the measure was wanted for, but only asking him to be very precise, clear, and accurate. And so he was; taking out also as companion and duplicate measurer his friend Dr. Grant, of Cairo; and their doubly attested figures were sent to me on diagrams, where they were written into their places, in a manner which left no room for any misunderstanding.

With this piece of difference measure, thus happily obtained at so late a date, I set to work again on my older joint measures of the whole distance; and was almost appalled when, on applying the above difference, the east side gave forth 2170.5, and the west side 2170.4 Pyramid inches.

"This testimony satisfies me, and fills me with thankfulness and joy," wrote Mr. Casey; while I, never expecting to have measured so closely as that, along either side of those lengthy, dark, and sloping Pyramid passages (where the measuring-rods, if not tightly held by hand to
the floor, have a knack of slipping away and shooting down to the bottom), I, not understanding how such apparently close agreement came about, and knowing that it was not my desert,—can only conclude this chapter with a condensed, small-type representation of the figure-work involved in bringing out the results; results more laboriously, and also, perhaps, more rigidly, impartially, and unexceptionally gained, than can well be imagined by any one else without going through some conspectus of the many details.

THE RULED LINES IN THE ENTRANCE PASSAGE OF THE GREAT PYRAMID.

TESTED FOR THEIR DISTANCE FROM THE NORTH BEGINNING OF THE
GRAND GALLERY, AND FOR THE CRITICAL NUMBER 2170.

The measures of these lines from the nearest masonry joint were kindly sent to me by Mr. Waynman Dixon, from Egypt, with attestations by his friend Dr. Grant, of Cairo, on August 19, 1872, thus:—

"East Wall—Entrance Passage.

"Distance of Ruled Line from masonry wall-joint north of it,
at the top of the wall . . . = 13·26 British in.
at the bottom of the wall . . . = 4·37 . . .

"West Wall—Entrance Passage.

"Distance of Ruled Line from masonry wall-joint north of it,
at the top of the wall . . . = 17·80 British in.
at the bottom of the wall . . . = 7·56 . . .

"The above distances were measured by Mr. Waynman Dixon, C.E.,
and checked by Dr. Grant," and were accompanied by drawings showing that the lines were assumed to be rectangular (which they are) to the length of the passage, while the masonry joints they were referred to were nearly vertical, and were the southernmost members of a pair of such quasi-vertical joints on either wall.

Examination for Accuracy.

The above measures are generally agreeable to my own approximate indication of the position of the lines, though I was rather surprised to find by Mr. Dixon's numbers, that the line on the west wall is farther from its reference joint, than that on the east wall is from its reference joint there, by so large an amount as nearly 4 inches.

It became, therefore, prudent, before embarking in any speculation on the whole return, to make an independent inquiry into the degree of
accuracy of Mr. Dixon's measures, in one feature at least, where they admitted of that wholesome scientific discipline.

Accordingly, if we subtract, in the case of each wall separately, Mr. Dixon's lower difference reading from the upper, we attain a difference of the differences, East = 8.88 inches, and West = 10.26 inches. And on the assumption of the lines being rectangular to the length of the passage, these residual quantities show how much the joints deviate from rectangularity towards verticality, as measured along the top of the wall; or they form the shortest side of a plane triangle, of which the longest side is the quasi-vertical joint, and the medium side the transverse height of the wall, equivalent to the length of the ruled line.

Now the shortest side of that triangle I did in a manner measure in 1866; for in pp. 29 and 30 of vol. ii. of "Life and Work," the deviation of each of the said quasi-vertical joints (from rectangularity towards verticality) is stated as being, or amounting to, at the top of the wall,—1st, by an approximate method:

- The east quasi-vertical joint: \(x \) inches,
- And the west: \(x \) inches.

2nd, by a more accurate method:

- The east quasi-vertical joint: \(9.1 \) inches,
- And the west: \(10.4 \) inches;

while the line ruled on the east wall deviated from rectangularity by only 0.04 inch, and that on the west wall by less than 0.01 of an inch.

Now Mr. Dixon's numbers for the same two joints' deviations being—

- For the east quasi-vertical joint: \(8.88 \) inches,
- And for the west: \(10.25 \) inches,

they come between my two pairs of quantities, and closer to that pair of them which was previously stated to be by the more accurate method. The result of examination is therefore highly gratifying, and shows that we may certainly depend on Mr. Dixon's measures, say to the tenth of an inch, at least; and that is no more than the fortieth part of the apparently anomalous difference of his absolute distances of each line from its nearest joint at the bottom of its own wall.

That difference, then, of the absolute distances must be a real quantity at the Pyramid; and the line on the west wall must be actually 4 inches or so farther from the joint there, than that one on the east wall is from the joint there. Wherefore much may perhaps depend at last on what effect such large difference may have, in modifying the final result on a certain whole quantity which has now, after a repose of several years, been suddenly required, in order to furnish a test for a new hypothesis.

Trial of Mr. Casey's Hypothesis.

Mr. Casey had thus far simply announced, that to fulfil certain important theoretical ends, the passage-floor distance in the Great Pyramid (measured from the north end of the Grand Gallery, down the floor of the first ascending, and up the floor of the entrance passage, to where that floor is at last touched on either side by the lower ends of these two anciently ruled wall lines) should amount to 2,170 Pyramid inches, neither more nor less within the probable errors of measurement.

At present I need only state that the north end of the Grand Gallery is a very well-preserved and sharply defined plane; a good starting-point, therefore, for measures; and that, excepting some rather troublesome, but
by no means impossible, features at the junction of the two passages, the whole distance is plain, clear, and perfectly amenable to modern measure.

Indeed, every inch of the way (excepting only the small piece now supplied by Mr. Dixon) has been, at one time or another, measured by me, and its chief portion even two or three times over, and on either side of the passages, with results, too, which have been published before the world for five years. The numerical facts, therefore, are, so far, very firm; and if the measures, as originally taken, have as yet only been presented anywhere piecemeal, and with numbers increasing in two different series from north to south, in place of, as now required, in one long accumulation from south to north—that is an additional guarantee that the measures taken in 1865 could not have been influenced by any desire to bring out the result of Mr. Casey's hypothesis in 1872.

We proceed, therefore, to the first portion of the whole distance now demanded, viz. from the north end of the Grand Gallery, down the floor of the first ascending passage, until that floor produced cuts the opposing floor of the entrance-passage. This portion we may call A.

The elements for the length A are given in "Life and Work," vol. ii., in the shape,—

1st. Of the floor distances, in British inches, joint by joint, from a specified joint near the lower end, up to the terminal joint at the upper or southern end of the first ascending passage, and they have been measured twice over by me on either side of the passage.

2nd. The portcullis length, from that lower specified joint downwards to the still lower butt-end of portcullis, measured only once, and on the east side of the passage only.

3rd. The distance from that lower butt-end, slantingly across the entrance-passage to its floor, in the direction of the opposing floor of the first ascending passage produced downwards, and given here in three portions, each of which has been measured on either side of the passage.

The following Table contains all these distances required for A, and they are finally reduced from British, to Pyramid, inches in the two right-hand columns.

Table I.

Floor-joint distances from north beginning of Grand Gallery, towards lower end of first ascending passage; or complements of the numbers in third columns of pages 48 and 49 of "Life and Work," vol. ii.

<table>
<thead>
<tr>
<th>Number of Floor Joint</th>
<th>Individual Measures in British Inches</th>
<th>Summations in British Inches</th>
<th>Summations in Pyramid Inches</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>East side.</td>
<td>West side.</td>
<td>East side</td>
</tr>
<tr>
<td>Starting joint of first ascending passage of Great Pyramid; at the top or upper end of that passage, near the Grand Gallery</td>
<td>...</td>
<td>...</td>
<td>0'2</td>
</tr>
<tr>
<td>1</td>
<td>...</td>
<td>...</td>
<td>56'0</td>
</tr>
<tr>
<td>2</td>
<td>...</td>
<td>...</td>
<td>119'3</td>
</tr>
<tr>
<td>3</td>
<td>...</td>
<td>...</td>
<td>176'6</td>
</tr>
<tr>
<td>4</td>
<td>...</td>
<td>...</td>
<td>206'3</td>
</tr>
</tbody>
</table>
Table I. (continued)

<table>
<thead>
<tr>
<th>Number of Floor Joint</th>
<th>Individual Measures in British Inches</th>
<th>Summations in British Inches</th>
<th>Summations in Pyramid Inches</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>East side</td>
<td>West side</td>
<td>East side</td>
</tr>
<tr>
<td>Starting joint of, etc.</td>
<td></td>
<td></td>
<td>1291-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>distance</td>
</tr>
<tr>
<td>6</td>
<td>257-3</td>
<td>255-7</td>
<td>257-0</td>
</tr>
<tr>
<td>7</td>
<td>290-8</td>
<td></td>
<td>290-5</td>
</tr>
<tr>
<td>8</td>
<td>345-8</td>
<td>344-4</td>
<td>345-3</td>
</tr>
<tr>
<td>9</td>
<td>418-3</td>
<td>416-1</td>
<td>418-1</td>
</tr>
<tr>
<td>10</td>
<td>465-6</td>
<td>465-0</td>
<td>465-0</td>
</tr>
<tr>
<td>11</td>
<td>502-4</td>
<td>502-4</td>
<td>502-4</td>
</tr>
<tr>
<td>12</td>
<td>531-0</td>
<td>531-1</td>
<td>531-1</td>
</tr>
<tr>
<td>13</td>
<td>600-7</td>
<td>600-7</td>
<td>600-8</td>
</tr>
<tr>
<td>14</td>
<td>622-1</td>
<td>622-2</td>
<td>622-2</td>
</tr>
<tr>
<td>15</td>
<td>660-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>690-7</td>
<td>690-7</td>
<td>690-7</td>
</tr>
<tr>
<td>17</td>
<td>746-0</td>
<td>746-1</td>
<td>746-1</td>
</tr>
<tr>
<td>18</td>
<td>798-1</td>
<td>798-1</td>
<td>798-1</td>
</tr>
<tr>
<td>19</td>
<td>822-4</td>
<td>822-5</td>
<td>822-4</td>
</tr>
<tr>
<td>20</td>
<td>990-3</td>
<td>990-3</td>
<td>990-3</td>
</tr>
<tr>
<td>21</td>
<td>1106-2</td>
<td>1106-3</td>
<td>1106-3</td>
</tr>
<tr>
<td>22</td>
<td>1308-1</td>
<td>1308-2</td>
<td>1308-2</td>
</tr>
<tr>
<td>23</td>
<td>1512-5</td>
<td>1512-5</td>
<td>1512-5</td>
</tr>
<tr>
<td>24</td>
<td>1542-3</td>
<td>1542-4</td>
<td>1542-3</td>
</tr>
<tr>
<td>25</td>
<td></td>
<td>1124-5</td>
<td></td>
</tr>
<tr>
<td>Lower part of first ascending passage, near the Portcullis</td>
<td>1187-7</td>
<td>1187-8</td>
<td>1187-7</td>
</tr>
<tr>
<td>26</td>
<td>1209-6</td>
<td>1209-7</td>
<td>1209-6</td>
</tr>
<tr>
<td>27</td>
<td>1394-0</td>
<td>1394-1</td>
<td>1394-1</td>
</tr>
<tr>
<td>28</td>
<td>1550-4</td>
<td>1550-5</td>
<td>1550-4</td>
</tr>
<tr>
<td>29</td>
<td>1591-2</td>
<td>1591-3</td>
<td>1591-2</td>
</tr>
</tbody>
</table>

Special Additions.

- Portcullis length (see p. 64 of vol. ii. of "L. and W.")

- To roof of entrance-passage, or cf (see p. 41, vol. ii. of "L. and W.")

- To axis of entrance-passage; or the quantity f_i

- To floor of entrance-passage; in direction of the first ascending passage produced downwards, or l

<table>
<thead>
<tr>
<th>Distance</th>
<th>Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>178-8</td>
<td>(178-8)*</td>
</tr>
<tr>
<td>142-2</td>
<td>142-4</td>
</tr>
<tr>
<td>20-8</td>
<td>30-0</td>
</tr>
<tr>
<td>20-8</td>
<td>30-0</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Whole distance from north beginning of Grand Gallery, down the floor of first ascending passage produced downwards to touch the floor of descending entrance-passage; or the quantity A, in Pyramid inches.

* Not directly measured, only inferred, on this western side of the passage.
We next take up the remaining portion of the whole quantity required for Mr. Casey's hypothesis, or the distance from the intersection plane of the floors of the two passages, up the entrance-passage's floor northward; to where that floor is touched on either side by the bottoms of the two ruled wall-lines: a portion we shall call b.

But this portion b we must necessarily compute in two steps; first, in Table II., setting forth the readings of all the floor-joints of the entrance-passage on the floor, the supposed sheet of, or for, historic record; and second, in Table III., setting forth first for the east side, and then for the west side, the readings of every wall-joint, on the floor's above-described record plane; this will be the b which we are in search of; and will have a added to it in the last two columns, so as there to present the quantity $a + b$, for the wall-joints in the entrance-passage.

Finally, to the wall-joint reading $a + b$, for the particular joint measured from by Mr. Waynman Dixon, we must apply his measured difference of the lower end of the ruled line therefrom.

Table II.

Floor-joint distances from contact plane in Descending Entrance Passage, upwards and northwards to its upper north end, or beginning.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>The starting-point being not a joint, but the contact plane with the floor of first ascending passage produced downwards, or line "1", on p. 42, vol. II. of "L. & W."</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Starting line "1," Joint from "1," low down in entrance-passage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0'0</td>
<td>1545'8</td>
<td>0'0</td>
<td>1544'0</td>
<td>1543'3</td>
<td>1542'5</td>
<td>1542'5</td>
</tr>
<tr>
<td>2</td>
<td>46'8</td>
<td>1590'6</td>
<td>46'5</td>
<td>1590'5</td>
<td>1589'0</td>
<td>1588'9</td>
<td>1588'9</td>
</tr>
<tr>
<td>3</td>
<td>109'6</td>
<td>1650'4</td>
<td>109'5</td>
<td>1650'5</td>
<td>1648'7</td>
<td>1648'6</td>
<td>1648'6</td>
</tr>
<tr>
<td>4</td>
<td>146'6</td>
<td>1697'4</td>
<td>146'3</td>
<td>1697'5</td>
<td>1695'7</td>
<td>1695'6</td>
<td>1695'6</td>
</tr>
<tr>
<td>5</td>
<td>180'2</td>
<td>1737'0</td>
<td>180'0</td>
<td>1737'0</td>
<td>1735'2</td>
<td>1735'1</td>
<td>1735'1</td>
</tr>
<tr>
<td>6</td>
<td>231'6</td>
<td>1778'4</td>
<td>231'3</td>
<td>1778'5</td>
<td>1776'6</td>
<td>1776'5</td>
<td>1776'5</td>
</tr>
<tr>
<td>7</td>
<td>294'4</td>
<td>1829'2</td>
<td>294'1</td>
<td>1829'3</td>
<td>1827'4</td>
<td>1827'3</td>
<td>1827'3</td>
</tr>
<tr>
<td>8</td>
<td>335'3</td>
<td>1879'1</td>
<td>334'5</td>
<td>1879'5</td>
<td>1877'6</td>
<td>1877'5</td>
<td>1877'5</td>
</tr>
<tr>
<td>9</td>
<td>375'7</td>
<td>1919'5</td>
<td>374'9</td>
<td>1919'0</td>
<td>1917'1</td>
<td>1916'1</td>
<td>1916'1</td>
</tr>
<tr>
<td>10</td>
<td>414'9</td>
<td>1959'8</td>
<td>410'1</td>
<td>1954'1</td>
<td>1952'2</td>
<td>1952'1</td>
<td>1952'1</td>
</tr>
<tr>
<td>11</td>
<td>467'5</td>
<td>2001'3</td>
<td>465'2</td>
<td>2000'7</td>
<td>1999'3</td>
<td>1999'2</td>
<td>1999'2</td>
</tr>
<tr>
<td>12</td>
<td>528'7</td>
<td>2070'5</td>
<td>528'7</td>
<td>2069'3</td>
<td>2069'5</td>
<td>2069'5</td>
<td>2069'5</td>
</tr>
<tr>
<td>13</td>
<td>578'5</td>
<td>2132'3</td>
<td>578'1</td>
<td>2132'1</td>
<td>2130'2</td>
<td>2130'2</td>
<td>2130'2</td>
</tr>
<tr>
<td>The line on the wall is due somewhere between these two floor-joints.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>644'7</td>
<td>2189'5</td>
<td>644'3</td>
<td>2188'3</td>
<td>2186'8</td>
<td>2186'7</td>
<td>2186'7</td>
</tr>
<tr>
<td>15</td>
<td>708'6</td>
<td>2247'4</td>
<td>708'5</td>
<td>2247'5</td>
<td>2245'9</td>
<td>2245'8</td>
<td>2245'8</td>
</tr>
<tr>
<td>16</td>
<td>777'0</td>
<td>2315'8</td>
<td>776'9</td>
<td>2314'2</td>
<td>2312'6</td>
<td>2312'5</td>
<td>2312'5</td>
</tr>
<tr>
<td>17</td>
<td>837'0</td>
<td>2370'6</td>
<td>836'6</td>
<td>2369'6</td>
<td>2368'1</td>
<td>2368'0</td>
<td>2368'0</td>
</tr>
<tr>
<td>18</td>
<td>907'0</td>
<td>2425'8</td>
<td>906'6</td>
<td>2424'5</td>
<td>2423'0</td>
<td>2423'0</td>
<td>2423'0</td>
</tr>
<tr>
<td>19</td>
<td>987'2</td>
<td>2479'4</td>
<td>986'5</td>
<td>2478'5</td>
<td>2476'0</td>
<td>2476'0</td>
<td>2476'0</td>
</tr>
<tr>
<td>Near beginning or upper, or north end of the entrance-passage. 20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>987'2</td>
<td>2531'0</td>
<td>986'5</td>
<td>2529'6</td>
<td>2528'5</td>
<td>2527'1</td>
<td>2527'1</td>
<td>2527'1</td>
</tr>
</tbody>
</table>
N.B.—Had Mr. Wayman Dixon measured the lower end of the ruled lines from a floor-joint, we should now have been in a position, with this table, to have obtained for each ruled line the ultimate reading required. But his measure of a difference being from a wall-joint, we must now prepare a further tabular representation of the readings, on the floor-plane, of each of the wall-joints, and this for either wall separately; or thus:—

Table III.

Wall-joint distances at their lower ends; or where they touch the floor in the Entrance Passage; reckoned from that floor's contact plane with the floor of first ascending passage (produced downwards), and proceeding upwards to the upper or north end of Entrance Passage.

<table>
<thead>
<tr>
<th>Number of Wall-joint, referring only to the bottom thereof</th>
<th>Distance south from basement beginning. (See p. 24, vol. ii.)</th>
<th>Inverse distance, or distance from contact plane, north.</th>
<th>The same + 1543.2; or whole distance from the north beginning of Grand Gallery = A + B.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st wall-joint, above, or north of floor's contact planes</td>
<td>967.8</td>
<td>29.4</td>
<td>1573.2</td>
</tr>
<tr>
<td>2</td>
<td>917.0</td>
<td>70.2</td>
<td>1514.0</td>
</tr>
<tr>
<td>3</td>
<td>854.2</td>
<td>133.0</td>
<td>1478.8</td>
</tr>
<tr>
<td>4</td>
<td>821.3</td>
<td>166.9</td>
<td>1709.7</td>
</tr>
<tr>
<td>5</td>
<td>781.3</td>
<td>295.9</td>
<td>1769.7</td>
</tr>
<tr>
<td>6</td>
<td>717.1</td>
<td>370.3</td>
<td>1815.2</td>
</tr>
<tr>
<td>7</td>
<td>698.9</td>
<td>320.3</td>
<td>1872.1</td>
</tr>
<tr>
<td>8</td>
<td>695.1</td>
<td>322.1</td>
<td>1925.9</td>
</tr>
<tr>
<td>9</td>
<td>557.1</td>
<td>450.1</td>
<td>1983.9</td>
</tr>
<tr>
<td>10</td>
<td>501.0</td>
<td>498.3</td>
<td>2080.0</td>
</tr>
<tr>
<td>11</td>
<td>443.2</td>
<td>545.0</td>
<td>2098.8</td>
</tr>
<tr>
<td>12</td>
<td>337.3</td>
<td>595.0</td>
<td>2143.7</td>
</tr>
<tr>
<td>The wall line due somewhere here.</td>
<td>687.1</td>
<td>1083.8</td>
<td>2030.0</td>
</tr>
<tr>
<td>13</td>
<td>Approximately vertical</td>
<td>887.3</td>
<td>699.0</td>
</tr>
<tr>
<td>14</td>
<td>Approximately vertical</td>
<td>760.0</td>
<td>69.3</td>
</tr>
<tr>
<td>15</td>
<td>half-height</td>
<td>219.2</td>
<td>768.0</td>
</tr>
<tr>
<td>16</td>
<td>half-height</td>
<td>150.4</td>
<td>836.5</td>
</tr>
<tr>
<td>17</td>
<td>half-height</td>
<td>110.2</td>
<td>877.0</td>
</tr>
<tr>
<td>North beginning of basement sheet of entrance-passage</td>
<td>0.0</td>
<td>967.2</td>
<td>2551.0</td>
</tr>
</tbody>
</table>
WEST WALL (by itself).

Floor contact plane 983.6 British inches from basement beginning.
(See page 42, vol. ii. of "Life and Work").

<table>
<thead>
<tr>
<th>Number of Wall-joint, &c. &c.</th>
<th>Distance south from basement beginning. (See p. 21, vol. ii. "L. & W."),</th>
<th>Inverse distance, or distance from contact plane, north.</th>
<th>The same + 1644.0; or whole distance from the north beginning of Grand Gallery = A + B.</th>
<th>British Ins.</th>
<th>Pyramid inches.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st wall-joint, above, or north, of floor's contact plane</td>
<td>981.1</td>
<td>4.5</td>
<td>1586.5</td>
<td>1547.0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>981.5</td>
<td>54.1</td>
<td>1566.1</td>
<td>1598.6</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>971.1</td>
<td>114.5</td>
<td>1665.5</td>
<td>1686.8</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>942.0</td>
<td>143.9</td>
<td>1687.6</td>
<td>1685.9</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>901.5</td>
<td>154.1</td>
<td>1725.1</td>
<td>1726.4</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>766.9</td>
<td>218.7</td>
<td>1762.7</td>
<td>1780.9</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>740.4</td>
<td>245.2</td>
<td>1795.2</td>
<td>1797.4</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>694.3</td>
<td>294.3</td>
<td>1848.3</td>
<td>1846.5</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>639.1</td>
<td>346.5</td>
<td>1930.5</td>
<td>1869.6</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>582.1</td>
<td>428.5</td>
<td>1967.5</td>
<td>1983.5</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>509.1</td>
<td>495.8</td>
<td>2002.5</td>
<td>2000.5</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>422.1</td>
<td>563.5</td>
<td>2047.5</td>
<td>2045.5</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>342.1</td>
<td>608.5</td>
<td>2102.5</td>
<td>2100.4</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>251.7</td>
<td>653.9</td>
<td>2157.9</td>
<td>2135.8</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>342.4</td>
<td>686.2</td>
<td>2190.2</td>
<td>2178.0</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>339.8</td>
<td>685.8</td>
<td>2192.8</td>
<td>2178.6</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>307.6</td>
<td>778.0</td>
<td>2232.0</td>
<td>2219.7</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>159.8</td>
<td>838.9</td>
<td>2377.0</td>
<td>2374.6</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>110.0</td>
<td>873.8</td>
<td>2419.6</td>
<td>2417.2</td>
<td></td>
</tr>
<tr>
<td>North beginning of basement sheet of entrance-passage</td>
<td>0.0</td>
<td>985.3</td>
<td>2502.6</td>
<td>2527.1</td>
<td></td>
</tr>
</tbody>
</table>

The absolute place, then, on the floor's scroll of history, in terms of our \(\frac{A}{A+B} \) of the base of that wall-joint from which Mr. Dixon measured the ruled line, is on the

East side
And on the west side

\[\begin{align*}
&= 2174.9 \text{ Pyramid inches,} \\
&= 2178.0
\end{align*} \]

And Mr. Dixon's measured difference at the base amounting to—

On the east side
And on the west side

\[\begin{align*}
&= 4.4 \text{ inches,} \\
&= 7.6
\end{align*} \]

and the signs of these quantities being negative, or showing that they are to be subtracted, we have for the absolute readings or dates of the two ruled lines, in terms of the strictest requirements of Mr. Casey's hypothesis—

On the east side
And on the west side

\[\begin{align*}
&= 2170.5 \text{ Pyramid inches,} \\
&= 2170.4
\end{align*} \]

Or exhibiting an agreement with the hypothesis to less than \(\frac{1}{880} \)th part of the whole; and one side agreeing with the other to within \(\frac{1}{880} \)th of the whole.
As remarked on p. 437, this is a much closer degree of approach than I had expected my measures were capable of; and I should have had some scruple in publishing the case, had not the whole of the lengthy data been so perfectly impossible to have been knowingly influenced at the time they were made, as well as first printed and published. While, if there be any large error in them, unknown to myself,—there is no more powerful mode in modern society of enabling and stimulating other more capable persons to bring out more accurate measures, than thus to publish all the minute particulars of these.

But assuming them now to be correct, until the contrary shall be proved,—the case may also be considered to bear some testimony towards that frequently disputed question as to whether an error of four years, or perhaps less, was committed by the Christian framers of the present mode of reckoning years from the date of the birth of Christ. A mode commenced only, many hundred years after the event alluded to, when historic particulars were few and uncertain; and leading, as a few persons maintain, to this, that the present year, called now by all the Christian world 1877 A.D., may be perhaps really 1880, or even 1881 A.D.

So far as the final numbers are concerned, the measures now recorded positively declare, that there was no such error in our Christian era amounting to a whole year. But I do not recommend any one to trust to them for so small a quantity, as I am not certain of the astronomical date concerned by a much larger figure (see p. 348)—and though I did, no doubt, years ago mentally conclude and publish 2170 B.C. to be most probably the year intended to be memorialised as the foundation year, by the architect of the Great Pyramid,—it was no rigid deduction of scientific exactitude: and I would rather recommend all inquirers into the particular subject of the Christian era date, to such works as that of the Rev. Mr. Galloway,
mentioned on p. 429, and to a study of the kind of documents there consulted.

There is, however, satisfaction, to my mind at least, in finding that even in this latest question of the true date of the birth of Christ, reckoned back from our own times, there is no sensible disagreement between the Great Pyramid as thus far, as well as quite independently, worked out, and the best divines and chronologists who have written on the point; wherefore we may now proceed to further developments of the Ancient Monument with assured spirits and trustful confidence in God, who rules over all.
PART V.
INEVITABLE CONCLUSIONS.
"HOW SAY YE UNTO PHARAOH, I—the son of the wise, the son of ancient kings?

"WHERE ARE THEY? WHERE ARE THY WISE MEN? AND LET THEM TELL THEE NOW, AND LET THEM KNOW WHAT THE LORD OF HOSTS HATH Purposed upon Egypt."—ISAIAH XIX. 11, 12.
CHAPTER XXI.

HIEROLOGISTS AND CHRONOLOGISTS.

No land has been so variously treated in chronology as the valley of Egypt; for even if the early, pre-classical mysticisms of so-called Divine kings during 36,500 years be exploded, there are equally, or still more, extraordinary modern theories. By some of the rationalistic writers on, and inventors of, history, for instance, in latter times, the earliest Egyptian kings have been pushed forward on paper far above all monumental dates, up to 10,000, 20,000, and even 300,000 years ago; with the accompanying statement, too, that even at that remote epoch there were no signs of any gradual emergence out of a primitive savage condition, but only of an already highly organized and well-governed community; which must therefore, on the human hypothesis, have commenced to run its civilised course an almost infinite length of time previously.

More recently still, not only have geologists claimed to have discovered proofs (in fragments of pottery dug up at a great depth in the alluvial deposit of the Nile) of an existence of first-rate human manufactures there during more than 13,000 consecutive years; but there are many very worthy men who still attach much importance to the computations made, astronomically, from certain configurations of the ecliptic and equator in the celebrated zodiacs of the Nilotic temples of Dendera, Esneh, and E' Dayr.
The first class of authors mentioned, in a great measure, either stands or falls with the two latter; and upon the proofs, more or less material, which they have been supposed to offer in confirmation of their theories.

Now, of the geological evidence, it has lately been argued by the acute Professor Balfour Stewart, of Owens College, Manchester, that a solid mass of any substance of notable size, has an effective tendency to work its way downwards through a bed of finely divided particles of both similar, and extraneous, matter; wherefore it is no positive proof, ages after a big bone, or piece of pottery, or flint hammer of comparatively large dimensions, was deposited on a certain soil, that it should be of the same date as the smaller particles of the stratum it is subsequently found in; for it may have worked its way downwards while these particles were still mobile.

This law its author illustrated in the case of celts immersed in finely divided silex powder; and if it is true at all, it must be especially applicable to the later Egyptian geology. For there, all the valley is not only composed of the so-called slime of the Nile (microscopically fine particles of granite, porphyry, limestone, and the other rocks washed and rolled over by the mighty river in its long course from the equator), but is visited every year by the inundation; which may be regarded as a grand tide of a secular order, producing amongst the slime's small component particles the same sort of lively quicksand effect, but in a superior degree, which is witnessed on the Goodwin Sands whenever an ordinary periodical, or only twelve-hour, tide rises there.

The geological evidence, then, for a very long chronology, under such circumstances, is specious in the extreme; while the supposed astronomical is considerably worse, having even had a decided refutation given to its very essence, years ago, by modern hieroglyphical readings, and in this way. The painted Egyptian zodiacs
already alluded to, no matter how grossly they caricatured
the positions of the stars, had been fondly considered, by
those who sought a high antiquity for Egypt, to have
been honourably constructed so as to represent something
in the heavens as seen in their own day; and if they were
found to have made a very badly drawn equator crossing
the ecliptic, equally murdered, 90° from its present posi­
tion, that was taken as a proof that the ceiling, or the walls
containing those things, must have been sculptured when
the equator did cross the ecliptic in that longitude; i.e.
6,500 years ago, according to the now known rate of the
precession of the equinoxes in good Newtonian astronomy.

But this, by itself, is plainly no scientific proof; for
any stonemason can at any time, if you give him an order
so to do, and a pattern to go by, carve you a zodiac with
the equator crossing the ecliptic in any constellation
whatever; and with vastly more scientific accuracy of
detail than any of those profane Egyptian temple pictures
have yet been suspected of.

There was never, therefore, any real stability in the
groundwork for those pseudo-astronomically computed
chronologies; while during the last thirty years the
whole of such false growth has been felled to the ground,
by the successive discoveries of the new hierologists,
Young, Champollion, and their followers; who have
proved incontestably, by interpreting the hieroglyphic
inscriptions mixed up with the pictures, that the zodiac
temples were the latest of all the Egyptian monuments;
that they dated only from the time of the later Ptolemys,
and even some of the Roman emperors; and were the
work of house-painters rather than astronomers. House­
painters, too, who in some Roman rooms repeated the
zodiac for ornament sake, three times round the ceiling in
so many concentric circles.

Had hieroglyphic study, therefore, done nothing else
than demolish the absurd antiquity given, on mistaken
grounds, to the astronomico-idolatrous Egyptian temples of late date, it would have deserved well of mankind; but it has done more than that, though unfortunately not quite so much, nor always quite so well, and by no means in the end so innocuously, as its ardent students have claimed for it.

Egyptian Hieroglyphics versus Greek Scholarship.

Commenced by the discovery of the Rosetta stone in 1802; vivified by Young and Champollion about 1820; and, since then, most ably developed by Rossellini, Gardner Wilkinson, Birch, Osburn, Lepsius, Poole, De Sauley, De Rougé, Brugsch, Mariette, Chabas, and many others,—hieroglyphical interpretation has rendered the nineteenth century vastly more intimately acquainted with the home life of early Egypt, than any century has been since the times of actual Apis and Osiris worshipping by the Egyptians themselves.

The delightful ability thus acquired, to read the writings of a people who departed all visible life nearly two thousand years ago, infused at the time extraordinary enthusiasm into all the new hieroglyphic professors; who congratulated each other, and ancient Egypt too, unceasingly, on the treasure-house of human wisdom which they were so successfully opening up.

"Dark," said they—

"Dark has been thy night,
Oh, Egypt! but the flame
Of new-born science gilds thine ancient name."

And how has *that* science gilded it at last? Not by having set forth any grand philosophy or estimable literature; for such things are so very far from existing in the hieroglyphics, that the late Sir George Cornwell Lewis, impatient of the Egyptological boastings, and judging of
what had been produced, from his favourite stand-point of Greek authors,—both condemned all the Mizraisms which had up to that time been interpreted; and concluded from their sample, that there was nothing worthy of being known remaining to be interpreted in all the rest of the hieroglyphics of the reputedly wise land of Egypt.

So if there is anything worth gilding at all, it is perhaps rather to be looked for in chronology, than literature; for the Egyptians were, of all men, the record keepers of the early world: not only perpetually erecting monuments, but inscribing them all over with their clearly-cut-out hieroglyphic inscriptions; while the dry climate of their country has preserved even to these times almost whatever they chose to inscribe, large or small.

Yet after years of study, our great Egyptologic and hieroglyphic scholars are agreed on nothing chronological, except something like the order of precedence, or comparative succession, of old Egyptian kings, and dynasties of kings;—for when they come to give the absolute dates of any of the reigns, they differ among themselves by 1,000, 2,000, 3,000 or more years with the utmost facility; just as each modern Egyptologist chooses for himself to consider the literary dynasties of Manetho to have been more or less successive, rather than coexistent, in different cities or provinces of ancient Egypt.

But while Manetho, though an Egyptian priest, was by no means contemporary with the most critical times he alludes to (having lived under the latter-day Macedonian subjugation of his country, and his work having only come down to us in fragmentary quotations in late monkish authors), certain good Greek scholars amongst ourselves (men who would have been thoroughly approved of by Sir G. C. Lewis), have, after studying the purely Alexandrian writers most deeply and extensively, and at those historic periods of Ptolemeian and Roman Emperor rule, when hieroglyphics must have been still intimately
understood and generally used in that land,—they have, I repeat, raised the standard of opposition against the modern *soi-disant* Egyptologists, or Champollionist interpreters of the Mizraite monumental inscriptions *after* their written character had become a dead language; and oppose both the order and absolute dates, as well as the names, for the early Egyptian kings and chief events of ancient Egyptian history, as usually given by those gentlemen.*

Of the whole merits of this grand contest, neither is this book the place, nor myself the author, wherein and by whom it should be discussed. But there are certain of the results, from either side, which cannot be passed by, in connection with our proper Great Pyramid subject.

Differential Chronology of the Egyptologists.

When the Egyptologists, for instance, confess, as they have done most distinctly even within the last year, that they know, amongst all their profane monuments of Old Egypt, not a single one capable of expressing, or giving, in its hieroglyphic inscription an *absolute date,*—while *we* have seen abundantly, from what is already set forth in this book (p. 345), that the Great Pyramid does assign its own absolute date most distinctly, by a method of its own entirely unconnected with hieroglyphics; and all the more distinctly the higher exact science it is examined by,—evidently an invaluable type of separation has been ascertained between the one and only Christianly sacred, ancient, monument in Egypt on one hand, and, on the other, the whole herd of that land's old profane monuments, the only research-ground which our modern Egyptologists seem to care for.

Again, while the leading principle, and very sheet-anchor, of the best Egyptological chronologists is, to seek out and confide in monuments; to consider nothing fixed in Egyptian history or fact, unless there is a monument for it to show, and that monument contemporary, or nearly so, with the facts to which it relates (please to note all these words),—they allow faithfully that they know of no monuments whatever at all earlier, or possibly earlier by more than a very few years, even if by so much, than the Great Pyramid.

Dr. Lepsius is very clear on this point. In his "Letters from Egypt," he wrote from his encampment amongst the tombs in the neighbourhood of the Great Pyramid in 1843:—"Nor have I yet found a single cartouche that can be safely assigned to a period previous to the fourth dynasty. The builders of the Great Pyramid (Kings of that reputed fourth dynasty) seem to assert their right to form the commencement of monumental history, even if it be clear that they were not the first builders and monumental writers." And again, he says, "The Pyramid of Cheops (fourth dynasty), to which the first link of our whole monumental history is fastened immovably, not only for Egyptian, but for universal history." And in his own, and his government's, great work of Illustrations, the "Denkmaler" of subsequent years, the learned Doctor of Berlin adheres to the above view, and opens that immense chronological series of exquisitely engraved folio plates of proved details with, the Great Pyramid.

Hence we may dismiss entirely, even on Egyptological grounds, all the 300,000 paper years of civilised life in Egypt before the Great Pyramid, so rashly asserted by a late rationalistic writer, because he has no "monuments" to show for that long period. But for such period as the Egyptologists do bring up monuments; viz. from the Great Pyramid downwards, almost without a break,—
there we can hardly but pay some attention to their schemes of the differential chronologic history of Egypt, and which they place variously thus:

Beginning of each Dynasty of Ancient Egypt, according to various Egyptological Scholars, guided partly by Manetho, whose own Book they have not; and partly by the Profane and Idolatrous Monuments, which they confess do not give absolute dates.

<table>
<thead>
<tr>
<th>Number of Dynasty, as assumed in modern times</th>
<th>Date according to the Average of</th>
<th>Assigned locality of the Regime.*</th>
<th>Chief surviving architecture of those dates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lesueur, Mariette, Reaum, &c.</td>
<td>Lepsius, Bunsen, Fergusson, &c.</td>
<td>Lane, Wilkinson, Rawlinson, &c.</td>
</tr>
<tr>
<td>1</td>
<td>B.C.</td>
<td>B.C.</td>
<td>B.C.</td>
</tr>
<tr>
<td>2</td>
<td>5735</td>
<td>3992</td>
<td>5781</td>
</tr>
<tr>
<td>3</td>
<td>5472</td>
<td>3338</td>
<td>5430</td>
</tr>
<tr>
<td>4</td>
<td>5000</td>
<td>3174</td>
<td>2440</td>
</tr>
<tr>
<td>5</td>
<td>4472</td>
<td>2884</td>
<td>2440</td>
</tr>
<tr>
<td>6</td>
<td>2744</td>
<td>2228</td>
<td>2228</td>
</tr>
<tr>
<td>7</td>
<td>2522</td>
<td>2207</td>
<td>2207</td>
</tr>
<tr>
<td>8</td>
<td>2294</td>
<td>1800</td>
<td>1800</td>
</tr>
<tr>
<td>9</td>
<td>1920</td>
<td>1620</td>
<td>1620</td>
</tr>
<tr>
<td>10</td>
<td>2200</td>
<td>1800</td>
<td>1800</td>
</tr>
<tr>
<td>11</td>
<td>2026</td>
<td>1614</td>
<td>1614</td>
</tr>
<tr>
<td>12</td>
<td>2026</td>
<td>1614</td>
<td>1614</td>
</tr>
<tr>
<td>13</td>
<td>1920</td>
<td>1574</td>
<td>1574</td>
</tr>
<tr>
<td>14</td>
<td>1920</td>
<td>1574</td>
<td>1574</td>
</tr>
<tr>
<td>15</td>
<td>1920</td>
<td>1574</td>
<td>1574</td>
</tr>
<tr>
<td>16</td>
<td>1920</td>
<td>1574</td>
<td>1574</td>
</tr>
<tr>
<td>17</td>
<td>1920</td>
<td>1574</td>
<td>1574</td>
</tr>
<tr>
<td>18</td>
<td>1920</td>
<td>1574</td>
<td>1574</td>
</tr>
<tr>
<td>19</td>
<td>1920</td>
<td>1574</td>
<td>1574</td>
</tr>
<tr>
<td>20</td>
<td>1920</td>
<td>1574</td>
<td>1574</td>
</tr>
</tbody>
</table>

* These names are chiefly derived from W. Osburn, and are varied from by other Egyptologists, who assign a rather problematic city, "This," as the locality of the 1st and 2nd dynasties, and place the 5th and 6th
Now when a scientific pyramidist, on the other hand, or from his point of view and his daily-increasing sources of material, mensurational, and positive information, confines himself to stating relatively that the Great Pyramid was erected in the times of the "fourth dynasty,"—he is evidently in accord with all the Egyptologists of every order and degree. But when he otherwise defines that the Great Pyramid was built at the absolute date of 2170 B.C., he is in chronological accord with one only of the whole of those Egyptologists, viz. William Osburn, for he alone makes the fourth dynasty to extend from 2228 to 2108 B.C., inclusive, therefore, of the crucial 2170.

On finding this solitary case of agreement, in the course of 1866, I immediately obtained a copy of that author's two-volume work, "Monumental History of Egypt," and was so well satisfied with the vigour and originality of his mind, his linguistic power,* and his conscientious labours, that I sought out every other work that he had written; and was eventually rewarded with a long correspondence with himself; and found him a man who, though he did not please his fellow-Egyptologists, yet seemed worthy to

dynasties on Elephantine, an island in Upper Egypt, near the Cataract, and where there are no Pyramid remains. On the other hand, the Ptolemaic Greek of Alexandria, Eratosthenes, who does not admit any arrangement of dynasties, but does admit most of the names of kings contained in Maneto's dynastic arrangement of them, entitles them all "of the Thebans."

* I have since then been informed by the Rev. John Harrison, D.D., that before taking up hieroglyphic studies, Mr. Osburn's forte had been that more difficult Greek of the Greek plays, the tragedies of Sophocles, Aeschylus, and Euripides. After a long and painful illness, which Mr. Osburn bore up against for years with exemplary Christian fortitude, he died in his native city of Leeds in 1875; and I have had many interesting particulars of his life and labours from one and another of his former Sunday-school scholars, with whom the seed of religious regeneration which he had sown in the years of his activity had fructified and become permanent, to the advantage of others as well as themselves.

Indeed by their aid, and that of some of the younger members of his family, I have some hopes of bringing out an attempted biographical sketch of his very characteristic career, together with a new edition of his exemplary and powerful little work, "The Religions of the World," which no one but an able Egyptologist, and at the same time a good classical scholar and an advanced Christian, could have written.
be regarded as the king of them all. Partly, too, by the light of his writings, reading Lepsius and Howard-Vyse over again, I am now enabled to give the following comparative, but still only approximate, view of the Great Pyramid as it stands among the other Pyramids of Egypt; and in probable date, as well as shape and position.

TABLE OF THE PYRAMIDS OF EGYPT,

ALL STANDING IN THE LIBYAN DESERT, BUT BORDERING CLOSE ON THE WESTERN SIDE OF THE NILE VALLEY.

The base-side lengths of all the principal ones are given in Chapter III. p. 49, and the heights of all the principal ones in Chapter IV. p. 68.

<table>
<thead>
<tr>
<th>Number</th>
<th>Name of Pyramid</th>
<th>Latitude North</th>
<th>Angle of rise of the faces to horizon, from Howard-Vyse</th>
<th>Rude approximation to the absolute Dates of Erection</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GREAT PYRAMID OF JEEZEH</td>
<td>29° 59'</td>
<td>51° 51.4'</td>
<td>2170 B.C.</td>
</tr>
<tr>
<td>2</td>
<td>Second Pyramid of do.</td>
<td>29° 59'</td>
<td>51° 20'</td>
<td>2180</td>
</tr>
<tr>
<td>3</td>
<td>Third Pyramid of do.</td>
<td>29° 59'</td>
<td>51° 0'</td>
<td>2180</td>
</tr>
<tr>
<td>4</td>
<td>Fourth Pyramid of do.</td>
<td>29° 59'</td>
<td>in steps</td>
<td>2150</td>
</tr>
<tr>
<td>5</td>
<td>Fifth Pyramid of do.</td>
<td>29° 59'</td>
<td>50° 10'</td>
<td>2100</td>
</tr>
<tr>
<td>6</td>
<td>Sixth Pyramid of do.</td>
<td>29° 59'</td>
<td>50° 10'</td>
<td>2100</td>
</tr>
<tr>
<td>7</td>
<td>Seventh Pyramid of do.</td>
<td>29° 59'</td>
<td>50° 10</td>
<td>2100</td>
</tr>
<tr>
<td>8</td>
<td>Eighth Pyramid of do.</td>
<td>29° 59'</td>
<td>50° 10</td>
<td>2100</td>
</tr>
<tr>
<td>9</td>
<td>Ninth Pyramid of do.</td>
<td>29° 59'</td>
<td>50° 10</td>
<td>2100</td>
</tr>
<tr>
<td>10</td>
<td>So-called Pyramid of Abu Roash, a ruined commencement only, and never an actual Pyramid either in shape, mathematics, or tombic use</td>
<td>30° 4'</td>
<td>no casing</td>
<td>x</td>
</tr>
<tr>
<td>11</td>
<td>Pyramid of Zowyat El Arrin</td>
<td>29° 57'</td>
<td>(50° 20')</td>
<td>2100</td>
</tr>
<tr>
<td>12</td>
<td>Pyramid of Reesah, with two successive slopes</td>
<td>29° 54'</td>
<td>51° 12.85</td>
<td>2100</td>
</tr>
<tr>
<td>13</td>
<td>Northern Pyramid of Abuassir</td>
<td>29° 56'</td>
<td>50° 12</td>
<td>2050</td>
</tr>
<tr>
<td>14</td>
<td>Middle Pyramid of do.</td>
<td>29° 54'</td>
<td>50° 12</td>
<td>2050</td>
</tr>
<tr>
<td>15</td>
<td>Great Pyramid of do.</td>
<td>29° 54'</td>
<td>50° 12</td>
<td>2050</td>
</tr>
<tr>
<td>16</td>
<td>Small Pyramid of do.</td>
<td>29° 54'</td>
<td>50° 12</td>
<td>2050</td>
</tr>
<tr>
<td>17</td>
<td>Pyramid 1 at Saqqara</td>
<td>29° 58'</td>
<td>rubbish only</td>
<td>2000</td>
</tr>
<tr>
<td>18</td>
<td>Pyramid 2 at do.</td>
<td>29° 58'</td>
<td>50° 12</td>
<td>2000</td>
</tr>
<tr>
<td>19</td>
<td>Great Pyramid, or Pyramid 3, at Saqqara</td>
<td>29° 58'</td>
<td>(50° 30')</td>
<td>3050</td>
</tr>
<tr>
<td>20</td>
<td>Pyramid 4 at Saqqara</td>
<td>29° 58'</td>
<td>ruined</td>
<td>3050</td>
</tr>
<tr>
<td>21</td>
<td>Pyramid 5 at do.</td>
<td>29° 58'</td>
<td>ruined</td>
<td>3050</td>
</tr>
<tr>
<td>22</td>
<td>Pyramid 6 at do.</td>
<td>29° 58'</td>
<td>ruined</td>
<td>3050</td>
</tr>
<tr>
<td>23</td>
<td>Pyramid 7 at do.</td>
<td>29° 58'</td>
<td>ruined</td>
<td>3050</td>
</tr>
<tr>
<td>24</td>
<td>Pyramid 8 at do.</td>
<td>29° 58'</td>
<td>ruined</td>
<td>3050</td>
</tr>
<tr>
<td>25</td>
<td>Pyramid 9 at do.</td>
<td>29° 58'</td>
<td>ruined</td>
<td>3050</td>
</tr>
<tr>
<td>26</td>
<td>Pyramid base, or mere pyramidal platform, of Mustabat el Pharaoon</td>
<td>29° 53'</td>
<td>in steps</td>
<td>1950</td>
</tr>
</tbody>
</table>
TABLE OF THE PYRAMIDS OF EGYPT—(continued).

<table>
<thead>
<tr>
<th>Number</th>
<th>Name of Pyramid</th>
<th>Latitude North</th>
<th>Angle of rise of the faces to horizon, from Howard-Vyse</th>
<th>Date of Erection</th>
</tr>
</thead>
<tbody>
<tr>
<td>27</td>
<td>Northern Brick Pyramid of Dahshoor</td>
<td>29° 49'</td>
<td>91° 20' 26"</td>
<td>1960</td>
</tr>
<tr>
<td>28</td>
<td>Northern Stone Pyramid of Dahshoor</td>
<td>29° 49'</td>
<td>83° 38' 11"</td>
<td>1860</td>
</tr>
<tr>
<td>29</td>
<td>Southern Stone Pyramid of Dahshoor, with two successive slopes</td>
<td>29° 48'</td>
<td>(84° 14' 45")</td>
<td>1860</td>
</tr>
<tr>
<td>30</td>
<td>The Small Pyramid of Dahshoor</td>
<td>29° 43'</td>
<td>89° 50' 41"</td>
<td>1860</td>
</tr>
<tr>
<td>31</td>
<td>The Southern Brick Pyramid of Dahshoor</td>
<td>29° 43'</td>
<td>57° 20' 2"</td>
<td>1860</td>
</tr>
<tr>
<td>32</td>
<td>Northern Pyramid of Licht</td>
<td>29° 33'</td>
<td>ruinous</td>
<td>1860</td>
</tr>
<tr>
<td>33</td>
<td>Southern Pyramid of Light</td>
<td>29° 37'</td>
<td>ruinous</td>
<td>1860</td>
</tr>
<tr>
<td>34</td>
<td>The False Pyramid, or that of Meydoon, flat topped and in steps; well built as mere masonry, but not as a monumentalisation of angle, the casing-stones being inclined to the horizon</td>
<td>29° 27'</td>
<td>74° 10' 0"</td>
<td>1860</td>
</tr>
<tr>
<td>35</td>
<td>Pyramid of Dahshoon</td>
<td>29° 17'</td>
<td>ruinous</td>
<td>1860</td>
</tr>
<tr>
<td>36</td>
<td>Pyramid of Howara</td>
<td>29° 19'</td>
<td>ruinous</td>
<td>1860</td>
</tr>
<tr>
<td>37</td>
<td>Pyramid 1 of Biahmoo, with two successive slopes</td>
<td>29° 26'</td>
<td>(68° 30' 0")</td>
<td>1860</td>
</tr>
<tr>
<td>38</td>
<td>Pyramid 2 of Biahmoo, with two successive slopes</td>
<td>29° 26'</td>
<td>(68° 30' 0")</td>
<td>1860</td>
</tr>
</tbody>
</table>

(See Plate IV. for the Jesseh Pyramid; and see Plate V. for all the others.)

Of the Earliest Pyramid.

But the above table requires to be compared with some special Egyptological authorities, so that the reader may be assured of having all the truest things that the best of them can say on their side against it.

Let us refer, therefore, to Dr. Lepsius's folio book entitled "Königsbuch der Alten Aegypter," Berlin, 1858. Like all Dr. Lepsius's works, it is sterling in its way; and both the drawing and engraving of the seventy-three large plates it contains are inimitable for their excellence in reproducing the most exact fac-similes of the very clever and minute drawing of the ancient Egyptians, as condensed...
in the hieroglyphic "Cartouches," or names of their kings in a circumscribing oval. Each of the seventy-three plates contains five rows of cartouches, and in each row there may be five to ten of these peculiar signatures; and how carefully executed may be judged of by Plate XVI., which is a reduced copy by photo-lithography of one of Dr. Lepsius's.

In the course of that plate will be seen several instances of the symbol of a Pyramid, viz. a triangle with a base to it; and our first object should be to ascertain by the testimony pure and simple of the greatest Egyptologist of our age, when that symbol first appears in Egyptian history.

The first four plates of the book contain the cartouches of the dynasties of the so-called Gods, before men began to reign in Egypt.

The next fifteen plates contain the cartouches of the first sixteen dynasties of human kings, beginning with Menes of Dynasty I., and representing the chief part of those dynasties whose chronology by various authorities is attempted to be shown in the table on our page 456. They are, moreover, generally known amongst Egyptologists as being the dynasties of "the Old Empire" of Egypt, and their architectural remains are found chiefly near Memphis and Jeezeh.

Then follow thirty-one plates, with the cartouches of kings of dynasties seventeen to thirty-one, or of "the New Empire;" and extending from those who reigned in Abydos, and then at Thebes, down to the destruction of the native Egyptian royal line, and the accession of Persian kings after the conquest of the country by Cambyses.

Next appear ten plates, after the Grecian conquest of the country by Alexander the Great, of the cartouches of the line of the Ptolemys, Macedonian kings in Egypt.

After these come seven plates of Roman Emperors' names, coined by Egyptian priests into very complicated
hieroglyphics as duly flattering the then non-resident lords of the country.

Finally, there are six plates of cartouches of various collateral branches of kings, not very ancient, and having their abode chiefly at Meroe and Barkal in Ethiopia.

When these cartouches have been copied from stone monuments erected by the very kings concerned, they are trustworthy; but not a few of them are derived from compilations of Scribes of long-subsequent times, especially from that ragged fragment of Egyptian writing, the notorious "Turin papyrus," as it is called now, merely from the city which at present possesses it. But where the cartouches of the dynasties of the gods were obtained from, is mysterious; for, in the true Egyptian monumental manner, some of these signatures should have been found on their tombs, but there are no tombs of the gods who lived before men known in Egypt, any more than monuments erected by them during their lives. And after carefully looking through all the four plates containing their alleged signatures and titles, I can confidently say that in so far no one, not even the greatest modern Egyptologist, ever accused one of those gods of erecting a Pyramid in Egypt,—for no such symbol appears there for them.

We are thus handed on to the fifteen plates of cartouches of human kings of the Old Empire, in our search for the Pyramid symbol; and the first of these plates is represented on our Plate XVI. Wherefore the reader can assist us in testifying that no Pyramid symbol appears in the first dynasty beginning with Menes; nor in the second dynasty, nor in the third dynasty.

The symbol is first seen in the fourth dynasty under the name of Xufu, or Cheops, of Memphis, the almost universally allowed king, in whose time the Great Pyramid was built; and whose cartouche has been found scribbled by the workmen on some of the interior blocks of its constructive masonry.
After Cheops the Pyramid symbol was also used by

<table>
<thead>
<tr>
<th>Name</th>
<th>Dynasty</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shafra</td>
<td>4th</td>
<td>Memphis</td>
</tr>
<tr>
<td>Uesurkef</td>
<td>6th</td>
<td></td>
</tr>
<tr>
<td>Tatkara</td>
<td>6th</td>
<td></td>
</tr>
<tr>
<td>Ati</td>
<td>6th</td>
<td>Elephantine</td>
</tr>
<tr>
<td>Pepi</td>
<td>6th</td>
<td></td>
</tr>
<tr>
<td>Auxues Mia</td>
<td>6th</td>
<td></td>
</tr>
<tr>
<td>Mereura</td>
<td>6th</td>
<td></td>
</tr>
<tr>
<td>Nofrekara</td>
<td>6th</td>
<td></td>
</tr>
<tr>
<td>Teta</td>
<td>6th</td>
<td></td>
</tr>
<tr>
<td>Asesa</td>
<td>7th</td>
<td>Memphis</td>
</tr>
<tr>
<td>Amunehmat</td>
<td>12th</td>
<td>Thebes</td>
</tr>
</tbody>
</table>

But after these very early kings, no others of the Old Empire used the Pyramid symbol. Neither is it once found in all the thirty-one plates of the New Empire, nor amongst the ten plates of the Ptolemys, nor the seven plates of the Roman Emperors, nor among the six concluding plates up to the latest of the Ethiopian kings.

This review, then, sufficiently establishes our position, so far as Dr. Lepsius is concerned, that the Great Pyramid commenced the fashion of Pyramid building in Egypt; but that that fashion did not last very long.

But still more precise particulars about the Pyramid builders are given by another great Egyptologist of our time, Dr. Brugsch by name in Germany, Brugsch Bey by title in Egypt, where he now resides; and whence the following particulars were kindly sent me by Dr. Grant, of Cairo, in 1874, as copied from the then latest edition of Brugsch Bey’s “History of Ancient Egypt:”—

“The Pyramids were built chiefly in the district of Memphis, and the name of that city was expressed by a hieroglyphic group, including the figure of a Pyramid, sounding Men-nofer, and meaning ‘the good station.’

“Senofru, the Ameliorator, was the last king of the third dynasty. It is supposed he caused the Pyramid of Meidoun to be built. At any rate, it is said a Pyramid was built under this king, and was named ‘the Pyramid of sunrise,’ or ‘of the fête,’ or ‘of the crown.’ This
is all that is mentioned about Pyramids before the time of Cheops.

"Xufu, Cheops, first king of the fourth dynasty, succeeded Senofru, the last king of the third dynasty, and built a Pyramid called Xut, 'the splendid' (assumed by Baron Bunsen to have been the second Pyramid of Jeezeh, but by all the rest of the world to be the Pyramid now called the Great Pyramid).

"Xafra, Cephren, built a Pyramid distinguished by the name Ur, 'the Great' (assumed by Baron Bunsen to have been the Pyramid now called 'the Great Pyramid,' though all other authorities consider it to be the one now called 'the Second Pyramid of Jeezeh').

"Men-kau-ra, Mencheres, or Mycerinus: his Pyramid (the third of the Jeezeh Pyramids) is designated in the hieroglyphics, Hir, 'the Superior.'

"Sepseskaf, who succeeded Mencheres. His Pyramid has the monumental name Gebeh, 'the Refreshing.'

"Us-kaf, the Ousercheres of Manetho, king of the fifth dynasty. His Pyramid was distinguished by the name Ab-setu, 'the pure of places,' or 'the purest place.'

"Sahu-ra, the successor of Us-kaf. His Pyramid was discovered to the north of Abousir. It is called Xa-ba, 'sunrise of the soul.'

"Nofer-ar-ka-ra. His Pyramid is called Ba, 'the soul.'

"Ra-n-user, one of the successors of the above. His Pyramid is known by the name Men-setu, 'the most stable place.'

"Men-kau-hor. His Pyramid is called Nuter-setu, 'the holiest place.'

"His successor Assa built a Pyramid called Nofer, 'beautiful.'

"The last king of the fifth dynasty, Unas, built a Pyramid called Nofer-setu, 'the most beautiful place,' or 'the best place.'
"Teta, the first king of the sixth dynasty, and the first to be styled Sa-ra, 'son of the sun,' in the interior of his cartouche. His Pyramid was named Tat-setu, 'the most stable of places.'

"King Ati built a Pyramid called Bai-u, 'souls.'

"King Pepi built a Pyramid called Men-nofer, 'the good station.'

"King Mer-en-ra built a Pyramid called Xa-nofer, 'the good rising.'

"King Nofer-ka-ra built a Pyramid called Men-iaux, 'station of life.'

"King Mentu-hotep built a Pyramid called Xu-setu, 'the most splendid place.'

All these were of the sixth dynasty.

"In the Hyksos dynasty, supposed to be the twelfth, King Amen-em-hat built a Pyramid called Ka-nofer, 'the high and beautiful.'"

This is the last about Pyramids obligingly furnished to me out of Brugsch Bey’s last edition of his "History of Egypt;" and though especially sent by a very candid friend with the accompanying remark, "I fear these notes do not tally with your views as to the first appearance of Pyramids in the land of Egypt," yet I have replied to him they do tally admirably; for I have always maintained that the now-called Great Pyramid was built under the reign of Cheops, or Xufu, and was, if not the very first, almost the first, in date of all the Pyramids of Egypt. And, further, touching the one, and only one, Pyramid builder, Senofru, said to have lived before Cheops, I have requested information as to what is the nature of the proof, and where it has been found, as to the said Senofru of the third dynasty having built the Pyramid of Meidoun, or any other now existing and capable of being examined, whether by mensuration or in any other manner
Rude Stone Monuments.

But though there are thus proved, proved moreover even by the opposite party, to be exceedingly few relics to be gathered out of all profane Egypt, either to dispute the antiquity of the Great Pyramid, or to improve the reasoning powers of our minds, by studying their symbolizations of number, weight, and measure,—for such remains have not been shown to have any;—another class of Arachæologists than those of Egyptology, has arisen up of late, whose members roundly declare that certain rude stone monuments of Europe are much more ancient, and scientific too, than the Great Pyramid of Jeezeh.

Being anxious to get up whatever has been written on that side, it was with surpassing delight that, after reading many other older works, I recently came across Mr. James Fergusson’s lately published fourth volume of his grand “History of Architecture;” which volume is specially entitled, and devoted to, precisely such “Rude Stone Monuments;” and is abundantly descriptive of rough Cyclopean stone circles, such as Stonehenge, Avebury, Stanton-Drew, &c., and of all the occasional rows, or groups, of stones which, however rough, have evidently been brought to their places and set up by the hand of man, and are now known as dolmens, kistvaens, menhirs, cromlechs, tri-lithons, &c. &c., both in Europe, Asia, and Africa.

Mr. Fergusson, indeed, differs widely from many of the Arachæologists I have mentioned, as to the great age of most of these erections; for after brushing away the dust of supposed prehistoric, and with some persons even geologic, ages of antiquity; and after disestablishing the Druids from temples they were only theoretically promoted to, long after they had disappeared from the surface of the earth under the sword of the Romans—he successfully shows that the dates of all the chief examples of these
rough and rude stone, or stone and earth, structures, are certainly confined within periods of from 300 to 900 A.D. In so far, then, the able architectural writer of those pages had no occasion in that book to allude to the Great Pyramid of the vastly earlier date of 2170 B.C.; I therefore opened my eyes very widely indeed on finding in one of the notes, not only that the Great Pyramid was alluded to, but that the mention was made specially for the purpose of ridiculing the whole of the modern scientific and sacred theory with regard to it!

However, objections to a new theory by a really able man, usually have something worthy of attention in them; and when they are printed and published to the world by such a house as that of John Murray, of Albemarle Street, London, they must be attended to. As, moreover, I have throughout the present work endeavoured to give the reader a full and fair account of both sides of the question, I trust to be excused for going into the present first-class attack upon it rather carefully.

Under pretended and specially professed cover, then, of following, and faithfully carrying out the method of the modern Great Pyramid scientific theorists, Mr. Fergusson demurely speaks of the size of his rude stone circles being, as a rule, either 100 feet, or 100 mètres, in diameter, circles.

Whatever may be said for the feet, of course Mr. Fergusson understands, and no one better, that the old circle builders would not have had any modern French mètre standard of linear measure among them: but he asserts that such a standard is what legitimately comes out, as the regular rule, when the present-day scientific Great Pyramid methods of theorizing are applied to good measures of the size of his mediæval stone circles; and that he thereby not only obtains in a most dazzling manner a short and easy method of classing his favourite relics, but also of reducing to absurdity whatever has recently been
written for the sacred and scientific character of the Great Pyramid, which he is not friendly to at all. And yet he is so mortally afraid of his established character being injured, forsooth, in London society, by any one possibly supposing that he has admitted the truth of the smallest part of the said sacred and scientific theory of the Great Pyramid, merely because he has touched with a pitchfork the reputed evil thing—that although he has "Piazzi Smyth his theories" in his index,—yet the subject-matter so alluded to does not appear in the large and readable letterpress of Mr. Fergusson's book at all, but only in the almost invisible small print of a note; and even then with the following bashful apology for so old and celebrated a stager before the public as himself:—

"I am almost afraid to allude to it, even in a note, lest any one should accuse me of founding any theory upon it, like Piazzi Smyth's British inches in the Pyramids, but it is a curious coincidence that nearly all the British circles are set out in two dimensions. The smaller class are 100 feet, the larger are 100 mètres, in diameter. They are all more than 100 yards. The latter measure (mètres) is, at all events, certainly accidental, so far as we at present know, but as a nomenclature and memoria technica, the employment of the term may be useful, provided it is clearly understood that no theory is based upon it:" and there then follow throughout Mr. Fergusson's book his frequent allusions to the stone circles, as being certainly, accurately, and perhaps more than Great-Pyramidally, either 100 feet, or 100 mètre, circles.

Now, though in the above extract I could not but be shocked at the learned architectural D.C.L.'s triple blunder of "Piazzi Smyth's discovery of British inches in the Pyramids,"—in place of "John Taylor's discovery of earth-commensurable inches having been founded upon in the unique, primeval, and anti-Egyptian design of the one Great Pyramid;" still I thought myself bound to accept,
until the contrary had been proved, that the successful writer Mr. Fergusson had really alighted on a very curious numerical coincidence, having the degree of closeness alone recognised in modern Great Pyramid mensurations and theorizing, amongst his rude stone circles. In which case, all honour to Mr. Fergusson, no matter what the consequences of his discovery might ultimately prove to be.

With the best desire, therefore, to appreciate the truth, if any, of James Fergusson's self-announced remarkable find, I have noted one after another, as they came up, the following quoted measures of the stone circles, out of his own book:—

<table>
<thead>
<tr>
<th>Page</th>
<th>Measure Description</th>
<th>Diameter (in feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>51</td>
<td>Chambered tumulus, stated, in diameter</td>
<td>24</td>
</tr>
<tr>
<td>55</td>
<td>" sacred " stone circle, by scale, in diameter</td>
<td>80</td>
</tr>
<tr>
<td>62</td>
<td>Great stone circle, stated, in diameter</td>
<td>1200</td>
</tr>
<tr>
<td>62</td>
<td>Smaller circle, stated, in diameter</td>
<td>360</td>
</tr>
<tr>
<td>62</td>
<td>Still smaller, stated, in diameter</td>
<td>325</td>
</tr>
<tr>
<td>63</td>
<td>Two interior circles, each, by scale, in diameter</td>
<td>150</td>
</tr>
<tr>
<td>70</td>
<td>Stone circle, stated, in diameter</td>
<td>138 to 155</td>
</tr>
<tr>
<td>76</td>
<td>Do. do.</td>
<td>46 to 51</td>
</tr>
<tr>
<td>78</td>
<td>Silbury tumulus, stated, base diameter</td>
<td>552</td>
</tr>
<tr>
<td>78</td>
<td>Do. do. top diameter</td>
<td>102</td>
</tr>
<tr>
<td>85</td>
<td>Mound, stated, diameter</td>
<td>198</td>
</tr>
<tr>
<td>124</td>
<td>Stone circle, stated, diameter</td>
<td>60</td>
</tr>
<tr>
<td>124</td>
<td>Do. do.</td>
<td>50</td>
</tr>
<tr>
<td>127</td>
<td>Do. do.</td>
<td>330</td>
</tr>
<tr>
<td>139</td>
<td>Circular platform, stated, diameter</td>
<td>167</td>
</tr>
<tr>
<td>139</td>
<td>Rampart, stated, circumference π</td>
<td>251</td>
</tr>
<tr>
<td>140</td>
<td>Stone circle, by scale, diameter</td>
<td>140</td>
</tr>
<tr>
<td>141</td>
<td>Tumulus, stated, diameter</td>
<td>70 to 80</td>
</tr>
<tr>
<td>146</td>
<td>Oval ring, stated, diameter</td>
<td>166 to 243</td>
</tr>
<tr>
<td>149</td>
<td>Stone circle, stated, diameter</td>
<td>346 to 378</td>
</tr>
<tr>
<td>149</td>
<td>Do. do.</td>
<td>129</td>
</tr>
<tr>
<td>149</td>
<td>Do. do.</td>
<td>96</td>
</tr>
<tr>
<td>158</td>
<td>Cist circle, by scale, diameter</td>
<td>56</td>
</tr>
<tr>
<td>160</td>
<td>Stone circle</td>
<td>160</td>
</tr>
<tr>
<td>150</td>
<td>Do. do.</td>
<td>102</td>
</tr>
<tr>
<td>161</td>
<td>Do. do.</td>
<td>60</td>
</tr>
<tr>
<td>161</td>
<td>Do. do.</td>
<td>63</td>
</tr>
<tr>
<td>161</td>
<td>Do. do.</td>
<td>67</td>
</tr>
<tr>
<td>161</td>
<td>Do. do.</td>
<td>50</td>
</tr>
<tr>
<td>161</td>
<td>Do. do.</td>
<td>40</td>
</tr>
<tr>
<td>182</td>
<td>Do. do.</td>
<td>120</td>
</tr>
<tr>
<td>182</td>
<td>Do. do.</td>
<td>80</td>
</tr>
<tr>
<td>182</td>
<td>Do. do.</td>
<td>60</td>
</tr>
<tr>
<td>182</td>
<td>Do. do.</td>
<td>40</td>
</tr>
<tr>
<td>194</td>
<td>Oval mound do.</td>
<td>430 to 550</td>
</tr>
</tbody>
</table>
Now when we perceive here, that out of more than fifty of Mr. Fergusson's own examples, only one of them measures 100 feet, and not one of them 100 mètres (equal to 328.09 feet), and that the remainder vary from 24 to 1,200 feet in diameter,—it is pretty plain that instead of upsetting everything that has been recently made out for the Great Pyramid, he has only furnished to the world a positive proof that he, James Fergusson, Esquire, must have a positive deficiency in some part of his head touching numbers, though a large ambition in his heart to immortalise himself for the same. And as to his nevertheless accompanying dread of being possibly suspected in the London clubs of having become a despicable Great Pyramid scientific theorist, and all through means of his marvellous, anti-Pyramid, 100-mètre circle discovery,—so that he conceals, at the same time that he publishes, such supposed wonder by consigning it to the small print only of a note at the foot of a page, and covered over, even there, with a little more abuse of Pyramid research:—alas! it may rather remind other men of a certain historic courtier in Asia Minor, who, while bursting with desire to tell of his then very recent and too wonderful discovery, yet was so timid about it withal, that he must needs go far away from the haunts of men, dig a hole by the bank of a secluded river, breathe into it the awful

<table>
<thead>
<tr>
<th>Page</th>
<th>Type</th>
<th>Diameter (in feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>194</td>
<td>curved mound</td>
<td>140</td>
</tr>
<tr>
<td>194</td>
<td>circular mound</td>
<td>110</td>
</tr>
<tr>
<td>194</td>
<td>do.</td>
<td>75</td>
</tr>
<tr>
<td>202</td>
<td>stone circle, stated</td>
<td>333</td>
</tr>
<tr>
<td>214</td>
<td>do.</td>
<td>116</td>
</tr>
<tr>
<td>228</td>
<td>circular, rampart</td>
<td>580</td>
</tr>
<tr>
<td>241</td>
<td>stone circle</td>
<td>340</td>
</tr>
<tr>
<td>241</td>
<td>do.</td>
<td>104</td>
</tr>
<tr>
<td>259</td>
<td>do.</td>
<td>60 to 100</td>
</tr>
<tr>
<td>259</td>
<td>do.</td>
<td>42</td>
</tr>
<tr>
<td>262</td>
<td>do.</td>
<td>60</td>
</tr>
<tr>
<td>264</td>
<td>do.</td>
<td>46</td>
</tr>
<tr>
<td>266</td>
<td>tumulus</td>
<td>70</td>
</tr>
<tr>
<td>266</td>
<td>stone circle</td>
<td>160</td>
</tr>
<tr>
<td>266</td>
<td>tumulus</td>
<td>50</td>
</tr>
<tr>
<td>266</td>
<td>stone circle</td>
<td>80</td>
</tr>
</tbody>
</table>
words, that "a certain some one had the ears of an ass," and then hastily fill in the earth again.

That primeval Asiatic thought he had accomplished his object, and finished it off so cleverly, both to the easing of his own soul, and the perfect safety of his oppressive secret; but, as the story goes, when the sedges grew up afterwards over the place and the winds of heaven rustled their leaves, they would repeat those words deposited at their roots; so that all the world came at last to know them, and also to conclude that, whoever did, or did not, possess the ears, there was no doubt now who was afflicted with the brains of the animal alluded to: a laborious creature; yet, as I am informed, occasionally rather vicious, and an unclean feeder as well.

But, alas! there is worse to come.

The Architectural Facts of the Great Pyramid.

In his p. 31, speaking of the Great Pyramid, Mr. Fergusson truly allows it to be "the most perfect and gigantic specimen of masonry that the world has yet seen;" and that, according to mere human methods of development and all rationalistic theories of progression, almost infinite myriads of years must have intervened between the first rude tumuli, or stone sepulchres erected, or which he believes were, or should have been, erected in Egypt, and the building of such a Pyramid.

But in that case there ought to be vastly more stone monuments in Egypt, representing the work of men before the day of the Great Pyramid, than after it, especially as in the dry Egyptian climate, we are told again and again that "nothing decays;" and then comes the stunning announcement, both from Mr. Fergusson, Dr. Lepsius, and every good Egyptologist, that however multitudinous may be the Egyptian monuments after the Great Pyramid, there are no monuments at all in and throughout Egypt.
older than the Great Pyramid. The Great Pyramid, therefore, according to all the known facts of the longest-known country on the face of the earth, led off the art of stone architecture in Egypt in a sudden uprise to excellency, or a totally different manner from all human experience of what always is, and must be, when man works by his own powers alone, unassisted by direct Divine inspiration.

Of this most astounding, and humanly unexplainable, abyss of nothing whatever of architectural remains before, but an abundant train after, the majestic Great Pyramid, —Mr. Fergusson says in another foot-note, “It is so curious as almost to justify Piazzi Smyth’s wonderful theories on the subject.”

And what does Mr. Fergusson therefore do? Does he consent in any degree to the cogency of these, as well as all the other, facts of his own professional science, and his own still more peculiar methods of philosophizing upon them in order to elicit from the monuments the mental history of man; and confess, that so far as they go, they do lead to nothing less than a Divine intervention in the history of men having here occurred in the primeval times of the human race; to the end that this, even still unequalled, glory of building, the Great Pyramid, appeared suddenly on the stage of history; as when the Lord says through Isaiah (xlviii. 3), “I did them suddenly, and they came to pass?”

Nothing of the kind. The unhappy; though in many respects finely gifted, man merely wraps his mantle of prejudice more tightly than ever around him; and after trying to thrust down the throats of the public some of the same unction which he has been applying to the conscience-pricks of his own soul, exclaims, in the forced words of all-gulping endeavour to shame the admitted facts—“But there is no reason whatever to suppose that the progress of art in Egypt differed essentially from that elsewhere. The previous examples are lost, and that seems all.”
That all, indeed! Why, that is admitting everything; and implies the destruction and total disappearance, without leaving a wrack behind in the most preservative of all climates, of more old architecture than is now standing on the surface of the whole globe: and the admission may further worthily include what Mr. Fergusson nowhere allows (though the Great Pyramid scholars do),viz. the truth of the Noachic Deluge, the dispersion of mankind according to the Bible, and the original innate wickedness of the human heart.

The Great Sphinx.

And now it may be remarked by some anxious readers, that though I have said so much about the Great Pyramid, and something touching almost every other Pyramid in Egypt also,—I have said nothing about the Sphinx.

That was just what the reviewers wrote against Professor Greaves after the publication of his "Pyramido-graphia," 230 years ago. Though, indeed, one of his querists presently answers himself by supposing that the Professor must have found at the place, that the said Sphinx had in reality no connection with the Great Pyramid.

Exceedingly right, too, was the critic in that supposition; for not only has the oval of a king, 1,000 years and several dynasties later than the Great Pyramid, been found unexceptionably upon the Sphinx*—but that monster, an idol in itself, with symptoms typifying the lowest mental organization, positively reeks with anti-Great Pyramid idolatry throughout its substance; for when the fragments or component masses of its colossal stone beard were discovered in the sand excavations of 1817, it was

perceived that all the internally joining surfaces of the blocks had been figured full of the idol gods of the most profane and Cainite Egypt.

Strange, therefore, that Dean Stanley's ecclesiastic eye should have seen in so soul-repulsive a creature, "with," as he himself further and more objectively describes, "its vast projecting wig, its great ears, the red colour still visible on its cheeks, and the immense projection of the whole lower part of its face,"—an appropriate guardian to the white-robed, Sethite, and eminently anti-Cainite, Great Pyramid, whose pure and witnessing surface of blameless stone eschews every thought of idolatry and sin.

The Recent Discovery about the Sphinx.

But the reign of the Great Sphinx over the souls of some men is not over yet.

Long since I had remarked that there is no agreement possible between the Great Sphinx and the Great Pyramid. Those who admire the one, cannot appreciate the other.

As a rule, it is Frenchmen and Roman Catholics (though there are happily brilliant exceptions amongst them), who get up the most outrageous enthusiasm for the Sphinx; and it was given to one of these lately, in the person of the eminent Mariette Bey, to set the whole world agog (for a time) with a supposed monumental proof that the Sphinx, instead of belonging, as hitherto so generally supposed, to the 11th or 15th dynasty, was far older than the Great Pyramid in the 4th dynasty; and was, in fact, so ancient, that it had become an object of dilapidated, but revered, antiquity in the times of King Cheops himself, who immortalised his name, in his very primeval day, by repairing it.

The latest description of this case, by Mariette Bey himself, is at p. 211 of the fourth edition of his "Catalogue of the Museum of Egyptian Antiquities at Boulak."
No. 581 is there spoken of as "a fragmentary stone, which may be supposed to have formed once part of a wall of a certain building, or temple, some problematical ruins only of which have been found near one of the small Pyramids on the east side of the Great Pyramid." The stone is abundantly inscribed with little hieroglyphics; "in good preservation, but of mediocre style," euphuistically puts in Mariette Bey,—though "more like scratches than anything else," writes my plain-speaking friend, Dr. Grant, of Cairo.

This circumstance of bad, or of no, style, or of an idle modern scribble in place of a serious piece of deep and well-performed ancient sculpture which, wherever found, carries great weight with it in monumental research,—is not represented in the version of the inscription given with honour (and with well-cut hieroglyphic types from other models) by Dr. Birch in the last volume of Bunsen’s "Egypt’s Place in History." For the Doctor prints good, thick-set, London-designed, hieroglyphics; looks only to one possible interpretation of them, and adopts that with positivism. No wonder either, in some respects; for a great day it must have been for the idolatry of old Egypt and its latter-day, not worshippers, oh no! only sympathetic admirers, when Mariette Bey first published his discovery of this astonishing inscription. There is good news in it for almost every one of the Mizraite false gods; so that all profanely devout readers may learn with thrilling interest that the images of the hawk of Horus and the ibis of Thoth, in that problematical temple, of which this single stone may be supposed to have once formed a part, were of wood gilt; the boat of the "three times beautiful Isis" was in gilt wood with incrustations of jewels; that the principal statue of Isis was in gold and silver; the statue of Nephthys in bronze gilt, and &c. &c., as to many other ordinary idols; but surpassing words of admiration and adoration were added touching the Great
Sphinx of Horem-Kou, the biggest idol of all, and declared to be situated just to the south of the "Temple of Isis, the Ruler of the Great Pyramid."

On showing this version of the inscription to Mr. Osburn, he instantly pronounced it to be an anachronism; the writing had, he said, nothing to do contemporaneously with Cheops, or the 4th dynasty either; it was merely a rigmarole by certain revivifiers of the ancient Egyptian idolatry, with additions, under the late 26th dynasty.

But William Osburn was a firm believer in the Divine inspiration of the Bible, and the rebellious human origin of the Egyptian gods; that they had even been invented, as very refuges of lies, in slavish fear of, but determined Cainite opposition to, the God of Heaven, whose supernatural acts in the Deluge and Dispersion were then recent and overwhelming to the human mind, rendering atheism in that day perfectly impossible to even the least reasonable being. Wherefore the most far-gone of the modern Egyptological scholars utterly refused to attend to his Osburn's, condemnation of Mariette's wonderful stone; and preferred to go on trusting themselves entirely to its reputed statements for the implied profane nature of "the Great Pyramid, ruled over by Madame Isis," though no symptoms of either that lady or any other profanity had been found there; and though the ancient Great Pyramid is still an existency in the world, vocal with knowledge and wisdom, while the far later invention of the feminine Isis has long since faded away from the Egyptian mind like a summer cloud or the morning dew.

At last, however, one of their own number has informed upon his fellow-Egyptologists; and he is the best and ablest man amongst them too; viz. the German Brugsch Bey; equally on the spot with Mariette Bey, and said to be "a more learned hieroglyphic scholar." For thus writes the trusty Dr. Grant from Cairo, date June 3rd, 1873:—"I have been learning much from Brugsch Bey
lately, and he tells me that Mariette's Sphinx-temple stone bears a lie on the face of it—that the style of sculpture is not very ancient, and that the whole inscription is simply a legend that has been scratched upon it at a late date, and that it cannot be quoted as an authority on any of the points mentioned in it."

So now that Sphinx, with its body pierced through and through with long iron rods by Colonel Howard-Vyse, and found to be merely solid rock; and its nose knocked off by a mediaeval Mohammedan dervish, to prevent its both ensnaring his countrymen by idolatrous beauty, and leading them to inquire too curiously (as Moses warned the Israelites against their attempting to do, on entering Canaan),—"now how did the people of this land worship their gods?" because the next thing would be, "for so will we do likewise;"—and with its actual bulk a mere molecule at the very base of the hill, of whose summit the Great Pyramid is the pure and unexceptionable crown—that wretched Sphinx, I repeat, need not be referred to again by any Christian man, woman, or child, looking for instruction to the Rock of Ages alone.
CHAPTER XXII.

THE SHEPHERD KINGS.

In the Third Pyramid of Jeezeh—admired by the sadly Egyptological Baron Bunsen, on account of its expensive red-granite casing, and because its hieroglyphic name amongst the old Egyptian idolaters was HIR, "the Superior," far above the Great Pyramid and all its intellectual excellencies—Colonel Howard-Vyse found, not only the genuine sepulchral sarcophagus, together with parts of the inscribed coffin-board, but—a portion of a mummy as well.

In that case, of what, or of whom, was such fragment, the mummy?

"Of King Mencheres," instantly insisted every Egyptologist, "for he, Men-kau-ra, Mencheres, or Mycerinus, it was who built the third Pyramid some 60 years after the Great one had been erected." Whereupon the remains were transmitted with honour to the British Museum; and the learned Baron, in his "Egypt's Place in History," has an eloquent eulogium on the "pious" king whose ancient remains, if removed at last out of their old mausoleum, are now vastly safer in the distant isle of the Queen-ruled empire whose free institutions continually preserve her liberty and renew her prosperity, than ever they were before in the central land and his own strong Pyramid.

But here William Osburn (whom Bunsen never liked) steps in with the wholesome reminder, that none of the
mummies really of the Old Empire have come down to our age; their bodies, fragrant for awhile with spices and myrrh, sooner or later returned, dust to dust; and a little of such matter, dark in colour, at the bottom of sarcophagi, is all that has yet been discovered in any of the tombs of the earliest period. It was reserved, says he, to the over-clever Egyptians of the New Empire, when Thebes rose above Memphis, to discover the too efficacious method of embalming with natron—a method which has enabled the bodies of that later period to last down to our times; and has thereby put it into the power of fanatic Mohammedans to treat visibly and palpably Pharaonic corpses with every contumely; so that male and female, old and young, rich and poor, are dragged out of all their decent cerements, to be exposed in these latter days on the dunghill, to be utterly cursed as "Kaffirs," infidels, and dogs, or finally broken up for fuel.

Wherefore the parts of a particular body anomalously found in pretty tough preservation, without either spices or natron, but dried only, by Colonel Vyse in the Third Pyramid, could not have belonged to either King Mencheres or any of his subjects; or to any genuine Egyptian so early as the fourth dynasty. But presently this further discovery was made, that the cloth in which the remains were wrapped up, and loosely, rather than bandaged, was not composed of the proverbial linen of ancient Egypt, but of sheep's wool,—a textile material which was a religious abomination to all Pharaonic Egyptians.

Then wrote certain scholars, quickly framing up a theory to suit the occasion, "Both King Mencheres and all the other Jeezeh Pyramid builders must have been, not Egyptians, but of that ancient and most mysterious class of invaders of, or immigrants into, ancient Egypt, the Hyksos, or Shepherd Kings."

How little is positively known of them, may appear from one modern author, who writes,—
"When investigating the early history of the world, the Hyksos cross our path like a mighty shadow; advancing from native seats to which it baffled the geography of antiquity to assign a position, covering for a season the shores of the Mediterranean and the banks of the Nile with the terror of their arms and the renown of their conquests, and at length vanishing with a mystery equal to that of their first appearance."

While the learned Dr. Hincks writes, "Later investigations have rather increased than removed my difficulties; and, as a matter of argument, it would be indifferent to me to sustain, that the Hyksos once occupied Lower Egypt; or that they were never there at all."

A sad example this of primeval history as prepared for the world by purely literary men; but Dr. Hincks was perhaps more of an Assyrian, than an Egyptian, scholar; and the better Egyptologists, especially those who have travelled and studied the larger Egyptian monuments in situ, have no doubt whatever about a period of Hyksos' rule in Egypt just before the time of the Israelites' captivity, and perhaps including a part of it. They consider, indeed, that there is still monumentally visible the most decided separation between the Old and New Empires of Ancient Egypt, caused altogether by the domination of those whom they call the "Shepherds;" for they drop the aggrandising word of "Kings," as needless, when talking of those who, if there at all, ruled on the banks of the Nile with a rod of iron through at least two successive dynasties, viz. the 15th and 16th; and caused an almost total blank or perversion for that period in the architectural history, as well as much modification in the religion, of all the Lower and Middle country.

Of the precise nature of that change and the origin of the party bringing it about, William Osburn has some special ideas, which, with more space at command, we might do well to inquire into: though now, as the limits
of this book are drawing to a close, and as he agrees with nearly all the other Egyptologists as to what dynasties such party occupied, viz. the 15th, 16th, and perhaps part of the 17th,—we may rest assured that all men of those dynasties, whether they were native or foreign Shepherds, lived far too late in the world’s history (viz. 300 to 400 years) to have had any hand in building the Jeezeh Pyramids under the much earlier fourth dynasty.

Hence the Shepherds whom Colonel Vyse alludes to (on the strength of the woollen-wrapped body from the Third Pyramid), if ever really existing, must have been, in order to have helped to build the Pyramids, of a period belonging to the said very early fourth dynasty; and were therefore earlier than, and totally different, in time and fact, from, all the later Shepherds so well known to Egyptologists.

That these later, or 15th, 16th, and 17th dynasty, Shepherds did not build the Jeezeh, or indeed any of the Egyptian Pyramids, does not by itself overthrow the whole theory, or possibility of there having been a much earlier, and quite distinct, Shepherd invasion, or temporary rule of Hyksos in Lower Egypt, and perhaps even during the 4th, or chief Pyramid-building, dynasty; for pastoral tribes existed in the East from the remotest times, and were much endued with tendencies to western emigration. But whether they really did enter Egypt in force during the 4th dynasty, must be settled on direct evidence of its own. Such evidence, indeed, the worthy Colonel thought he had obtained; though now we may see clearly that his reasoning was founded too much on the piece of flannel, and too little on the whole of the grand masonried facts of the Great Pyramid and their purity from all idolatry, no matter whether of Egyptians or any other of the then existing peoples of the world; whereupon he soon loses himself in illogical conclusions; arguing in a preconceived circle, thus:—
"It has been assumed (in my, Howard-Vyse's, opinion satisfactorily) by Bryant, that these mighty Shepherds (his supposed Pyramid builders in the 4th dynasty) were the descendants of Ham, expelled, on account of apostasy and rebellion, from Babel, from Egypt, and from Palestine; and who afterwards, under the name of Cyclopes, Pelasgi, Phœnices, &c., were pursued by Divine vengeance, and successively driven from every settled habitation—from Greece, from Tyre, and from Carthage, even to the distant regions of America, where traces of their buildings, and, it has been supposed, of their costume, as represented in Egyptian sculpture, have been discovered. These tribes seem formerly to have been living instances of Divine retribution, as the dispersed Jews are at present. They appear to have been at last entirely destroyed; but their wanderings and misfortunes have been recorded by the ever-living genius of the two greatest poets in the Greek and Latin languages; and the Pyramids remain, enduring yet silent monuments of the matchless grandeur of this extraordinary people, of the certainty of Divine justice, and of the truth of Revelation."

But while it is perfectly impossible that such sinful men could have been the genuine and original authors of all the pure and holy features we have found in the Great Pyramid,—or that Hamitic Cainites would have found any difficulty in amalgamating with the Mizraite, and also Hamitic Egyptians,—it is most satisfactory to know that the mere piece of woollen cloth found in the Third Pyramid can be explained in a much easier manner than by going up in the teeth of ancient masonry, and other physical facts, to the primeval antiquity of the world; or thus:—"The remains found by Colonel Vyse were those of a mediæval Arab, who, having died at Caliph Al Mamoun's breaking into the Third Pyramid, was straightway wrapped up in his own burnouse, and thrust down the entrance-passage for his burial, when the Mohammedan workmen
came away and closed the place up, as it turned out, for 1,000 years. And if the poor man's bones are so well preserved as to have allowed of their safe transport to London, it is on account of the short time they have been sepultured, compared with anything belonging to the real fourth dynasty and the building of its Pyramids."

Of Primeval Shemite Shepherds.

That simple explanation, therefore, completely settles the value of the mistaken Egyptological lumber on the shelves at the British Museum; but leaves us still with an historical question on our hands, as to whether there were, after all, any Hyksos, or Shepherd Kings, from the East, descendants, too, of Shem, rather than Ham (for of Hamites there were always enough and to spare, keepers of their own sheep too, in the persons of the Egyptians themselves), in Egypt during the fourth dynasty?

Some strangers from the eastern direction were, indeed, continually filtering into Lower Egypt through the Isthmus of Suez, the natural channel of immigration in all ages from Asia, and the path by which the Egyptians themselves had originally come. But it is our more particular business now to ascertain, if possible, whether during the period of that particular fourth dynasty, say from 2300 to 2100 B.C. (or an age, distinctly and certainly, long previous to the calling of Abraham), there were any remarkable Eastern men in position of lordly rule or trusted power, or any notoriety in the Egyptian land. Were there, for instance, any Shemites ever there, before Abraham and before Joseph? and if so, let us inquire whether they either had, in the general estimation of all men, anything to do with the building of the Great Pyramid; or were likely to have been able to furnish any part of its design, as manifested by modern science? And especially had they any direct interest in preserving that
Pyramid's religiously pure character, in the midst of an age and a nation given up to the worst forms of idolatry?

What, then, does history say to the point?

History is scanty enough, every one will allow, for all times before Abraham; and though something may be occasionally made out for even those dates in such a land as Egypt, it is to be gained, even there, only by a conflict with difficulties. There is actually a dispute, for instance, between the Egyptologists on one side, and Alexandrian classics on the other, whether there was ever a fourth dynasty at all; or whether the Kings, whose names one party puts into that early dynasty of Memphian locality, did not live at Thebes after other Kings of the reputed 18th dynasty. We must, therefore, when everything is disputed or disputable, interrogate either party very closely.

Egyptologic Details of Early Kings.

To begin with the Egyptologists: the literary foundations for what they assert are confined to Manetho (270 B.C.), or to what has come down to us of his own writings, in remnants of authors 300 or 400 years later; and whose words may be conveniently examined in the valuable, though terse (and terse because there was nothing else quotable for very early times) volume of "Fragments," by Isaac Preston Cory, of Caius College, Cambridge (1832 A.D.).

There then, most undoubtedly, a fourth dynasty is mentioned; but it begins with a puzzling statement; for while the third dynasty is simply said to be composed of so many Memphite kings, and the fifth dynasty of so many Elephantine kings, this fourth dynasty is stated to be composed of "eight Memphite kings of a different race."

This is a curious statement, and I do not know what it
precisely means; but the list proceeds as follows for the kings concerned:—

(1) Soris reigned 29 years.
(2) Suphis reigned 63 years. He built the largest Pyramid; which Herodotus says was constructed by Cheops. He was arrogant towards the gods, and wrote the sacred book; which is regarded by the Egyptians as a work of great importance.
(3) Suphis II. reigned 66 years.
(4) Mencheres 63 years.
(5) Rhatuses 25 years.
(6) Bicheres 22 years.
(7) Sebercheres 7 years.
(8) Thampthis 9 years.
Altogether 284 years.

This literary foundation the Egyptologists further contend that they can confirm in all its main particulars from the monuments, by finding, even in the Great Pyramid itself, evidently alluded to by Manetho, rude original quarry-marks with two royal names, which they interpret Shofo and Noumshofo, and declare to be the two Suphises mentioned above; while they find the further royal name of Mencheres in the Third Pyramid, notoriously a later construction than both the Great and Second Pyramids; which Second Pyramid is elsewhere attributed to Suphis II., as the Great one is here to Suphis I.

But the rest of the sentence attached to the name of the first Suphis is a difficulty which the Egyptologists cannot altogether master. They can understand, for instance, easily enough, that he either built the Great Pyramid, or reigned while it was being built; but what was his "arrogance towards the gods?" and what were the contents of "his sacred book?"

Of all these things the Egyptologists know nothing from contemporary monuments; although they can adduce abundant proof therefrom, that Mencheres of the Third Pyramid was an out-and-out idolater of the most confirmed Egyptian type. This was the "piety" which Baron Bunsen praised; while Osburn, though he very
seriously condemned rather than praised, so far allowed what the other Egyptologists founded upon, that he shows, at much length, King Mencheres to have been, not indeed the original inventor and theotechnist of animal and other gods for his countrymen,—but the greatest codifier in all history, and organizer into systems of those idolatrous things. He, Mencheres, was the establisher, too, of a state priesthood for those things’ continual service; and was an immense extender of the mythological arrangements into new and mysterious ramifications; the very man, in fact, who put Mizraite idolatry into that ensnaring form and artistical condition with the woman Isis, the man Osiris, the child Horus, the monster Typhon, Nephthys, and all the rest of his human-mind inventions, in addition to the older Apis and Mnevis, bulls, and the Mendesian goat, that it became the grand national and lasting system of his country,—monopolizing the souls of all Egyptians for two thousand years, and even then dying hard; besides making the Pharaohs the anti-Israel’s-God-contending kings they ever after proved to be.

Mencheres was, in point of fact, in and for the land of the Nile, just what the too eloquent author of “Juventus Mundi,” with such longing admiration amounting almost to ill-concealed envy, describes Homer, in a later age, to have been for the Greeks in similar “theotechny;” or in making up, out of his own mind, with some assistance from old traditions, such an enticing set of gods and goddesses, demigods and nymphs of all degrees, that his countrymen took to them at once with enthusiasm, and their descendants have not even yet freed themselves from some of their trammels. Wherefore, worldly success in that theotechnic line, ethereal art, or elevated occupation, as it is according to him, but much more probably an abomination before God,—the late English Prime Minister (unhappily not seeing it in that light) declares to be a far
more noble, more satisfying pinnacle for human ambition, than any amount of excellence or proficiency whatever, either in poetry or prose, civil administration, or even military glory.

That the misleadingly called “Juventus-Mundi” author really thought all this, and spent too much of his time in paving the way for an expectation of presently launching forth in theotechnics for his own age,—may be gathered from his pamphlets of 1876 and ’7, wherein he appears only just to have discovered, when he is no longer Prime Minister of the nation, what was equally true and well known to others, and had even been the subject of indignant expressions of opinion amongst Christian Missionaries in Egypt, during long-previous, weary years of his tenure of office,—viz. that Turks are Turks, and cannot be trusted of themselves to act up to the treaties that were made with them after the Crimean war, to respect the Christian religion and their Christian fellow-subjects. Had that wonderfully word-rich genius attended to these things when it was his proper business to attend to them, what an amount of good he might have done! But those precious years, which can never be recalled, having been given up to trying to indoctrinate this nation with a love of Homer’s theotechny, and with a belief of its immense antiquity (when it only begins about 1400 B.C., or near the date when our list of the dynasties of Egypt, on p. 456, leaves off),* not only has the Turk been left too long to do as he pleases in Egypt and Abyssinia, as well as Bulgaria,—but the

* William Osburn had already taught with ability, in his “Religions of the World,” that the classic Greek Mythology belonged to the mediæval degradation, not the primeval purity and moral power of the Divine establishment, of man upon earth in the beginning. When in the last few and painful years of his life, his friends applied to the “Juventus Mundi” Prime Minister author for a small pension out of the £1,200 provided by the nation every year for exactly such a purpose,—it grieves one to tell how positively the boon was refused, and Death allowed to do its worst upon poor William Osburn in poverty and paralysis: a Lazarus, then lying unheeded at the rich man’s door; but now, we trust, in Abraham’s bosom.
really positive and important discoveries of our age with regard to the reality of the personages of Homer's poems, have fallen to other hands; viz. to those of Dr. and Mrs. Schlieman, in their recent heroic excavations at Mycenae.*

Their noble discoveries, though of things altogether too late in chronology to have any direct bearing on our own Great Pyramid subject, are useful in exhibiting another link, in these latter times, of the still-continued existence of the general chain which binds the end to the beginning; and by proving what actual human history has been, will fully justify the ways of God to man, through all the ages, before the closing scene arrives. Let us, therefore, steadily pursue our earlier, though, perhaps, drier and narrower, path of inquiry into primeval Eastern as well as Egyptian life.

Of King Mencheres, of the Third Pyramid of Jeezeh, we know, as already indicated, far too much for his credit among any real believers in the Divine origin of the Christian religion, and the preparations Divinely made for it "from the beginning of the world." But of Shofo the hieroglyphists can pick up but little, if anything, positively of that debasing kind of information. The worship, indeed, of bulls and goats had been already set up in Egypt during the previous (the third) dynasty, so that he found it in force on succeeding to the throne; and the practice perhaps went on during his reign also, until at least such time as he is reported, amongst the idolaters and the sons of the idolaters, on one hand to have become "arrogant towards the gods;" and on the other to have shamefully closed their temples and stopped their public worship, as we shall presently see detailed on turning to the Classic authorities.

* "Oh! why was not our William Ewart there, Digging up Kings instead of felling trees?"

London paper of the week.
Classic Names for Early Egyptian Kings.

Amongst all these authors, indeed—i.e. men who either were Greeks or followed the Greeks, and did not know Egyptian—whether with Herodotus in 445 b.c., Eratosthenes 236 b.c., Diodorus Siculus 60 b.c., and Strabo 0 b.c., there is no fourth dynasty at all: nor, for that matter, any allusion to any dynasty or arrangement by dynasties whatever. While the chronological order of the kings by name, is at one point altogether dislocated from its sequence in the Manethoan dynasties; the kings’ names of the very early fourth dynasty of the Egyptologists, being, with the classics, placed after those which are found in the comparatively late nineteenth dynasty of the same Egyptologists.

Sir Gardner Wilkinson* explains this terrible anachronism for Herodotus (and if for him, for all his copying fellow-countrymen and successors at the same time), by suggesting that he (Herodotus) was furnished by the Egyptian priests with two separate lists of kings’ names; and as they read out to him (through his interpreter, he not understanding Egyptian) the later one first (and he put them all down in faith as he heard them in one long row), he, of course, got the old Memphite sovereigns coming in after the more modern Thebans. The priests began with the Theban kings of the 19th dynasty, because they were fresh in their memory; and they remembered well the glorious times of their priestly order under those reigns; whereof, too, they told the innocent Halicarnassian a variety of pleasant, gossiping tales; and only when that stock was ended, did they touch, very unwillingly, on the early Memphite kings, chiefly of the fourth dynasty, and described the hard times the priests had had under them.

* See note to p. 199 of Rawlinson’s “Herodotus,” vol. ii.
Some such explanation, too, of the dislocated chronology of the Greek-related history of old Egypt, must apparently be the true one; for the whole philosophy of architecture, as elaborated on ten thousand examples by James Fergusson, architect, makes it as impossible historically and mechanically for the Pyramids of Lower Egypt to have followed the palace-temples and sculpture of Upper Egypt, —as historically, politically, and socially it is utterly impossible, that after Thebes had once risen to supreme power in Egypt, the rulers there would have allowed by far the chief work of their age to be executed on the borders of their kingdom, in the "provinces," or near the then ancient, decaying, and conquered city of Memphis. As well might we expect the British Parliament to give its largest grants for the year to Edinburgh, instead of London; and men will most assuredly have to wait until the whole river of history passes by, and runs itself absolutely dry, before we see such a phenomenon as that; although, too, Scotland was never fairly conquered; and deserves far better of London, than ever Memphis did of Thebes.

Setting aside, then, agreeably with Sir Gardner Wilkinson and all the Egyptologists, this one large fault or mistaken order of a group of the Egyptian kings in Greek and classic authors,—from Herodotus in 445 B.C. to the Rev. Mr. Galloway and Mr. Samuel Sharpe, in 1869 A.D., —as simply and altogether a book-mistake of theirs, we shall find in the smaller details, subsequently to the dislocation, much agreement. As, for instance, in the names of the three successive kings of the three chief and successive Pyramids of Jeezeh; which kings' names are always given in their proper, or both monumental, hieroglyphic, and Manethoan sequence to each other; though the scholars have certainly agreed to accept a remarkable variety of names as meaning the same word or man; as thus:
Names of the Builders of the Three Largest Pyramids of Jezreel, According to Various Authorities

<table>
<thead>
<tr>
<th>Authorities</th>
<th>Builder of the Great Pyramid</th>
<th>Builder of the Second Pyramid</th>
<th>Builder of the Third Pyramid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eratosthenes.</td>
<td>Tuphis I.</td>
<td>Suphis II.</td>
<td>Mencheres.</td>
</tr>
<tr>
<td>Diodorus Siculus.</td>
<td>Comastes, or Chematistes.</td>
<td>Saophis II.</td>
<td>Meacheres.</td>
</tr>
</tbody>
</table>

The Lives of the Kings.

But what, after all, is there in a name? It is the character of each individual king, no matter of how many names, which we require; and especially if there be any further indications thereby accessible which may betoken whether that royal personage could have both designed, and built, the Great Pyramid.

There the conversational style of Herodotus (the oldest existing author in the world, it is said, next to Moses), dipping deep into the feelings of men, will serve us better than the bald rigidity of hieroglyphic inscriptions; though, as Herodotus gathered up everything without sifting it, and as between the purposed falsities of what the idolatrous Egyptian priests often related to him, in a language which he did not understand, and his cunning interpreter did not faithfully translate to him,—it is little more than the involuntary evidence, under cross-examination, that can be trusted. Here, however, as a beginning, are his own simple statements:
(124) "Cheops," according to the Egyptian priests, "on ascending the throne, plunged into all manner of wickedness. He closed the temples, and forbade the Egyptians to offer sacrifice, compelling them instead to labour one and all in his service; viz. in building the Great Pyramid."

(128) "Cheops reigned fifty years; and was succeeded by his brother Chephren, who imitated the conduct of his predecessor, built a pyramid—but smaller than his brother's—and reigned fifty-six years. Thus, during 106 years the temples were shut and never opened."

(129) "After Chephren, Mycerinus, son of Cheops, ascended the throne. He reopened the temples, and allowed the people to resume the practice of sacrifice. He, too, left a pyramid, but much inferior in size to his father's. It is built, for half of its height, of the stone of Ethiopia;" i.e. expensive red granite.

(136) "After Mycerinus, Asychis ascended the throne. He built the eastern gateway of the Temple of Vulcan (Phtha); and being desirous of eclipsing all his predecessors on the throne, left, as a monument of his reign, a pyramid of brick."

Now here we have four successive kings, each of whom erected a Pyramid; and the last of them entered into the work no less enthusiastically than the first. Therefore it could not have been Pyramid-building in itself, or as known to, and understood by, the natives, which had the discriminating effect of causing the last two kings to be approved, and the first two to be hated, by all Egyptians, and to that terrible and intense degree described by successive classic authors. This difference of estimation must have risen from some striking and radical difference of proceeding in either pair of kings; and such an opposite manner is religiously found in this circumstance, that the first two kings closed the temples, and stopped the worship of the bulls, cats, goats, beetles, and other detestable Egyptian gods; while the last two kings reopened those temples, enlarged them, expensively beautified them, and re-established the soul-degrading theotechnic inventions of Egypt in greater splendour than ever: though, too, their statues, of gold, and silver, and wood incrusted with pearls, and granite, and basalt, and porphyry, and sandstone, and limestone, were the very idols which the Lord declares in prophecy for the latter day "He will destroy, and cause their images to cease out of Noph."

* Ch. cxxiv. p. 199, of Rawlinson's Translation of "Herodotus," vol. ii. See also a very salutary note, No. 9, on p. 205, by Sir G. Wilkinson.
The Right Man at last.

But there is more than this to be gathered from the classic records; for there comes up amongst them something suggestive, to the extent of a ray of positive light upon that very question which, even to the intelligent, though Pagan, Diodorus Siculus, was so much more important than who were the kings who ordered, viz. who were the architects who designed or built, the Pyramids. For Herodotus further states:—

"(128) The Egyptians so detest the memory of those (the first two) kings (Cheops and Chephren), that they do not much like even to mention their names. Hence, they commonly call the Pyramids (the Great and the Second) after Philition (or Philitis), a shepherd who at that time fed his flocks about the place."

Seldom has a more important piece of truth, than this touching Philitis, been issued in a few words. Sir G. Wilkinson, in his note to that passage,* allows at once the Hyksosian, or Shepherd-royal, character of a stranger who could be so distinguished in connection with the greatest of the monuments of Egypt; and is only anxious to guard his readers as to the particular personage alluded to, having really lived in the early fourth dynasty, and not having been one of those later, better-known, but totally different individuals who figured as the Shepherd Kings in the 15th, 16th, and 17th dynasties. While Mr. Rawlinson, in another note on the same page, seems equally ready to allow,—not only that Philitis was a Shepherd-Prince from Palestine, and perhaps of Philistine descent,—but so powerful and domineering, that it may be traditions of his oppressions in that earlier age, which mixed up afterwards in the minds of later Egyptians with the evils inflicted on their country by the subsequent shepherds of

* P. 207, vol. ii. of Rawlinson's "Herodotus."
the better-known dynasties; and lent so much of actual fear to their religious hate of "Shepherd" times and the Hyksos name.

If this theory of Mr. Rawlinson's be correct, we may learn something further of the Great Pyramid's fourth dynasty, Shepherd-Prince, Philitis—by attending to certain of the things which Manetho has written of the subsequent Shepherds; and especially by eliminating therefrom certain features which cannot by any possibility be true of those men such as they were in that later day. For thus wrote the Sebennyte priest: *

"We had formerly a king whose name was Timeus. In his time it came to pass, I know not how, that God was displeased with us; and there came up from the East, in a strange manner, men of an ignoble race, who had the confidence to invade our country, and easily subdued it by their power without a battle."

This, it will be observed, is a very peculiar phrase; and lends much colour to the suggestion that Philitis was enabled to exert a certain amount of mental control over King Shofo and his Egyptian people, not by the vulgar method of military conquest, but by some supernatural influence in connection with the service of the one and only true God.

"All this invading nation," Manetho goes on to say, "was styled Hycsos, that is, Shepherd Kings; for the first syllable, Hyc, in the sacred dialect denotes a king; and Sos signifies a shepherd, but this only according to the vulgar tongue; and of these is compounded the term Hycsos: some say they were Arabians."

Yet if they were Arabians, why did they not return to Arabia, when they afterwards, "to the number of not less than 240,000, quitted Egypt by capitulation, with all their families and effects?" And went—where to? "To Judæa,

and built there," says Manetho, "a city of sufficient size to contain this multitude of men, and named it Jerusalem."

Now here is surely a most important tale, if anything written in books by ancient authors is worthy of modern attention. For, making all due allowance for some of the references, and much of the expressed hate and abuse being due to the more modern and largely native Egyptian Shepherds of the 15th to the 17th dynasties (and who, according to W. Osburn, were in the end chiefly conquered and oppressed within the bounds of Lower Egypt by invasions of Thebans and fanatic Ethiopians), we have as much as testifies to the earlier and truer Shepherd-Prince Philitis, after having long mentally and physically controlled King Shofo during the very time that the Great Pyramid was building,—to that Prince, or King, Philitis, I say, then leaving the country with a high hand, or by special agreement, with all his people and flocks,—proceeding to Judæa, and building there a city which he named Jerusalem; and which must have at once taken a high standing among the primeval cities of the earth, if he made it large enough to contain not less than 240,000 persons.

Of some of the Earlier Mentions of Melchizedek.

Now the man who executed such a work as that just described, after assisting at the foundation of the Great Pyramid in 2170 B.C., must have been a contemporary nearly of, but rather older than, the Patriarch Abraham, according to the best Biblical chronology. Or he must have been, as to age, standing, country, and even title, very nearly such a one as that grandly mysterious royal character to whom even Abraham offered the tenth of the

* Cory's "Fragmanta," p. 173."
† According to William Osburn in his "Monumental History."
spoil, viz. Melchizedek; further called King of Salem, which some consider to have been Jeru-salem.

The Bible does not, indeed, directly mention Melchizedek’s ever having been sent into Egypt on any special mission; the grandest of missions, if then to erect, or procure the erection of, a prophetical monument which was only to be understood in the latter days of the world; but was destined then, and then only, to prove the Inspiration origin and Messianic character of its design to both religious and irreligious alike. But the Bible does not describe anything of the earlier acts of Melchizedek; though it has allusions elsewhere which may possibly indicate a grand occasion in the life of one, concerning whom so very little is said, though by whom so much must have been done, in the course of his long, Heaven-approved, and gloriously terminating career.

In Deuteronomy, chap. ii., for instance, there appears something possibly of this kind; when Moses (in 1542 B.C., or rather later), encouraging the Israelites to be of good heart in their march, under Divine favour, out of Egypt into Palestine,—mentions two other and long-preceding occasions on which God had shown similar favour to other peoples, and they were established successfully in consequence.

First “the children of Esau;” and afterwards, “the Caphtorims, which came forth out of Caphtor.” Or, as alluded to again, long after the times of the Exodus (in Amos ix. 7), “Have not I (the Lord) brought up Israel out of Egypt, and the Philistines from Caphtor?”

This Caphtor alluded to on both occasions, is generally considered to mean Egypt, the Pyramid region, too, of Lower Egypt; and although, in the one instance, the people are spoken of as Caphtorim, that may imply, not necessarily native Egyptians, but men who had been sojourning in their country for a long season; even as the testimony of Herodotus infers that Philitis (a name looked
on by some as implying a Philistian descent or country), with his flocks and herdsmen (appropriately then called Philistines in Caphtor), had been doing during all the thirty years occupied in the preparations for, and then building up of, the Great Pyramid.

In short, the Biblical evidence touching this mighty and most unique monument of sacred and prophetic purpose, is deserving of more intimate and peculiar study than we have yet bestowed upon it.

Who was Melchizedek?

So far was written in 1874; but within three short years the general subject of the Great Pyramid has so much advanced,—in some not easily understandable manner too, for it has certainly not been altogether from fresh explorations at the place, nor by means of any one writer alone,—that something more must now be added to this chapter, to enable it to represent the existing state of the chief question concerned in it, viz. who was Melchizedek?

In the very name of Philitis, the late John Taylor had seen not so much a reference to anything Philistian, or of the Philistines, as of the Philitia, or love-feasts of the early Christians; and those, too, as connected with our Saviour's institution of the Bread and Wine, in remembrance of Himself: but of Himself, not merely as incarnated and living a human life faultlessly in Jerusalem 1,850 years ago, but as "the Word who was in the beginning with God, and was God. The Word by whom all things were made, and without whom was not anything made that was made; and in whom was life, and the life was the light of men; and the light shineth in darkness; and the darkness comprehended it not" (John i. 1—5).

Thus far, and thus far only, John Taylor, in 1859; for he did not make any attempt to connect Philitis of the
Great Pyramid tradition, with Melchizedek of the Bible. To that comparison, the author of these pages was subsequently led by the more material and merely literary parts of his investigations in 1873; and he, too, then carried it no further than what has been already given; viz. the possible identity of the man Philitis, of one branch of antiquity, with the man, king though he might be, and most holy, as both a man and a king, of the Bible history, Melchizedek.

But that was not enough to satisfy others, who were presently struck with the Biblical fact, that it was Melchizedek who primarily brought forth "the bread and wine," and administered it with blessing from the most high God to Abraham; in fact, that Melchizedek was the originator of our Lord's Supper, or of the very Philitis recalled to John Taylor's mind by the name of the Shepherd-Prince, who presided in Egypt at the building of the Great Pyramid, viz. Philitis. Who, then, was Melchizedek?

When my respected friend, Commander B. W. Tracey, R.N., published, in 1876, his prayerfully thought-out little book entitled "The Pillar of Witness: a Scriptural View of the Great Pyramid," and announced therein his full, firm, and Christian belief, that Melchizedek was Christ,—I fear he gave rather a rude shock to some of the best and most religious minds of those who had, up to that time, still followed up the Great Pyramid subject. But was he, therefore, wrong?

By no means necessarily so: for had not some of Christ's own disciples refused to walk any longer even with Him, when He told them something which, though absolutely true, was yet too difficult for them at that time to understand? How many degrees, also, of falling off from the Great Pyramid research have not the last 13 years witnessed? Firstly, there were those who were excessively interested in it as a piece of Egyptological antiquity, but who walked off as soon as they heard that branches of science were
discovered therein which were contrary to both all Egypto-
logical experience and Mizraite idolatrous precedent as well!
Secondly, there were those who were mightily charmed with the scientific finds in the building, though strange to Egypt,—until from small beginnings of simple geo-
metry, the said discoveries began to rise to the solution of physical problems which nothing but the matured science, and surpassing wealth and power, of existing European nations can humanly accomplish in the present day; and therefore, in a long-past age, only a supernatural communication could have told any of mankind,—so then that class of Pyramid students or patrons disappeared.
Thirdly, there were some who would take in all scientific discoveries whatever, as having been truly, really, and intentionally monumentalised in the Great Pyramid,—but were offended the moment they heard of any religious ideas being detected there, and even found to be testified to as indicating which is the one true, and only supernat-
aturally established religion. But fourthly, though some men were still left who were delighted with every addi-
tional confirmation which the Great Pyramid seemed to give of Bible doctrine, so far as already mastered by them-
selves,—yet they also were grievously scandalised, when the primeval monument brought before them something further; and which, though they could not altogether say that it was not in the Bible or according to the Bible, —yet had not been previously acknowledged by any humanly founded Church Courts, or introduced by them into any Ecclesiastical Creeds; and were therefore generally passed on one side with respectful neglect, upon those men reading the Inspired Volume itself. Now exactly such a question turns out to be the personality of Melchizedek; and it refuses to be neglected any longer.
"But you must not and cannot say," wrote most ear-
estly an excellent Archdeacon, "that Melchizedek was Christ, i.e. the son of God; because Hebrews vii. clearly
states of Melchizedek that he was 'made like unto the Son of God;' therefore he could not have been the son of God.'

There are more mysteries, however, in that sacred name than immediately appear; and in the meanwhile the remaining portions of the same verse most clearly express not a human, but a supernatural, being; when they declare of a personage who appeared in the time of Abraham, that he was "without father, without mother, without descent, having neither beginning of days nor end of life;" and further declare of him, 2,000 years after that appearance, that "he abideth a priest continually."

All these descriptions can hardly be mistranslations. So that when in the next verse there is the solitary allusion to Melchizedek as "this man," we are entitled to question the full correctness of that one short English word to convey the fulness of the inspired meaning; and all the more on duly remembering that if Christ himself is made in our New Testament translations to speak of himself as "the Son of Man,"—we believe, nay, we know, that something more was meant than what these words now convey to us;—because the whole essence of the Christian religion, as believed in by Christians, consists in Christ not having been the son of any man; but, as the Archdeacon was most correct in reminding us, "the Son of God."

In the Hebrew Christian Witness, edited by Dr. Margoliouth (pages 247—251) this difficult question of the identity of Melchizedek had been already discussed in 1873; and answered thus: "He was the son of God in human form."

"If a mere man," asks the writer, "why was a contemporary of Abraham so infinitely superior in dignity, piety, Divine relationship, and ministerial functions, passed over in human sacred history, so that he is not mentioned in the list of human saints, Hebrews xi.? Why also was Abraham called, rather than Melchizedek?"
But viewing Melchizedek as "the son of God in human form," in such form for the time being only, and for a temporary purpose, and not duly incarnated as was Christ 1,877 years ago,—then, implies the same writer, we perceive that it was partly to Melchizedek's meeting with Abraham and giving "bread and wine," that our Saviour referred when He said to the Jews, "Your father Abraham rejoiced to see my day, and he saw it and was glad."

While as to the passages in Hebrews v. and vi., speaking of Christ as "called of God an high priest after the order of Melchizedek," the truer translation of the latter part is now said to be, "Thou art by appointment Malkizeder, King of Righteousness," which is not the name of a man, but the attribute of the one and only true God.

"Then," asks an earnest inquirer, "there have been more appearances of the Son of God on earth, in connection with human affairs, than that one and only occasion when, as Jesus Christ He lived the whole human life, and made atonement on the cross for the sins of universal humanity, once for all?"

Certainly; that is what is taught in the Bible, whatever the Churches may say. For who, also, was the fourth figure who walked in the burning fiery furnace with the three faithful Jews, and of whom Nebuchadnezzar himself was made to testify, "And the form of the fourth is like the Son of God?" Or who was the Angel of the Covenant who went before the Israelites in the Wilderness, or the Captain of the Host who appeared to Joshua? Or who was it who spoke to Adam in the garden? And who was, as William Blake so exquisitely expressed it,

"The ancient Word
That walked among the silent trees:
Calling the lapsed soul,
And weeping in the evening dew:
That might control
The stary pole,
And fallen, fallen light renew?"
"It was Jesus," has been most confidently asserted in sundry well-intentioned Evangelistic tracts; and yet I am pretty certain that that is not the name which the Bible uses at those places and for those times; and that although one and mysteriously the same Divine personage is concerned on all occasions (a proof in itself how near God was to man in all ages, so that there was never any need for men going off into theotechny, whether Egyptian, Greek, or would-be modern English), yet the name Jesus should be more especially confined to the one particular manifestation of 1,877 years ago, and to which the Bible almost entirely confines it.

"The son of God" might have been a more comprehensive answer. Though that, indeed, is in itself a relation so inscrutable and un-understandable by man, that the more frequent expression under which the Messiah is alluded to by the prophets, from Isaiah to Malachi, viz. "the Branch of Jehovah," might be still more appropriate. All the more so, too, in the future, because these truly Biblical namings of "the Branch"—so agreeable also to the figure employed by our Saviour himself (John xv. I—9) in his last loving conversation with his disciples before going forth to the grand trial of even his faith, the crucifixion—are to a great extent connected with prophecies still to be fulfilled; and to whose coming fulfilment, the Great Pyramid seems destined specially to call attention.

* See "The Birth, and the Branch Theories of the Origin of Christ, or the Papal and the True Basis of Christendom contrasted; by the oldest Presbyter of Auchterarder." Published in 1877 at the office of the Inverness Courier, Inverness.
CHAPTER XXIII.

SUPERIOR TESTIMONY.

Biblical Views of Metrology in General.

VIEWING the Great Pyramid first of all as a monument of metrology alone, that subject has been shown from Scripture by many writers (as Michaelis, in Germany; Pauclon, in France; and more recently, John Taylor, in England) to have been deemed worthy of Divine attention, or of Providence, for the good of man. Such instructions as the following having been issued through the approved medium of inspired men honoured with the commands of Revelation, viz.:

"Ye shall do no unrighteousness in judgment, in meteyard, in weight, or in measure.
"Just balances, just weights, a just ephah, and a just hin, shall ye have: I am the Lord your God, which brought you out of the land of Egypt.
"Therefore shall ye observe all my statutes, and all my judgments, and do them: I am the Lord."—Leviticus xix. 35—37.
"But thou shalt have a perfect and just weight, a perfect and just measure shalt thou have: that thy days may be lengthened in the land which the Lord thy God giveth thee."—Deuteronomy xxv. 15.
"A false balance is abomination to the Lord: but a just weight is his delight."—Proverbs xi. 1.
"A just weight and balance are the Lord's: all the weights of the bag are his work."—Proverbs xvi. 11.
"Thus saith the Lord God; Let it suffice you, O princes of Israel: remove violence and spoil, and execute judgment and justice, take away your exactions from my people, saith the Lord God.
"Ye shall have just balances, and a just ephah, and a just bath.
"The ephah and the bath shall be of one measure, that the bath may contain the tenth part of an homer, and the ephah the tenth part of an homer: the measure thereof shall be after the homer."—Ezek. xlv. 9—11.
This was a department of the Holy Service which King David had appointed, in his days, a portion of the Levites to attend to;* and his splendid son and successor, Solomon, established the grand standards of measure in the noblest proportions:† while Moses had been, in his still earlier day, exceedingly particular in all his metrological institutions, as well as impressive in his method of carrying them out;‡ his chief standard measures being, as already shown, the earth and heaven founded standards of the Great Pyramid itself; if they were not also those which had been originally elaborated (according to Josephus) by Seth and his descendants in opposition to the bad inventions of Cain, and under the direct approval of the Almighty.

With the structure of the Pyramid building, indeed, in its main design and ultimate purposes (though never so distinctly or categorically alluded to in Scripture, as thereby to give men any excuse for turning aside to it, like a broken bow, for any kind of spiritual worship), the inspired writers of both the Old and New Testaments have evinced a very considerable acquaintance. And not dry knowledge only; for those men, "gifted with thoughts above their thoughts," have shown an amount of feeling, only to be explained by a holy consciousness of the part which the monument is one day to serve, in manifesting forth in modes adapted to these and the approaching times, the original and ineffable inspiration of Scripture,—as well as the practical reasons for expecting the return of our Lord to an undoubted personal reign for a miraculous season over the entire earth.

* 1 Chronicles xxiii. 29.
† 1 Kings vii. 29; and 2 Chronicles iv. 5.
Old Testament Witnesses to the Great Pyramid.

So well, too, were the mechanical steps for the foundation of the Great Pyramid understood (those steps being the heavy preliminary works of preparation and subterranean masonry described by Herodotus as having characterized the Great Pyramid, and declared by Lepsius to have been eschewed in every other Pyramid erected altogether by, and for, Cainite Egyptian idolaters—see pp. 89, 90),—so well, I say, were those features understood by the inspired writers, that the mysterious things of Nature visible to, but not easily apprehended by, men in the early ages, were occasionally described in terms of those more exact features of the Great Pyramid.

Thus, when we read in Job xxxviii., marginally corrected, that the Lord answered the patriarch out of the whirlwind, demanding with power,—

"Where wast thou when I laid the foundations of the earth? declare, if thou knowest understanding."

"Who hath laid the measures thereof, if thou knowest; or who hath stretched the line upon it?"

"Whereupon are the sockets thereof made to sink? or who laid the corner-stone thereof;"

"When the morning stars sang together, and all the sons of God shouted for joy?"

—it is quite plain (since at least John Taylor first pointed it out; for to him we owe almost entirely this branch of the subject) that if the creation of the earth is here alluded to, it is described under a type of something else, and not as the earth really was created; or both as we know it by modern science to be, and as it was described in chap. xxvi. of the same Book of Job, in the following words:—

"He stretcheth out the north over the empty place, and hangeth the earth upon nothing."

The earliest of the first-quoted descriptions might apply to the building of any ordinary house; but as successive
practical features are enumerated, the building of a stone pyramid by careful measure, and in the Promethean, or forethought, manner of the Great Pyramid, on a previously prepared platform of rock, is the only known work that will fully correspond.

The stretching of the line upon it, is more applicable to the inclined surface of a pyramid with an angle to the horizon of 51° 51', than to the vertical walls of any ordinary house; and—after the pointed and most apposite question, "Canst thou bind the sweet influence of Pleiades?"—the further Divine interrogation,—"Knowest thou the ordinances of the heavens? Canst thou set the dominion thereof in the earth?"—has been happily explained very lately by the Rev. F. R. A. Glover. For he shows it to be, the Great Pyramid's chronological use of the grand celestial cycle of the precessional movement of the Pleiades, taken at a particular epoch in connection with a special polar distance and meridian transit of the circumpolar star α Draconis; the memorial of which stellar positions in the heavens, made "dominant in the earth," is exhibited by the lower portion of the entrance-passage of the Great Pyramid, set backwards and downwards into, and deep, deep into, the solid rock of the hill, but in precisely such a direction as to suit the critical position of those two stars under the influence of precession, at the very epoch of the Pyramid's foundation. (See pp. 333—350.)

But what was meant by "the sockets thereof being made to sink,"—might have been uncertain, had it not been for the researches of the French savants at the Great Pyramid in 1800; for they described, without reference to this sentence, the remarkable sockets which had been formed in the previously levelled area of rock on which this Pyramid stands; and (with the assistance of the more modern investigations in 1865) the manner in which each of the lower four corner-stones of the Pyramid were fitted into these prepared hollows in the rock,—causing them to
become at once the fiducial points from which all good measurers have, ever since then, stretched their measuring-lines on the building. (See pp. 21, 22.)

Four of the five corner-stones of the Pyramid are thus indicated as of Scriptural notice; while the fifth, which is, in fact, of an entirely diverse character and greater importance, being not one of the foundations, but the topmost portion of the whole building, is alluded to in Job separately; more gloriously; and even as being the finishing and crowning portion of the whole intended work. For when that topmost corner-stone, emphatically called "the corner-stone," was finally placed,—it is said that the act was greeted by "the morning stars singing together, and all the sons of God shouting for joy."

The Biblical interpretation of the personages here alluded to is, with little doubt, "the faithful and the true converts;" "as many as are led by the Spirit of God, they are the sons of God." And all such who were present at the time, rejoiced in seeing the completion of the Great Pyramid with a joy far exceeding what the erection of any ordinary building, however palatial, might have been expected to give them; for their cry, when the head-stone of this one "great mountain was brought out with shoutings," took the exquisite form of "Grace, grace unto it!"* And if they so cried, and it is so reported in the Holy Bible, was it not because they recognised that that stone had been appointed by Divine wisdom, and in the mystery of God's primeval proceedings towards man, to recall some essential ideas connected with the one central point about which all Scripture revolves; viz. the Son of God; firstly, His incarnation and sacrifice for the salvation of man; and, secondly, His future Kingly and universal rule over all the nations of men? But of this elevated Scriptural Centre, we shall be instructed more clearly in the New Testament.

* Zech. iv. 7.

From a practical worker like St. Paul, we have even a most methodical illustration, in the use which he makes of certain constructive differences between the four lower corner-stones, and the single corner-stone above; constructive differences which, if applicable to any other building at all, are only fully applicable to the awe-inspiring Great Pyramid; for his words are—

"Ye are fellow-citizens of the saints, and of the household of God; and are built upon the foundation of the apostles and prophets, Jesus Christ himself being the chief corner-stone, in whom the whole building, fitly framed together, groweth unto an holy temple in the Lord." *

This fitly framing of the whole building as it grows from a broad base upwards into one corner-stone above, and which is called the chief, the upper, corner-stone,—was shown by John Taylor to be an unmistakable allusion to the Great Pyramid; and this same noble figurative employment of that particular topmost stone, viz. its representation of the Messiah, and His crowning the scheme of the redemption of man,—is one frequently employed in Holy Scripture; as in Psalm cxviii. 22; in the Gospels, and the Epistles.† The stone is there alluded to, not only as the chief corner-stone, "elect and precious," made "the head of the corner" (which is only perfectly and pre-eminently true of the topmost angle of a pyramid), but as having been for a long time "disallowed by the builders," and existing only as "a stone of stumbling and a rock of offence to them." ‡

† Matt. xxi. 42; Mark xii. 10; Luke xx. 17; Acts iv. 11; 1 Peter ii. 4.
‡ In the important theological work by the Rev. John Harrison, D.D., "Whose are the Fathers," there is, at pp. 163—172, a very able representation of the special exigences of mere ecclesiasticism in the narrow, albeit learned, view which ecclesiastics take of all these texts, and all this long line of symbology founded in all architecture and all history. For
The simile is easily and perfectly applicable to our Saviour's appearance on earth; yet evidently, from the very principle of all such figurative allusions, a something bearing on the nature of the figure made use of, must, Mr. Taylor urged, have been existing on the earth before; or it would never have been employed.

Now we know that the Great Pyramid did stand on its desert hill before any of the inspired authors wrote; and also, that they seem to have been spiritually conversant with many principles of its construction, although they were not visitors to the land of Egypt; and it is they who allude to some notorious objections by the builders against the head corner-stone, while their work was in progress.

What were these?

The stones required for building the Great Pyramid were evidently, from the quarry-marks and instructions to the masons still legible upon some of them, prepared at the quarries according to the architect's orders a long time beforehand. For the vast majority, too, of stones nothing but one unvarying figure, rather flattish and chiefly rectangular, was required. But amongst them, and different therefrom, one was ordered which did not chime in with any of the Egyptian building notions, certainly not of their temples, tombs, or palaces. For, in place of being cubic, or with nearly parallel sides and rectangular corners, this single stone was all acutely angled; all sharp points; so that turn it over on any side as it lay on the ground, one sharp corner, or edge, was always sticking up in the air; as, too, could not but be the case when the stone was a sort of model pyramid in itself, with five sides, five corners, and sixteen distinct angles.*

The one point to and for which everything else is there made to exist, is, the phrase used by our Lord to Peter (Matt. xvi. 18); and what advantage the Roman Catholic Church has, or has not, though it is denied by Protestants that it has any, over other Christian Churches, in consequence of it.

Such a stone was of course "a stone of stumbling and a rock of offence"* to builders whose heads did not understand, and hearts did not appreciate, the work they were engaged upon. It was to them "the terrible crystal;" † the pointed stone "on which whosoever shall fall, shall be broken;" ‡ and so huge a stone as a coping for the vast structure of the whole Great Pyramid, that "on whomever it shall fall, it will grind him to powder." §

Yet when once this unique, five-cornered, and many-angled stone was raised up to its intended place on the summit of the Great Pyramid, the propriety of its figure must have appeared evident to every impartial beholder; though the Egyptian workmen, as may be gathered from Herodotus, forcibly prevented from breaking out into open opposition, yet went on concealing sinful hatred in their hearts; and did—after the deaths of Cheops and Chephren, and after the Shepherd-Prince Philitis had left the country—return with renewed vehemence to their bestial idolatry under Mencheres, "like dogs to their vomit, or the sow that was washed to her wallowing in the mire." ¶

For such determined resisters of grace was surely prepared, in their very midst, that type of the bottomless pit, the subterranean chamber in the Great Pyramid, yawning to receive them:—

"For they are all delivered unto death, to the nether parts of the earth, in the midst of the children of men, with them that go down to the pit."

"This is Pharaoh and all his multitude, saith the Lord God."—Ezek. xxxi. 14 and 18.

But again, and now for the instruction of backsliding Israel, this prophetic and historic monument—which, like Melchizedek, had no predecessor—was without architectural parentage or descent; and yet took rank at once as the most kingly of all architecture up to the present time (see p. 470),—this more than historic monument, I say,

* 1 Peter ii. 8. † Ezekiel i. 22. ‡ Matt. xxi. ¶ 2 Peter ii. 22.
seems to speak to us in the words of the only wise Architect:

"I have declared the former things from the beginning; and they went forth out of my mouth, and I showed them; I did them suddenly, and they came to pass."

"I have even from the beginning declared it to thee; before it came to pass I showed it to thee: lest thou shouldst say, Mine idol hath done them, and my graven image and my molten image hath commanded them."—Isa. xlviii. 3 and 4.

Never, then, was there any building so perfect as the Great Pyramid in fulfilling both the earliest words of the Lord given by Inspiration, and also the latest types of the Messiah. And if the Great Pyramid is not mentioned by actual name in the New Testament, that may arise from—as circumstances still to be related will indicate—its being connected more with the Second and future, than with that First and past, Coming of Christ, which latter one the book of the New Testament was mainly to chronicle and expound.

Of the Future in the Great Pyramid.

If there is any subject wherein we should pay special attention to that truly Christian warning, "Be not high-minded, but fear," it ought to prevail in any attempt to read what it has pleased Divine Inspiration to record of the future, whether in writing or monumentalisation.

But though the danger of erring be great, we are not, therefore, instructed not to make any attempt; on the contrary, "The Revelation of Jesus Christ,"* was given unto him by God, in order "to show unto His servants things which must shortly come to pass:" and those particular servants were promised blessing, who should both read and hear the words of that prophecy. Indeed, as the time of the end draws near, it would even seem to be a growing duty of the present day to compare the end,

* The Revelation of St. John the Divine, i. 1.
thus far arrived at, with what was said of it in the begin-
ing; and thereby realise Scripture miracles, of prophecy-
ing future events, in our own day; together with the posi-
tive proof that there is no God like our God of the Bible.

Now we have already, in Chapter XX., concluded that
the north wall of the Grand Gallery represents the date
of the Birth of Christ; and that thence, upwards, along the
said gallery's inclined floor, stretches Christian religious
history since that time. Not that we are to expect to meet
with markings to show every, or even any, event of mere
human ecclesiastical arrangements; for the region begins
with the Birth of the Son of God, and thereby bids us
look to the supernatural and the Divinely Inspired only.

But how does the said region, viz. the Grand Gallery,
end?

The long-continued floor-line, passing between the
ramps and their ramp-holes on either side, is interrupted
only by a modern dilapidation or two, including some
shallow foot-holds, until we arrive at the great step, 3 feet
high; and then, at 61 inches horizontal beyond that, comes
the south end of the Grand Gallery. And a positive end,
too, it is; for though there may be on the step-level, a low
passage leading on further to the Ante-chamber and King's
Chamber (see Plate XIII.), and a still smaller and ordi-
narily quite inaccessible passage-way leading from close
under the ceiling of the Grand Gallery to the lowest of
the hollows of construction over the King's Chamber,—
yet neither of these narrow ways can represent the majes-
tic Grand Gallery, with the seven overlappings of its
walls and its thirty-six roof-stones. All these things end
above that great 36-inch step, and end inwardly and
positively upon themselves with the “impending” south
wall (see p. 429); and without the slightest symbolization
of anything like perpetuity, or history repeating itself
through indefinite ages.

Hence for all those who have already accepted the
beginning of the Grand Gallery, for the beginning of the Christian Dispensation which commenced 1,877 years ago, and under which we are still living,—there is nothing for it but also to accept that a period, distinct and finite, was appointed to that Dispensation by God, and that that end is close upon us.

How close? The answer to that question must depend solely on the length of the Grand Gallery by measure in Pyramid inches.

As usual with the accounts of travellers at the Great Pyramid, there are many various results in print; and even Howard-Vyse, whose length of the external base-side of the Monument was too great, has published a length for the Grand Gallery equal to only 1,870 Pyramid inches, or a time which is now past: while Mr. Lane, on the contrary, gave one equal to 1,894 Pyramid inches. My own measures, however, taken in 1865, at a far greater sacrifice of time and labour than theirs, amounted to, for the length up to the great step, 1813·0 Pyramid inches; and thence up to the end wall, in the line concluded for the slanting floor, 68 inches farther = 1881·0 Pyramid inches in all; or, as computed more exactly by Mr. H. A. Powers, of Cincinnati,* 1881·4.

Something, then, seems to be appointed to take place at that particular time, and it is much easier to say what it is not, than what it is. It is not, for instance, "the end of the world," as some have feared,—for there is a "passage-floor," leading on from the great step, to the Ante-chamber, through that, and onwards into the King's Chamber, the granite-lined and most glorious part of the whole interior of the building. And equally it is not Christ's second coming, nor the Millennium, for there is rather a cessation,

* My measures ought to have been of the floor. For practical convenience they were taken on the surface of the ramps, and would have given the same result as the floor, but for the "impending" of the south wall of the Grand Gallery, which makes the correction furnished by Mr. Powers.
or at least a decrease, than an exaltation, of the Christian faith, though but for a short time only, indicated at that 1881 A.D. point of the progress of time and history.

In fact, it is rather like the unexampled days of future trouble which our Saviour himself announced should immediately precede His second, but which must as certainly succeed the dispensation of His first, coming.

Of the unutterable anguishes of those most exceptionable days to come, we read (Mark xiii. 19) that "there shall be affliction, such as there was not from the beginning of the creation which God created unto this time, neither shall be." But its duration will not be long; "for," continues the Saviour, "except the Lord had shortened those days, no flesh should be saved; but for the elect's sake, whom he hath chosen, he hath shortened the days."

The severities of those times are Pyramidally expressed at the place, by the exit passage from the south end of the Grand Gallery being lower still than any of the low passages which marked the troubles of the profane world in early times. Those passages were 47 inches in transverse, and 52 in vertical, height; painfully low, therefore, for any full-sized man to creep through; but the passage after 1881 A.D. is only 44 inches in vertical height, and is the most trying part of the whole passage system.

But this excruciating portion is exceedingly short; for after no more than 53 inches in length, it enters the full freedom of the Ante-chamber: besides which, there is, even just before the said very low passage begins, a way of escape up aloft for a few, though not by their own power.

This escape is by the doorway of exit into the small passage, at the upper south-east corner of the Grand Gallery, and is no less than 28 feet above the history-recording floor; only, therefore, accessible to something approaching more to winged, and flying, rather than walking, beings;
and leading to a sort of retreat, more than apartment for earthly life, immediately over the grand and final granite hall, the so-called King's Chamber. (See, again, Plate XIII.) That said retreat is one of the five hollows of construction which Colonel Howard-Vyse found to exist above the King's Chamber; but while the upper four had been absolutely closed in, and about, with solid masonry, the fifth and lowest was furnished as above described with the passage-way leading to it from the almost inaccessible top of the southern end of the Grand Gallery on the eastern side thereof. Why it was so furnished there is nothing either in the scientific, or Egyptologic, theories to show; though in the sacred and historic symbology it immediately reminds of what the Evangelists in the New Testament promise, viz. of the angels being sent to gather up the elect before the dread period of wars and tribulations on earth begins; and also, of those elect, thus saved, meeting the Lord in the air, and being retained with Him in heaven for awhile before His Second coming to establish His Kingdom on earth; the Kingdom of stone cut out without hands, ordained to fill the whole earth, and to rule for ever in truth, righteousness, and universal extent, by grandly supernatural means, of which the world of the present Dispensation knows absolutely nothing practically.

But all these things, say many devout readers, have been continually expected every year since the Ascension, 1,840 years ago. Messrs. Moody and Sankey, too, together with other Evangelistic preachers, have occasionally announced, that all the miraculous raptures of the saints, away from this earth and into the air to meet the Lord, might take place before the conclusion of their then discourses; but they never have. Can, therefore, any special reason be shown from Scripture, as well as from the Great Pyramid, why these closing miracles should be more likely to occur in, or near to, 1881 A.D.?
Those who have studied prophecy earnestly, must be aware that a very great number of results have been brought out, all converging on that year; but for the present I will confine myself to one, the latest, as given in his Mongrelian pamphlet, by Dr. Watson F. Quinby, of Wilmington, Delaware, U.S.; and founding, as a matter of course, upon that most chronologically rich and exact of all the prophets, Daniel.

"The rise and fall of the three great empires mentioned by name, the Babylonian, the Persian, the Grecian, and the fourth so well described as evidently to refer to the Roman, have all taken place as foretold; and the time seems approaching for the setting up of the fifth and final kingdom.' A 'great day of preparation for this event is foretold,' when 'many shall run to and fro,' and 'knowledge shall be increased,' which may well refer to our own day.

"When shall these things be? In the book of the prophet Daniel it is said, 'Seventy weeks are determined upon thy people, and upon thy holy city.' Seventy weeks of years would be four hundred and ninety years, at which time (from the decree to rebuild it) Jerusalem was destroyed by Titus. In another vision, though near the same time, he says, 'How long shall be the vision concerning the daily sacrifice and the transgression of desolation, to give both the sanctuary and the host to be trodden under foot? And he said unto me, Unto two thousand and three hundred days.' These days are usually considered to mean years. Now Jerusalem was destroyed in Anno Domini 70. In order, then, to bring the date to the commencement of our era, the seventy years must be taken from the four hundred and ninety years, which leaves four hundred and twenty years.

"Four hundred and twenty years taken from two thousand and three hundred years, leave eighteen hundred and eighty years, which brings us to the year eighteen hundred
and eighty-one. 'Then shall the sanctuary be cleansed,' whatever that may mean.'

The Two Pathways at the Commencement of the Grand Gallery.

Again, while the length of the Grand Gallery slightly diminishes upwards from the floor, on account of the overlappings of the end walls, so that it is only 1878.4 Pyramid inches long, at the height of the longitudinal grooves near the lower edge of the 5th side's overlapping (see Plate XI.), Mr. H. A. Powers has shown, that 1878.4 divided by the number of roof-stones of the gallery, (36) = 52.177. And again, the number of days in the year (365.242) divided by the number of overlappings (7) also = 52.177.

In such case he considers a week of the Grand Gallery, measured by 52.177 inches = 36 solar years, and has some profitable ideas thereupon both from Daniel and the Gospels. But when he goes on from that feature of the whole gallery to consider one special marking at its furthest end, and of latest time, viz. the great step at the southern end—we feel that we cannot there arrive at any secure conclusion, without first understanding a certain large arrangement at the very beginning of the said Grand Gallery; viz. the horizontal passage which breaks away from the gallery's ascending line of floor, at the date nearly of Christ's Birth, and continues thence on a level southward until it ends in the sole Queen's Chamber.

"The Queen's Chamber," argues Mr. Powers (still keeping up all the metrical features for metrical purposes already found in it), "is symbolical of the House of Judah and law of Moses, set aside during the dispensation of the Christian religion. (See Plates VII. and IX.)

"Paul, the apostle, says that that law of Moses was 'holy, just, and good' (Rom. xi. 12); but he also says, 'The law
made nothing perfect, but the bringing in of a better hope did' (Heb. vii. 19. See also Heb. ix. 9—11; x. 1). The unfinished floor of this chamber and the passage leading thereto, in contrast with all other floors in the Pyramid, illustrate, to my mind, this 'imperfection' of the law; while the fine white stone composing its walls and roof, so exquisitely wrought on surface and joint, tell with emphatic voice that the law was 'holy, just, and good.' Again, but four overlappings in its niche, in contrast with seven, the symbol of completeness in Scripture, in the Grand Gallery. True, the room has seven sides, but only six finished in Great Pyramid sense of the term.

"Then, what means that salt exuding so freely from the walls of the Queen's Chamber and passage thereto? The law says, 'Every oblation of thy meat-offering shalt thou season with salt; neither shalt thou suffer the salt of the covenant of thy God to be lacking from thy meat-offering: with all offerings shalt thou offer salt' (Lev. ii. 13).

"The Lord spake unto Aaron, Behold, I also have given thee charge of mine heave-offerings of all the hallowed things of the children of Israel:—it is a covenant of salt, for ever before the Lord unto thee and thy seed with thee' (Num. xviii. 8, 19).

"Abijah said to Jeroboam and all Israel, 'Ought ye not to know that the Lord God of Israel gave the kingdom over Israel to David for ever, to him and to his sons by a covenant of salt?'

"This is a passage much quoted by several recent authors, and much assisted to my understanding by this pillar of witness unto the Lord of Hosts in the land of Egypt, the Great Pyramid, containing salt in abundance only in that part devoted to the House of Judah; though there are slight traces of it in the Grand Gallery, where, too, it ought to appear in order to symbolize the seed of David reigning over the House of Israel until the second coming of the Anointed."
Air Channels.

"Since I first read 'Life and Work,'" continues Mr. H. A. Powers, "I have never been able to divest myself of the idea that the air-channels of the King's Chamber were symbolical of the second coming of the King and his reascension, 'when He shall have delivered up the kingdom to God, even the Father; when He shall have put down all rule and all authority and power' (1 Cor. xv. 24).

"A recent re-perusal of your description of the discovery of the air-channels in the Queen's Chamber, by Mr. Dixon, has, to my mind, shed much light upon this theory. Mark, these are the only passages in the Pyramid that men cannot pass through nor enter.

"John the Baptist testified saying, 'Reform! because the Royal Majesty of the Heavens has appeared' (Matt. iii. 2) ; thus translated by Benjamin Wilson in the 'Emphatic Diaglott.' Mr. Wilson says in a foot-note, 'Basileia means kingly power, authority, royal dignity, majesty, &c., as well as kingdom, realm, or reign.' He translates Matt. xii. 28 thus, 'But if it be by the Spirit of God that I cast out demons, then God's royal majesty has unexpectedly appeared among you,' and says in a note, 'It is not according to fact to make Jesus say that the kingdom of God has come unto you, as rendered in the common version. The context shows that our Lord is speaking of himself. These miracles were proof of his Messiahship.'

"Now of Jesus it is written, 'He came to his own (tribe), and his own received him not.' Again it is written, 'Their ears are dull of hearing, and their eyes they have closed,' &c. (Matt. xiii. 15; Acts xxviii. 27). That 'the Scriptures might be fulfilled,' concerning the House of Judah, their ears were closed, and 'a veil is upon their hearts even unto this day when Moses is read—never-
theless, when it (House of Judah) shall turn to the Lord, the veil shall be taken away.'

"Wherefore these closed air-channels of the Queen's Chamber symbolize the Messiah's first coming and ascension, unperceived by the House of Judah; nor could these channels be opened until 'the time of the end' symbolized by the step in the Grand Gallery; when a 'man-of-all-work,' under the direction of his intelligent master, breaks through that 'intentionally left thin plate (veil) of soft limestone.' (See pp. 392—395.)

"But the previous labours of such men as Howard-Vyse, John Taylor, and others, prepared the way for Mr. Wayman Dixon to direct Bill Grundy where to ply his hammer and chisel. And thus, doubtless, are the previous labours of John Wilson, Edward Hine, F. R. A. Glover, and others, preparing the way for the instrumentality yet to be used in breaking through the veil yet covering the eyes, and through the plate of stone yet stopping the ears, of the House of Judah, ere their King shall come in his glory."

The Great Step.

Thus far, then, the admirable contribution in a private letter from Mr. Hartwell A. Powers* on the Queen's Chamber; and wherein he is joined by many other independent investigators; so that, in so far as rapidly growing testimony is concerned, that chamber and the horizontal passage on a dead level leading to it, may be taken as testifying to both the House of Judah, the Mosaic Law, and the Old Testament, for all the period from the appearance of Christ to the present time.

But the ascending floor of the Grand Gallery testifies to Christianity; which, as a Canadian correspondent remarks, continually repeats in effect, "Come up hither." Not,

* A working-man in the "Eureka Co-operative Foundry Association," at Warsaw Pike, Cincinnati, United States.
indeed, those forms of the Christian faith which have forgotten to look forward to the second coming of Christ, and have made for themselves worldly temples and human power Church Courts on earth. Such Christians may be relegated to share the Queen’s Chamber with the Jews. But all others ascend the Grand Gallery slope with time, and are ever nearer and nearer to the coming of their Lord.

And who are they, these rising, improving, and we may trust approved, Christians?

Some will claim the Church of one nation, and some another; some will argue for spiritual Israel, and others literal and hereditary Israel, whether spread among Teutonic people, or mainly confined to the British Isles. And who shall decide amongst them?

None but the Great Pyramid itself. Advance we, therefore, to the great step of 1813 A.D., and inquire there its signification.

It marks there, to begin with, by that date, the most energetic advances made by Great Britain in its latter-day spread of the Bible, and its latter-day preaching of Christianity to all the world.

But why of Great Britain in particular? Because the height of this step is precisely the 36.0 inches of the linear national standard of Great Britain at that time. And if the upper surface of the step, from its north edge up to its southern termination, is not also 36, but 61, inches; that is because $36 + 25 = 61$, or indicates that the linear standards of Great Britain and Israel, the yard and the sacred cubit, are now joined together in one and the same land; testifies Hartwell A. Powers, from America.

And his testimony is true; for, as previously explained at p. 268, the Ordnance Survey of Great Britain involuntarily uses at this time the 25-inch scale of the Great Pyramid, as well as a British yard; already, too, the so-called geometrical 25-inch cubit has its followers in
the land; already are the Israelite measures of old being sought out,—and Great Britain is day by day being identified, by the light of prophecy, with the lost tribes of Israel (not Judah or the Jews, but of the remaining ten or eleven tribes), of whom the Lord has long since announced that He will acknowledge them in the days approaching, and be glorified in them as no other nation ever was glorified from the beginning of the world.

What manner of people, then, ought not we of Great Britain now, of Israel in ages past, to be at this juncture of our eventful history; saved above all nations by the Providence of God in a manner we have never deserved, and for Divine purposes of the future, respecting which nothing but the glorious Scriptures of Inspiration can give us any sufficient or saving idea; a halcyon time, when Ephraim shall be united once more with Judah, and both shall be on the Lord's side.

It makes us ready to break forth in joy with the hitherto misunderstood and almost Elijah-like strains of William Blake—a man eminently of the people, and not of the Grecian schools; who was privileged to catch something of the spirit of this Abraham-descended past, and Christ-rulled future, of our country and nation; and imaged it forth in true religious fervour, though not always with correctness of outline,—for thus came forth his irrepressible lines:—

"Britain, awake! awake! awake!
Jerusalem thy sister calls;
Why wilt thou sleep the sleep of death,
And chase her from thine ancient walls?
Thy hills and valleys felt her feet
Gently upon their bosoms move;
Thy gates beheld sweet Zion's ways;
Then was a time of joy and love,
And now the time returns again.

And did those feet in ancient time
Walk over England's mountains green?
And was the holy Lamb of God
On England's pleasant pastures seen?"
And did the Countenance Divine
Shine forth upon our clouded hills;
And was Jerusalem builded here
Among these dark Satanic mills?

Bring me my bow of burning gold;
Bring me my arrows of desire;
Bring me my spear: O clouds, unfold;
Bring me my chariot of fire.

I will not cease from mental strife,
Nor shall the sword sleep in my hand,
Till we have built Jerusalem
In England's green and pleasant land."

"Would to God," continues William Blake, "that all the Lord's people were prophets."—Numbers xi. 29.
CHAPTER XXIV.

PREPARATIONS FOR UNIVERSAL METROLOGY.

THOUGH everything else may fail to convince some minds that our nation is born to noblest heritages; that the Biblical history of mankind (no matter what protoplasm philosophers on one side, and believers in German linguistic theories on the other, may choose to aver) is a living and material reality; and that, too, not only for what has already come to pass in history touching the favoured family of the Hebrews, but also for the working out of the prophecies still remaining to be accomplished respecting the two opposed, and distinctive, branches of that people; viz. the Israelites of the captivity of the Samarian Kingdom of Israel on the one hand, and the Jews of the destruction of, and dispersion from, Jerusalem under Titus, on the other;—though everything else, I add, may fail to convince some minds, that our nation may reasonably consider itself to a large extent descended from the former (though they were lost to the view of mankind 2,500 years ago), and owes its present unexampled prosperity and power to the special favour of God, far above its own intrinsic deserts (and should bow in humility and adoration accordingly),—the most convincing proof, I say, of these things to some minds may be,—to note certain recent episodes of our national history; and to mark what disasters might well have befallen us according to the ruling of our statesmen for the time being, whether they were of
one side of politics or the other,—yet how the nation was preserved, and even strengthened, notwithstanding.

Shall our public ministers, then, continue in their erring courses in order that the nation may abundantly prosper?—God forbid; that were to tempt God. And though the whole science of statesmanship may be far too mysteriously deep and difficult for any one man to presume to point out to another where the whole duty of a Prime Minister lies,—yet there is one rather neglected department of that officer's duty, wherein the very nature of the case allows of clear and simple mathematical views, capable of all men's understanding, being introduced; and this subject is the Great Pyramid's special and original one of metrology: a national as well as sacred matter too, though not yet studied from that latter side of the question by any British minister.

A worthy science, indeed, long ill-treated and despised of almost all men, is metrology; and yet there cannot be the shadow of a doubt, that we are now on the eve of movements of the whole human race in connection with it; all educated communities beginning now to acknowledge it to be a marvellous power, with germs of political influence of the highest order; specially adapted, too, for the working out of some of the grandest developments of the future. Every nation, until now, has had its own hereditary system of weights and measures; curiously intertwined, no doubt, with those of other nations in their distant primeval origins, vulgarised perhaps, and even largely debased in times of mediæval darkness, as well as pestiferously meddling with and complicated by the doctrinaires of new-born modern and o'ervaulting science schools,—but still there was hitherto something more or less national to every nation in its metrology, as in its language; and serving the same purposes as the diversity of tongues in keeping up the heaven-appointed institution of nations;—the chief characteristic of all mankind from
the days of the dispersion; unknown before that event, but never for one moment ceasing since then. What, therefore, is likely to be the result of man seeking in these days, by means of his own devices, to undermine that institution of nations, and even endeavouring to quench it off the face of God’s earth?

Whatever the result, the action to produce it has already begun; and the first weapon ordained to be used, and the first breach to be made in the barriers of national distinctions, is that of weights and measures. So that, without probably having distinctly contemplated the issue, yet most of the existing civilised nations have for years past been tending, not to go forward, but to bring all men back to the old, old state they were in when they attempted to build the Tower of Babel; and from which nothing drove them then, but a supernatural manifestation of the power of God.

Progress of the Communistic French Mètre.

Several centuries ago, and even less, there were nearly a hundred varieties of linear standards in use throughout Europe; but one of them after another has latterly dropped out of view, until it was reported at the French Exposition of 1867, that only thirteen could then be discovered; and since that epoch, all save three or four of those, are said to have practically perished, and the mètre to be gaining adherents from even their votaries, every day.*

"There has, therefore," says the pro-French metric President Barnard, "been large progress made toward uniformity, and the most important steps, and the most significant steps, are those which have been taken within our own century!"—"No man not totally regardless of

the history of the past, and not absolutely blind to what is taking place under his own eye in the present, can possibly pretend to believe that the world is to be for ever without a uniform system of weights and measures; we cannot suppose that the progress already indicated is going to be arrested at the point at which it has now reached!"

"Of the two systems, therefore, just now indicated as the systems between which the world must choose, unless in regard to this matter it shall henceforth stand still for ever,—one or the other must sooner or later prevail!" And he considers that of these two, the British yard and the French mètre, the latter is certain to triumph in the end.

This result has by no means come about altogether spontaneously, or through unseen and only natural influences; the mind of man has had much to do with it, and it has been the one polar point to which French ambition has alone been steady and true during the last eighty years; always working for it, whether sleeping or waking; whether in war or peace; whether as a kingdom, or an empire, or a republic; always endeavouring to throw the net of her metrical system of weights and measures over other nations as well as her own people; and though not without some Imperial ambition to chain many conquered nations to the chariot-wheels of France, yet with the far deeper Communistic feeling of converting all the nations of the earth into one great people, speaking one language; and using but one weight and one measure, and those of human, as directly opposed to Divine, origination.

France had been consistent in her own case; she had begun, at her first Revolution, by slaughtering off all the accessible individuals of her reigning family; who, as such, were the very type and symbol to the French people of their being a nation, one amongst many nations; or of their living under that post-Babel institution. Having then, at that dreadful close of the last century, killed off,
as far as she then could, all her royal family, her priests also, and openly abrogated belief in the God of Scripture, she (France) could, at that time, of all nations consistently, and with show of demonstrable reason, become the champion of her metric, or anti-nation-existence and atheistic metrological system; a system since then everywhere secretly adopted by the Socialists, Internationalists, Communists in all countries; and, strange to say, by certain British scientific men also, in some cases claiming, in others scorning, to be reputed Christians.

The task of spreading this nationally suicidal scheme over all the nations of the world, might seem at first quite Quixotic; and would be, but for schemes and forces in the destiny of man, which man knows little or nothing about, until they have accomplished their ends, and left him to rue their effects. So that it is owing at least as much to those unseen influences as to the direct action of any visible Frenchman, that the French metric system has been going forward during the last few years of history at a continually accelerated rate; and that one country after another has been persuaded to adopt it, until suddenly it has been found, to our exceeding astonishment and practical isolation, that almost every nation in Europe, and many peoples in Asia, Africa, and America, have already been converted.

France herself, strange to say, has not profited by the system either in war or peace. In war she has been lately defeated with greater overthrows than even the Persian empire of old; and the fighting faculty has abandoned her soldiers almost as completely as it did the Babylonians towards the calamitous end of their once powerful independence, or the grandsons of the soldiers of Alexander the Great, when the Romans slaughtered them in battle with the utmost ease; while in peace, France's commercial transactions, though continually being "reorganized" on metrical science, remain far below those of Great Britain.
Yet still she (France) calls upon all nations, and so many of these nations answer her call with delight, and madly encourage each other, to clothe themselves with this latter-day invention of hers; which, if successful, must, in so far as it goes, tend to decrease the nationality, if not to hasten on the final disappearance, of every nation adopting it.

Only three years ago there was published by a committee of Columbia College, United States, an excellent little book entitled the "Metric System." Drawn up chiefly by their Professor of the higher mathematics (Charles Davies), and approved by those then in power,—this work demonstrated unsparingly the artificial character of the French metrical system, the innumerable patches which it required in practice to make it hold water at all, the errors of its science, its inapplicability to the ordinary affairs of the mass of humankind; and concluded with reprinting the celebrated report on weights and measures by John Quincy Adams: which report, after indulging in the utmost oratorical vehemence for saying whatever could be said as a partisan for either side of the question successively, concludes with recommending all good United States men to have as little as possible to do with the French standards; but to feel hopefully confident that the inevitable development of the world's history would, sooner or later, bring up some far better system for the future happiness and prosperity of mankind.

But three short years have so accelerated the growth of French metric influence, or the predestined metrological temptation and trial of the whole world,—that all the parties to that first, Columbia College, book upon the Mètre seem now to have vanished out of existence; and a new Columbia College work, with the same title as the old one, but totally opposite principles, was produced last year, to order of new governors, by the new President (the Rev. Dr. Barnard) of the same college. An enormous
issue of this last book is now being thrown off for distribution gratuitously far and wide, and (as our extracts from it have already indicated) it is ecstatically in favour of the French metric system being adopted by all Americans with the utmost possible speed. And when that is brought about, the author declares that Britain, Russia, and the Scandinavian countries will be the only known dissentients among educated peoples.

Scandinavia, however, it is asserted, has already been exhibiting some leanings towards the metric system; Russia is in the hands of her German officials, who are all now metric men, both at home and abroad; and Britain herself, who has hitherto successfully resisted private Bills in the House of Commons in favour of French metricalism, is told at last (1874) that there shall be a Government Bill next year. If that be carried, Russia and Scandinavia are expected immediately to yield; and all the nations of the world will then have passed through the great French metrological mill, whose whirling stones will never cease to grind, until, excepting only those sealed by God, "it has caused all, both small and great, rich and poor, free and bond, to receive a mark in their right hand or in their foreheads; and that no man might buy or sell, save he that had the mark, or the name of the beast, or the number of his name" (or, in fact, has adopted the use of the atheistic, and contra-Deistic, French-metric system). (Rev. xiii, 16, 17.)

Preparations made by the British Government.

Meanwhile, what have the ministers of Great Britain been doing either to fend off this dire calamity, or to embrace and make the most of this happy invention of the French brain, whichever of the two they may deem it to be? In parliamentary bills, nothing at all: and in private study, there is reason to fear, as little. Our late
Prime Minister's last work on the old, old subject of the poems of Homer, came out almost simultaneously with the announcement from Paris of twenty nations being about to meet there in fraternal union and international congress on their growing metric system; and since then, cruelly reminding of Nero playing his lyre while Rome was burning, the same most eloquent orator has written on the superior glory of that man who invented a fiddle, over him who achieved the modern locomotive, the support of millions, and a fulfilling of Divine prophecy!

Thus remarked William Blake nearly 70 years ago on such mistaken courses:—"The perverted writings of Homer and Ovid, of Plato and Cicero, which all men ought to contemn (in such a category) are set up by artifice against the sublime of the Bible:—Rouse up, O young men of the new age! Set your foreheads against the hirelings! For we have hirelings in the camp, the court, and the university, who would, if they could, for ever depress mental and prolong corporeal war." And then, adapting his words, which had reference to art, for our subject of metrological science, we may continue, "We do not want either Greek or Roman, ancient profane Egyptian, or modern atheistical French models, if we are only true to the messages of Divine inspiration, to those words of eternity in which we shall live for ever in Jesus our Lord."

But William Blake wrote before the time appointed by Providence for the awakening of Israel; and the British country continued to drift on, as it has done almost ever since, under other guidance than that of merely indifferent Ministers. But things cannot, and will not, stop there: this view, the pro-French metric champion, President Barnard, makes very plain. We may, indeed, thus far have been providentially, rather than ministerially, saved from a pit of evil vastly more profound than appears on the surface; but politically we have not as yet reached any haven of metrological safety; no soundings are touched;
no secure principles for anchoring to, reached; and no arguments of sufficient power to stand before the specious insinuations of French metrical agitators have yet been uttered in the House of Commons. We have our ancient national measures still, but with all their mediæval and modern imperfections on their head; and the attacks, open and concealed, of the metrical party upon them on that account, are unceasing. That party, moreover, has gained over the School Board Commission; the new office of the Warden of the Standards has been gorgeously supplied with expensive apparatus for French *vacuum* weighing and measuring; and men who ought to have died rather than give up their opinions of a dozen years ago, have swallowed them all, and join now in recommending the total denationalisation of our ancient metrology.

How long will our plastic rulers, accustomed to take demagogic pressure from without, in place of principle, knowledge, and understanding, remain firm against such agitation?

The very anxiety of the Rev. President Barnard and the metricalists to bring on the final struggle as between the French mètre and the English yard, shows that they have good reason to know that there is weakness in the supporters of the latter. Some involuntary throbbing, moreover, in the pulse of humanity is now telling all nations, with deeper truth than any philosophy can, or chooses to do, that these are the last times of this dispensation; and that we are now or never to decide a long, long future. "If the work was to be done over again," writes President Barnard, with an admirable sense of justice, "the French metric system ought to adopt, and doubtless would adopt, not their superficial earth-measure, the mètre, but the Pyramid axial reference of the cubit, on account of its immense superiority in science." But it is not to be done

* This acknowledgment of the Rev. President Barnard, at pp. 93 and 94 of his book, does him immense honour, he being an out-and-out pro-
over again," he says, "and never can or will be; we must choose the metrical system as it is now, or not at all; it has already been taken up by half mankind, and no able system of human invention will ever have such a chance of universal adoption; while no system that cannot and will not become universal, is to be tolerated for a moment. Now the British yard, or its third part, the foot," adds the President, "being only the measure of one nation, will always be resisted by the majority of nations,—therefore the mètre must in the end gain the day."

The Stone prepared without Hands.

But is the final contest only between the French mètre and the British yard or foot? The anti-metric men in the House of Commons have hitherto succeeded in establishing nothing against that idea; and the Rev. President Barnard says, both that it *is* so, and that all the wealth and numbers of mankind throughout all the world are divided on these two sides only. He does, indeed, allow in one place that there is a phantom of a third side, viz. the Great Pyramid metrology; but declares that that, having only a religious foundation, will never accumulate any large party about it. *

Since the days of Sennacherib defying the God of Israel, mètre man; and it is of all the more weight that he gives an abler discussion of the present condition of the earth size and shape question by modern geodesic measure, in all its most scientific ramifications, than has ever yet been seen in print, in a readable form.

* The exact words are, at p. 56, "And one who, like Professor Piazzi Smyth, bases his metrological theories on religious grounds, and prefers the Pyramid inch as his standard, as a matter of conscience, is not likely to concentrate around him a very powerful party of opposition."

Here everything in the way of linear standards for the Pyramid system is made by the Reverend President to rest on the inch; and he intensifies that accusation at p. 73 by writing, "C. Piazzi Smyth almost fanatically attaches himself to the inch, a measure which he believes with implicit faith to have been divinely given to Cheops, builder of the Great Pyramid, and again to Moses in the wilderness; and in what he, no doubt, regards as the great work of his life, he uses no other term to express the largest dimensions." I can only, therefore, refer my readers to all that I have written in this book, as well as others, upon the grand standard of the Pyramid, and the only one certainly common to it and Moses, being the *cubit*. See especially Chapter XVI. on "The Sacred Cubit."
was there ever a speech more likely to call forth proof, in its own good time, that the arm of the Lord is not shortened? We see in Scotland already what the belief, that it is the Lord who appointed the chronological institution of the week, will do, to make that one time-measure binding on a whole nation; and will the men of that land not also adhere to any such other measures in the future, as they shall come in time to understand were likewise appointed from the same Divine source?

The Reverend President, in stating the conquests of the atheistic French metrical system at the utmost, bows involuntarily to the religious element; by the act of stating, not merely that the mètre has been adopted by 160,000,000 men, but by that number of civilised people "in Christian lands." Yet in that case, if those inhabitants are truly Christian,—if their Christianity is real, vital, heartfelt, and not confined to the land only, or to having ecclesiastically consecrated burial-grounds, exquisite cathedral buildings, and alleged "holy places,"—will not they all, as well as Britons, delight to obey, in the end, whatever shall be proved to have been appointed by Christ in the beginning of the world? Especially if in evident anticipation of present and future times; viz. of "the last days, when scoffers are to appear, walking after their own lusts, and saying, Where is the promise of His Coming (Christ’s Second Coming as a King)? for since the fathers fell asleep, all things continue as they were from the beginning of creation."

Except for this predicted fact for these later times, so able an ecclesiastic as the Rev. Dr. Barnard might have stopped in his headlong career, in order to inquire of his own heart, "Will Christ be pleased to find, on descending from Heaven to occupy His future throne on Earth, that no less than 160,000,000 of His professed servants have thrown away their Divinely ordained inheritances, and robed themselves in atheistic-speaking livery instead?"
The Parties to the Final Contest.

It is, indeed, most curiously, but intimately, between the French mètre and the Messianic Great Pyramid cubit, that the final contest must come; for the present British weights and measures, as manipulated by recent parliamentary laws only, are evidently doomed to fall.

Now the metric and the Pyramid systems, though on every other point utterly opposed, are yet, in this one feature, perfectly similar to each other; viz. that they both tend to break down the post-Babel separation of men into nations, and combine them all into one grand government: but then, how is this principle carried out, by whom, for whom, and to what ends, in either case?

The French metric system, though it is not a hundred years old, is wanted by its promoters to override everything else in the world, of whatever age, and whatever origin. All nations are to bow down to it; and though it is found, as it has been at every essential point, full of scientific blunders, and teeming with sacrifices of the comforts and conveniences of the poor and many, to the mere crotchets of a few doctrinaires in the upper classes,—it is never to be altered, never replaced in its rule over all mankind by anything else of similar or dissimilar invention;—no, not though the present order of man's life, national distinctions excepted, goes on upon this earth, as the human prophets of the system say it is bound to do, for so very many hundreds of thousands of millions of years that the physical earth itself will have grown out of shape and size to that degree, as to become totally unfit to serve for a standard of reference to the Parisian mètre, the future symbol of human rule in man, for man, and by man himself alone. Wherefore President Barnard already, in concert with other metricalists, though introducing that mètre to the world, first of all as a scientific earth-measure,
yet finally allows that they do not care whether it is, or is not, of that character; for they intend, by-and-by, to shut out all commensurable reference to God’s heavens above and His earth below; and simply adopt, within the four walls of a closed chamber, a particular bar of metal made by man, as the grand metrological term in which all men,—of many nations originally, but soon, they think, to be swept together into one vast commune,—shall live and move, and have any understanding of material things.

The Great Pyramid system, on the other hand, is the oldest metrological system in the history of the world; has its traces extensively among European peoples; and is next to perfect in all those scientific points where the French system fails. It is, moreover, full of benevolence for the poor and needy; besides teaching that their anguish and woes will last but a few years more; for then, agreeably with the Scriptures, Christ himself shall again descend from heaven, this time with angels and archangels accompanying, and will give to man at last that perfect and righteous government which man alone is incapable of; and so shall the Saviour, even in this present state of the earth as to size and shape, reign over all nations brought under his one heavenly sceptre, until that Divine termination arrives, when time shall be no more.

Human, versus Divine, Ultimate Rules.

Even within the moderate bounds of only one nation, and for a short space of time, how totally insufficient is the best human government to check the evils of humankind! And that, too, even in times of profoundest peace; without any of the terrific aggravations of misfortune indissolubly connected with war, and increasing, rather than diminishing, every day!

With all England’s present wealth and science, or notwithstanding it all, pauperism is increasing in the land;
rich men are richer, but poor men are more numerous and more hopelessly poor, and chiefly in the great cities; for there, in truth, the distressed, the miserable, the sick, the vicious, the under-educated, the persecuted and the persecutors of society, multiply beyond the rate of all government, all philanthropy, to procure any permanent relief or hope of amendment. A good country landlord may perhaps be able to supervise, help, and befriend to some limited extent every person in his little provincial community of men of humble ambition and simple life; but in the large towns, whence the great wonders of modern civilisation emerge—there, in precise proportion as the towns are large, and a few of the inhabitants rich beyond all measure—there the houses of the dregs of the population, and the progressive debasement of humanity, are beyond belief, and go on increasing every day;—recalling with awe the denunciations of Scripture against those who join house to house beyond human power of controlling results.*

* "The truth is that our wealthy and upper classes do not fully realise the manifold dangers to society arising in the overcrowded dwellings of the poor. They see only the wonderful advances made every day in whatever can add to the comforts, conveniences, pleasures, and luxuries of their own living. They never dream that their wealth, splendour, and pride, are surrounded by a cordon of squalor, demoralisation, disease, and crime."

"The higher classes are slow to realise the fact, that in all our large centres of population there is an ever-increasing amount of poverty, immorality, and disease."

"From statistical returns in London, bearing on the condition of St. Giles's, it appears that there were in one district 600 families, and of these 570 severally occupied but one room each. In another, of 700 families, 650 occupied but one room each. In another district, out of 500 families, 460 occupied but one room each. In one of these rooms, 12 feet by 12 feet, by 7½ feet high, eight persons lived. In another room, 13 feet by 6 feet, by 6½ feet high, five children and their parents lived."

"In Manchester small houses are packed together as closely as possible, and in them are stowed away an enormous amount of the poorer part of the population. Six persons in one room,—only one room to live in, sleep in, and in which to transact all the avocations of life."

"In Liverpool, 26,000 houses are occupied by families in single rooms, or a third of the whole population exists under these unsatisfactory conditions,—producing disease, immorality, pauperism, and crime; truth and honesty are, to human beings so debased, mere names."

"Our railway extensions, street improvements, the erection of new
But, throw all nations into one vast community or family of the humankind, as the universal adoption of the French metrical system would be the beginning of,—and then, no matter whether the movement had been made *sicker* (Scottice, in an historical case of murder also, for surer) by the First French Revolution plan of decapitating all members of royal families, and whether socialistic communes had been established in more or fewer lands,—the scales for doing mercantile business and for speculating on in every element of life, must enlarge enormously: with the inevitable result, on one side, of a few clever geniuses making more colossal fortunes, whether honestly or otherwise, than ever; but on the other side, of the wretchedness, the woe, the wickedness, and the degradation of the chief mass of the population going on increasing in all large centres of gathering together, and becoming more terrible in the long future ages than anything chronicled yet.

Contrast this inevitable outcome of human rule, increasing infinitely in disaster if continued for unlimited time, unchecked by anything above the laws of nature as philosophers see them now,—with the sacred system of the Messiah's monarchy when He shall be in presence and houses, public and other buildings, rendered necessary by our ever-increasing prosperity, act with the force of a screw, forcing decent families to quit comfortable homes, and in many cases they have no alternative but to accept shelter in already overcrowded and demoralised neighbourhoods, where there is little light, drainage, water, or ventilation, and no proper convenience for natural wants—and what happens? After a few weeks the strong man is bowed down, and the children are left an increase of pauperism to society."—Extract from the "Social Crisis in England," by W. Martin: Birmingham, 1873.

"At the Manchester City Police Court lately, a man and woman, baby-farmers, living at 128, Knightly Street, Queen’s Road, were charged with the murder of a female infant. They were also charged with attempting to murder two female infants and one male. The former were discovered lying together on some dirty straw, covered with an old damp blanket; the latter was being nursed by a boy, and the woman was detected in the act of trying to conceal the body of the dead child. Two ounces of mouldy flour was the only eatable thing found in the house."—*Edinburgh daily paper*, 1873.
power over all. A faint idea of only one of the characteristics of that kingdom was given in the happy condition of equality in health and relative prosperity, in the camp of the Israelites, when setting forth out of Egypt with Moses; not under human rule only, but under the guidance also of the Angel of the Covenant: and when "there was not one weak one amongst them."

What are all the triumphs of human learning to that glorious result in a great nation; and where has anything like it been seen either before or since?

But in place of approaching such a desirable consummation for our perishing, yet increasing, millions, modern science and the churches, politics, war, and police, are swerving further and further from it every day. Yet poor science, in so far as it is for once truly called science, often maligned and never wealthy,—viz. the exact mathematical science of such excellent and most exemplary men as the late Archdeacon Pratt, and which was "not at variance with Revelation,"*—has yet proved herself of precious service to all mankind, if she has enabled us in the present day of growing doubts, and hearts failing them for fear, to read off the great prehistoric, and prophetic, monument of Melchizedek in the land of Egypt; and to find that, besides scientific metrological knowledge, it utters things which have been kept secret from the foundation of the world; things which not even the Apostles were permitted to know of, 1,840 years ago, viz. times and seasons which are in God's power alone. Wherefore thus it is, that the Great Pyramid is now, and only now, beginning to announce that a termination to the greatest misery of the greatest numbers of human beings, or to their continuing indefinitely under mere human rule, whether of kings or of republics,—is at length drawing nigh.

* See the last (6th) edition of "Science and Religion not at Variance," by Archdeacon Pratt, formerly of Cambridge, latterly of Calcutta, where he died in 1871, to the deep grief of all who had ever had the privilege of meeting him.
Further Details of Time Identifications in the Great Pyramid.

Before attempting, however, to apply the Great Pyramid scale in any final manner to the verbal prophecies of Revelation, which are now those which most concern mankind, it will be well, at this, the last place in our book where it can appropriately be attempted, to note the exactness and all-pervading character of the Pyramid's inner time-symbolisms, especially when they indicate the sacred institutions of the Bible to man.

Now the whole way of approach to the interior of the building is by inclined passages; men may choose either the descending, or the ascending; but accordingly as they do choose and follow either one, so they depart from the other, for every King's Chamber length they travel, by the amount of 365.242 Pyramid inches; or the solar tropical year in terms of mean solar days.

The perimeter of the whole building at the level of that chamber, $25,827$ Pyramid inches, indicates the years of the precessional movement of the earth; and the vertical height from that King's Chamber floor to the angle of the inclined blocks of the topmost hollow of construction above it, marks, when multiplied by 10, the radius of that precessional circle, 8221, nearly.

But this last portion of height, from King's Chamber floor upwards to the inclined blocks, and equal very nearly to the seventh part of the whole vertical height of the building, has been shown by Mr. James Simpson to contain some very instructive reminders not only of the sacred division of days and weeks, but the progress of sacred history itself.

1st. In the number of roofs within that space, five horizontal and similar of granite, and two superior of limestone, and set at a notable but opposite angle to each other. "May the latter not indicate," asks Mr. Simpson, "the two Sabbaths, the old and the new; the one looking
back to creation, the other forward to redemption, yet mutually supporting each other, and forming together the crown and strength of the week?"

2nd. Dividing that whole height by 7, we obtain, with some slight variation, as we take either the floor's level, or the base-of-the-wall's level, below,—and the lower side or middle of thickness of stones above,—something between 116·3 and 117·3 Pyramid inches. Now this is not only the approximate length of the Ante-chamber, and the diameter of the circle of 365·242 days, but two of these heights are contained within the precious King's Chamber, and five of them above it, as before.

3rd. The same results obtain on treating the same space in cubic measure, five equal quantities outside the chamber, two within it, and each of them containing the appropriate number of 10 million cubic inches.

Now this quantity, continues Mr. Simpson, as the proximate contents of the Queen's Chamber, seemed there to typify a whole week, rather than a single day; or the seven days of the Queen's Chamber form one day of the King's Chamber. While the arrangement by height of seven days there, in the King's Chamber, forms in its entirety a seventh of the height of the whole building. So that here is a scale of Sabbatisms rising by powers of seven, and giving 49 at once. Or if we take for their definition the exact Ante-chamber length 116·26, then there are not 49, but 50 of them in the whole height of the Great Pyramid, the 50th being perhaps no other than the chief and topmost corner-stone, and the year of jubilee in the larger cycle of the sacred reckoning of Israel; the chief, too, of all Sabbaths; and well realising—

"The stone which the builders refused is become the head stone of the corner.
"This is the Lord's doing; it is marvellous in our eyes.
"This is the day which the Lord hath made; we will rejoice and be glad in it."—Psalm cxviii. 22—24.

But it may be asked, continues Mr. Simpson, if the...
King's Chamber exhibits a week containing two Sabbaths, why does the Queen's Chamber show a week with only one Sabbath? And then the reason which he gives, perfectly independently, confirms most admirably the House of Judah conclusions of Mr. H. A. Powers, E. Hine, and others given in our last chapter; for, says Mr. Simpson, it is because the first seventh of the Pyramid's height, including, therefore, the Queen's Chamber's low-level floor, represents the Old Testament, the Creation, or foundation Sabbath. The second seventh of the building, containing the Grand Gallery, represents the New Testament Resurrection Sabbath. While the third seventh, including the King's Chamber and the works above it, seems to be a sort of union of both.

Wherefore, still further continues James Simpson, looking at the Great Pyramid's height as an emblem of Sabbatic time, or of time as related and adapted by Divine command to man; not a simple unit or Sabbatism of such time too, but of a group of Sabbatisms,—a pentecostal or jubilee cycle,—one cannot help thinking of man himself in the aggregate of the world's human history. In the pointed summit of the building we see the unity of man's origin; in the rapidly increasing bulk below, the growth of his numbers to fill the earth; and in the definite level plane, the coming end of mere human terrestrial rule.

Now, from apex point to base, the contents of the Great Pyramid in Pyramid cubic inches are near 161,000,000,000. How many human souls, then, have lived on the earth from Adam to the present day? Somewhere between 171,000,000,000 and 153,900,000,000* is the remarkable approach, and the best answer that can now be made.

* These numbers are arrived at by Mr. Simpson thus:—If the present population of the globe is, say, 1,425,000,000, and we suppose the number of past generations to be about 150, or 3 per century: then, taking the average population at two-thirds of the present, we have a total of

$$1425\text{ million} \times \frac{2}{3} \times 150 = 171,000,000,000.$$

But at the more moderate allowance of three-fifths of the present number, the result is 153,900,000,000.
Granite in the ultra Grand Gallery Portions of the Great Pyramid.

Granite is first met with in the Portcullis plugs of the lower part of the first ascending, or "the Hebrew Exodus" passage, and is not seen again until we enter the Ante-chamber, and there it appears almost immediately, and looms large in front of us in the shape of the granite leaf (so called by Prof. Greaves from the leaf across the water-passage way in the lock-gates of a canal); and there, in the Ante-chamber's "Leaf," the material appears in two pieces, one resting on the other. Is there any historic or religious symbology in this?

Yes, has been the answer of several inquirers,—granite in the Great Pyramid typifies both houses of Israel when united under Divine approval and recognition.

Well, therefore, do we meet with it in the beginning of the Exodus Passage, and up to some period near the establishment of the Monarchy in Palestine; some period only, I venture to say, for the present latter or southern end of the granite there, is a fractured surface, and no one can now say exactly how much further it once extended.

Well, also, that we do not meet with granite in the Queen's Chamber, which is set aside for the House of Judah by itself: and equally well that we do not meet with it in the whole course of the Grand Gallery, entirely occupied by the progress of Christianity in general, and the Ephraimitic, or Ten-tribed, House of Israel in particular.

But there is a day to come, which all Jews as well as Christians and British Israelites look forward to, of which the Lord has said by Ezekiel (xxxvii. 15—28), that He will then distinctly take the House of Judah and such children of Israel, chiefly two tribes, as may be his companions, and that He will then also take the House of Joseph or Ephraim, and such children of all the House of
Israel, or the ten tribes, as may be his companions, and He will make them, these two diverse houses and groups of tribes, into one nation in the land on the mountains of Israel, and one king shall reign over them; and they shall be God's people, and He will be their God.

Now precisely such a day appears to be indicated in the beginning of the Ante-chamber, where granite commences to be seen, not only in floor, walls, and ceiling, but in the granite leaf, of two pieces; the lower piece, with its cubic capacity of a quarter of corn, indicating the sacred and prophetic "stick of Ephraim," while the upper, with its almost heraldic badge of the Boss, similarly indicates the stick of Judah with whom is the sceptre. And the Lord God will rule over them; a condition typified by the three granite stones of the ceiling of the Ante-chamber, while the square of that number forms the ceiling of the King's Chamber, representing a still higher expression of a Divine future government for all the sons of men.

Again, in Isaiah (xi. 11), the day of the Lord is indicated when Ephraim and Judah shall cease their oppositions and be united, as in the granite leaf. While the Ante-chamber itself, measuring round its walls close under the ceiling 363, but round the walls near the floor, behind the wainscot more probably, 365, &c. Pyramid inches, is apparently an illustration of that very day of the Lord; the same day that shall be a thousand years; in fact, the very Millennium; and the day, also, during which the Great Pyramid will be a universally acknowledged sign and witness to the Lord.

The Testimony of the Revelation of St. John the Divine.

But the world is not yet historically arrived in the Ante-chamber and granite parts of the Great Pyramid,—we are still in the year 1877 A.D., on the great step at the end of the Grand Gallery. That step exhibits the standards of
linear measure of Great Britain and Israel conjoined (see p. 520), but there is no reference there, as yet, to Judah. Everything, however, in the Great Pyramid, is by measure: and it is apparently to this very time, and certainly long after the Reformation and its wars; long after, too, the sending the free Bible, the Gospel message to many peoples and nations and tongues and kings; long, also, after the sixth trumpet has sounded, but before the seventh and final trumpet begins to sound,—that the 11th chapter addresses itself; and opens so uniquely and appropriately with the Pyramidal mensuration idea:

"And there was given me a reed like unto a rod (measuring-rod): and the angel stood, saying, Rise, and measure the temple of God, and the altar, and them that worship therein."

At the present epoch of history there need be no pretence among men, that they do not know what they are called on here to measure; for the Great Pyramid is the only remaining piece of Divine architecture, temple, or building prepared according to designs imparted by Divine inspiration, in visible existence; and therefore the only one of such most notable structures capable of being now measured. And it has, testo every page of the present book, on being recently measured with something approaching to accuracy, proved by these very measures that superhuman wisdom in high science, more than 4,000 years in advance of all mankind at the time, and in its chief results not surpassed yet, must have presided at its arrangement and construction.

"But the court," continues the beloved Disciple, "which is without the temple leave out, and measure it not; for it is given unto the Gentiles: and the holy city shall they tread under foot forty and two months."

That is to say, apparently, or by the light we are now receiving from the Pyramid, this injunction implies, "The country outside the Great Pyramid, even Egypt and
Palestine and all the land of Arabia, measure them not; no metrical consequence of any spiritual significance shall be found there by so doing; and they are further given over by God to the Mohammedans to have, to possess, and to tread under foot for forty and two months of years, i.e. 1,260 years." Which period, dating from the Hegira, or the universally acknowledged effective beginning of Mohammedanism, in the year 621-2 A.D., will close of itself, without the efforts of man, in the year 1881-2 A.D., or simultaneously with the closing of the first Christian Dispensation as marked in the Grand Gallery.

"And I will give power," continues the Spirit of God, "unto my two witnesses, and they shall prophesy a thousand two hundred and threescore days, clothed in sackcloth. These are the two olive-trees, and the two candlesticks standing before the God of the earth."

These two witnesses to God are now supposed to be the two Houses of Israel,—Judah and Ephraim; and their testimony in sackcloth is the melancholy, though diverse, history of those branches of them in the Eastern lands which have been, and are, under the iron-heeléd domination of the Mussulman power for the appointed 1,260 years.

But when that power shall fall, in 1881-2 A.D., shall they, those witnesses, then reign in the earth—shall the full time of their glorious King be arrived? Far from it; the low, extra low, passage-way from the Grand Gallery to the Ante-chamber forbids the idea; and, besides that, the Revelation of St. John expressly says, that it is just then that a severer woe overtakes them; for it is at that moment "when they shall have finished their testimony, the beast that ascendeth out of the bottomless pit shall make war against them, and shall overcome them, and kill them;" though in a manner ineffectually, the next following verses declare; showing also, most emphatically, that God will interfere supernaturally for them, and save
them in the end with a great salvation; even all those who are still found faithful and true; and resist to the last both the first beast, and the still more dangerous second one, of whom more hereafter.

But that final salvation is to be in Ante-chamber days, and the troubles are to commence previously, on all who are left on the earth after the Saviour shall have supernaturally removed his elect; and after, too, that the seventh vial shall have been poured out into the air; for it is after that dread action, in accordance with the words of St. John (xvi. 18), there shall be voices and thunders and lightnings; and a great earthquake, such as was not since men were upon the earth, so mighty an earthquake and so great: and also the great hail out of heaven, every stone about the weight of a talent, and to fall "upon men."

Mr. Sydney Hall, a Pyramid author, who is inclined to look on the seven overlappings of the Grand Gallery as the seven times of each species of warning in the Revelation, and the twenty-eight ramp-holes on either side, as reminding of the four species of those warnings—seals, trumpets, thunders, and vials,—well remarks, that we have passed, in history, twenty-seven of them, and the twenty-eighth only remains to be accomplished; and when he has expounded those woes which are to follow the seventh vial, he feelingly asks,—

"Is this fearful description of coming events, which thoughtful minds have in daily contemplation, purely imaginative? Are the predictions relating to these last times to have no more weight with the mass of men than the warnings given to the old world by Noah?"

"Surely the indifference which is shown to the signs of the times by mankind in general has been put on record by our blessed Saviour himself,—

"'As it was in the days of Noah, so shall it be in the days of the Son of Man. They did eat, they drank, they
married wives, they were given in marriage; until the
day that Noah entered into the ark, and the flood came,
and destroyed them all. Even thus shall it be in the day
when the Son of Man is revealed.' "That day" having
been then a long future one; and its revelation (that the
so-called Son of Man is also the Son, or the Branch, of
God) having been ordained, when it should come to pass,
to be a Revelation with power which none of mankind
will be able to withstand.
CHAPTER XXV.

GENERAL SUMMATION; SECULAR AND SACRED.

LET us now cast a rapid glance over the principal results of our long research, including therein the commencement made so happily by John Taylor, sometime previously to 1859.

So unexpectedly, too; for when that fine old man entered the field of Christian thought and scientific research applied in that direction, the world had become tired of the Great Pyramid, and disgusted with its blankness to society. A witness, it was, solemnly touching all humanity during 4,000 years, yet in itself unobtrusive, silent, hurting not any one, standing outside the current ways of life and progress, whether in peace or war,—but it had become odious to mankind simply for its calmness, its serenity, its purity; and, like Aristides the Just, it must be ostracized because it was just, and true, and good.

Hence, long as had been the night of the world's general ignorance concerning the Great Pyramid, the darkest part of that night was only about forty years ago; for then it had become quite fashionable openly to contempt the primeval monument. Even one of the most philosophic authors of that time—and approved, too, within the golden circle of the Court—could write: "The Pyramids! What a lesson, to those who desire a name in the world, does the fate of those restless, brick-piling monarchs afford! Their names are not known; and the only hope for them is, that by
the labours of some cruelly industrious antiquarians, they may at last become more definite objects of contempt."

That was human prophecy; and conforming thereto, though in a more decorous manner, as right and proper with a poet, came the abandonment of all hope of man ever accomplishing anything with such a lost, lost subject as the Great Pyramid; or as Petrocchi expressed it thus:—

"I asked of Time: 'To whom arose this high
Majestic pile, here mouldering in decay?'
He answered not, but swifter sped his way,
With ceaseless pinions winnowing the sky.

To Fame I turned: 'Speak thou, whose sons defy
The waste of years, and deathless works essay!'
She heaved a sigh, as one to grief a prey,
And silent, downward cast her mournful eye.

Onward I passed, but sad and thoughtful grown;
When, stern in aspect, o'er the ruined shrine,
I saw Oblivion stalk from stone to stone.

'Dread Power!' I cried, 'tell me, whose vast design—'
He checked my further speech, in sullen tone:
"Whose once it was, I care not; now 'tis mine."

But how often is not the extremity of man the very opportunity of God! And so it was here, for the identical time when philosophers of the highest cultivation and best modern science had totally given up the Great Pyramid,—that was the eve of its long-prophesied rise as a witness unto God in the land of Egypt.

Charged in the beginning of human time to keep a certain message secret and inviolable for 4,000 years, the Great Pyramid did so. And further appointed to enunciate that message before all men, with more than traditional force, more than the authenticity of copied manuscripts or reputed history,—that part of the building's usefulness began when John Taylor's examinations of it commenced.

The earliest results thence arrived at were, it is true, little beyond the metrological; yet so clear, bright, and hopeful was the new light which then began to shine upon the monument, that Taylor's poet-friend of his latter days,
Patrick Scott,* was constrained soon after to address the Great Pyramid, no longer as the property of Oblivion, but as then beginning in some measure to be understood:—

"Dwelling like greatest things alone,
Nearest to Heaven of earthly buildings, thou
Dost lift thine ancient brow
In all the grandeur of immortal stone,
And, like the Centuries' beacon, stand,—
Up-springing as a tongue of fire—
To light the course of Time through Egypt's mystic land.

'Tis not for poet to inquire
Why thou wast built and when?
Whether, in monumental state,
So great thyself to tomb the great
Beyond their fellow-men?
Or dost thou, in thy bodily magnitude,
Not uninformed nor rude,
Declare the abstract ties which Science finds,
Seen by the light of geometric minds,
In fix'd proportions, each allied to each?
Or dost thou still, in inferential speech,
Reveal unto mankind the girth
Of the vastly rounded Earth;
And to the busy human race
Bequeath a rule, to guide the range
Of all the minor measurements of Space,
Which Traffic gets, and gives, in endless interchange?

Enduring pile! Thou art the link that binds
The memories of reflective minds—
Vast mass of monumental rock sublime,
That to the present Age dost join the Youth of Time."

But even the poet's eye, "in fine frenzy rolling," was all unprepared for the fulness and the majesty of the Great Pyramid's message, as step by step it came to unfold itself, rather than be unfolded by any one hand; and if it is now demanded of us, and in all the dryness and matter-of-fact style of plain prosaic explanation, why the Great Pyramid was built,—the answer must partake largely of a duplicate character; or thus:—

(A.) To convey a new proof to men in the present age, as to the existence of the personal God of Scripture; and of His actual supernatural interferences, in patriarchal

times, with the physical, and otherwise only sub-natural, experience of men upon earth. Or to prove in spite, and yet by means, of modern science, which in too many cases denies miracles, the actual occurrence of an ancient miracle; and if of one, the possibility of all miracles recorded in Scripture being true.

(b.) In fulfilment of the first prophecy in Genesis, which teaches, together with all the prophets, that of the seed of the woman without the man, a truly Divine Saviour of Mankind was to arise and appear amongst men; a man apparently, amongst men; in poverty, too, and humility; in further fulfilment thereof, the Great Pyramid was to prove,—in the ages long after its occurrence, say in 1870 A.D.—that precisely as that coming was then a real historical event, and took place at a definite and long pre-ordained date,—so the Saviour’s second coming, when He shall descend as the Lord from heaven, with the view of reigning over all mankind, and ruling them all with one Divine sceptre, and under one all-just, beneficent, omnipotent sway, that that great event will likewise be historical, and will take place at a definite and also a primevally pre-arranged date.

Now let us look a little closer into the first of these two reasons, or purposes; viz.—

(A.)

In an age when writing was a rarity indeed, and barely more locomotion was indulged in by any of mankind than merely to roam with flocks and herds from summer to winter pasturage and vice versa, and this only in little more than one central region of the earth,—in that primitive age it was announced that the day would come, when of the multiplication of books there should be no end,—when knowledge should be wonderfully increased, and
men run to and fro over the whole earth, even as they are doing now by railway and steamer from London to the very Antipodes. In the interests of commerce they do it every day; and in the interests of science, they are (1874) on the eve of specially doing it from every country of Europe and America, at unlimited expenditure of national wealth,—though only to gain, after further years and years of laborious calculations, a little more knowledge of the exact numbers to be set against a particular datum in astronomy which has already been ascertained within a hundredth of the whole amount, and has had thousands and tens of thousands of money spent upon it. And all these countries are highly encouraged and applauded for so continuing to spend their national resources and results of taxation of the people, because this is the scientific age of the world, when science-knowledge to the most minute and microscopic degree has so excessively developed amongst mankind, that every one is open-mouthed for science; and science is supposed to enter into, and support, and deserve (at least when it is prosecuted in the central offices and metropolitan head-quarters of any powerful Government), the best of every ramification of life.

Therefore, it would seem to be, that an Omniscient mind which foresaw in the beginning the whole history of the world under man, ordained that the message, arguments, proofs, of the Great Pyramid should not be expressed in letters of any written language whatever, whether living or dead,—but in terms of scientific facts, or features amenable to nothing but science; i.e. a medium for the communication of ideas which would be humanly known and generally and exactly interpretable, only in the latter day. The employment of a written language, moreover, would have been a restricted mode of conveying the message essentially and characteristically to one nation alone; whereas the Pyramid’s message was intended for
all men, even as Christ's kingly reign at His second coming is to be universal.

Trace, too, the several scientific steps by which this purpose of the Great Pyramid is being, and has been, accomplished; and note how each and every one of those steps, while of the most important class for all science, is yet of the simplest character to be looked on as being any science at all:—so that the poor in intellect, and neglected in education, who are, and always will be, the many, may partake of it, as well as the more highly favoured who are only a very few.

Not in the day of the Great Pyramid at all, nor for centuries on centuries thereafter, but rather since the revival of learning in Europe, no pure mathematical question has taken such extensive hold on the human mind as the "squaring of the circle." Quite right that it should be so, for a time at least, seeing that it is the basis alike of practical mechanics and high astronomy. But as its correct quantity has been ascertained, now more than one or two hundred years ago; and, under the form of \(\pi \), or the proportion of the diameter to the circumference of a circle, is found in almost every text-book of mathematics to more decimal places than there is any practical occasion for (see page xvii),—men might rest content, and go on to other subjects. But numbers of them do not, and will not; hardly a year passes even in the present day, but some new squarer of the circle appears. Generally a self-educated man, and with the traditional notion in his head, that the proportion of length between the one line already straight and the other to be made straight in a circle, has never been ascertained yet; and that either the Academy of Sciences in Paris or the Royal Society of London has offered a large reward to whoever will solve the problem: so down he sits to the task, and sometimes he brings out a very close approximation to the first few places of figures in the fraction, by practical mechanics; and sometimes by
erroneous geometry he produces a very wide divergence indeed. But occasionally the most highly educated university mathematicians also enter the field, and bring out perchance some new algebraic series, by which a more rapid convergence than any yet invented to the true numbers of π may be obtained; see, for instance, such a case in the last volume (XVII.) of that most important one now amongst the scientific serials of the world, the Smithsonian Contributions to Knowledge (Washington, 1873); besides its references to similarly intended formulae in other recent and good mathematical works. Wherefore that numerical expression, 3·14159 + &c. is shown, on all hands and in all countries, to be one of the most wonderful, lasting, characteristic, and necessary results of the growth of science for all kinds and degrees of intellectual men; and in an increasing proportion as they arrive at a high state of civilisation, material progress, and practical development.

Is it not, then, a little strange, that the first aspect which catches the eye of a scientific man looking with science and power at the ancient Great Pyramid, and the Great Pyramid alone of all the pyramids in either Egypt, or anywhere else (see pp. 15-25), is, that its entire mass, in its every separate particle, all goes to make up one grand and particular mathematical figure expressing the true value of π, or 3·14159 + &c.

If this was accident, it was a very rare accident; for none of the other thirty-seven known pyramids of Egypt contain it.* But it was not accident in the Great Pyramid, for the minuter details of its interior, as already shown (see pp. 175-179), signally confirm the grand outlines of the exterior, and show again and again those peculiar proportions, both for line and area (see pp. 180-183),

* The learned Dr. Lepsius enumerates sixty-seven pyramids; whereupon Sir Gardner Wilkinson remarks, with irresistible pathos of modesty and feeling, “But it is unfortunate that the sixty-seven pyramids cannot now be traced.”
which emphatically make the Great Pyramid to be, as to shape, a \(\pi \) shaped, and a \(\pi \) memorialising, Pyramid; or the earliest demonstration known of the numerical value of that particular form of squaring the circle which men are still trying their hands and heads upon.

Physical Science of the Great Pyramid.

Again, in physics, as a further scientific advance on the foundation of pure mathematics, is there any question so replete with interest to all humankind as, what supports the earth; when, as Job truly remarks, it is hung from nothing; when it is suspended over empty space, and yet does not fall? In place, indeed, of falling destructively, the earth regularly revolves round a bright central orb; and in such a manner as to obtain therefrom light and heat suitable to man, and making, together with its axial rotation, day and night and summer and winter, and the secure chronology of the equinoctial precession. What is the nature, then, of that path which the earth so describes; and what is the distance of the physical-life luminary round which the earth now revolves, but into which it would fall straightway as to its final bourne, and be destroyed by fire, if that onward movement were arrested?

As in squaring the circle, so in measuring the distance of the earth's heating sun, both learned and unlearned have been working at the question for 2,300 years, and are still for ever employing themselves upon it; and nothing that all nations can do, whether by taking their astronomers away from other work, or enlisting naval and military officers as temporary astronomers, and furnishing them profusely with instruments of precision of every serviceable science, and sending them to every inhabitable, and some uninhabitable, parts of the earth, is thought too much to devote towards a hoped-for improved solution of
this question of questions in physics, for the future possible behoof of a world grown scientific; but they are far from having arrived at even tolerable exactness yet. Nevertheless there is the numerical expression for that cosmical quantity, to almost any refinement, nailed to the mast of the Great Pyramid from the earliest ages; for it is its mast or vertical height, multiplied by its own factor, the ninth power of ten, which is the length all modern men are seeking, and struggling, and dying, and will continue to work till they die, in order to get a tolerably close approach to something like the arithmetical figure of. (See pp. 55—62.)

And if from solar-system quantities we turn to matters of our own planet world in itself alone,—does not every inhabitant thereof yearn to know its size; and yet was not that impossible to all men, of all the early ages, to attain with any exactness? In illustration whereof it is recorded, that the Deity confounded Job at once with the words: "Hast thou perceived the breadth of the earth? Declare if thou knowest it all.”*

But precisely that thing which all mankind from the Creation up to the day of Job, or of Moses, had not accomplished, and had no idea or power how to set about to perform it, and did not make even any rude attempts in that direction during the following 2,500 years, though they may know it now with considerable accuracy—was not only well known to the author of the design of the Great Pyramid, but was there directly and emphatically utilised; being employed as that most significative, memorial standard, in terms of which the base-side length is laid out; or with accurately decimalised reference to the earth's peculiar figure, size, and its polar compression as created by God, who alone owns the whole. (See pp. 38—43.)

Who but the Lord could have done that metrological

* Job xxxviii. 18.
wonder, above men's power then to do; and not practically and finally accomplished by all men yet? For, "have ye not known? have ye not heard? hath it not been told you from the beginning? have ye not understood from the foundation of the world? It is He (God) that sitteth upon the circle of the earth." It is only He, also, "who hath measured the waters in the hollow of his hand, and meted out heaven with the span, and comprehended the dust of the earth in a measure, and weighed the mountains in scales, and the hills in a balance."* (See pp. 35—49.)

Who, indeed, but the God of Israel could have performed this last-mentioned still greater wonder than any mere linear measure, so far as its exceeding difficulty to men even in the present scientific generation is concerned; and could have actually introduced, both into the King's Chamber Coffer, and the said chamber itself, an expression for the next most important quality, after size, of the earth-ball we live upon—viz. its "mean density" (see pp. 158—162); besides expressing in the base diagonals, as well as in the King's Chamber level's circuit, of the Great Pyramid the enormous cycle of years composing the earth's disturbed rotation or precession period of the equinoxes; a period more than six times as long as the whole historic life of man yet accomplished, and the only known phenomenon for keeping longest records, suitable at once to all degrees and states of men. (See pp. 342, 407, 539.)

Accompanying Characteristics.

Simultaneously, too, with all these scientific discoveries, came out proofs upon proofs that the Great Pyramid is spiritually and religiously separated in the most complete manner from everything hitherto known as Egyptian,

* Isaiah xl. 12, 21, and 22.
and even from every one of the other Pyramids in Egypt as well.

(1.) By being centrally in Egypt, which is central to the land surface of the whole world, the Great Pyramid becomes similarly central to the Kosmos of man's earthly life and habitation; but yet has no profane Egyptian building to compete with it in architectural intention to be in that remarkable position; because it, the Great Pyramid, alone visibly stands with appropriate topographical attributes over the outspring of that country's thence-formed and thence-originating grand delta, or rather open-fan-shaped area of alluvial, and always intensely food-producing, soil. (See pp. 76—81.)

(2.) At, or immediately above, the centre, therefore, of physical and hydraulic origination of the Lower Egyptian natural land, rather than human, artificial, and idolatrous kingdom, the Great Pyramid was placed. Yet by virtue of the sector-shape of that land, standing both at the centre and also at the extremity;—just as with that "altar" or "pillar," or, more truly translated, "Pyramid," "to the Lord, in the midst of the land of Egypt," and also "at the border thereof," which Isaiah (xix. 18—20) expressly states is to be manifested in the last days. And for what purpose?—for anything Pharaonic, or glorifying to the reputed wisdom of the idol-serving priests of the Egyptians? Certainly not; but to perform no less exalted a service than to act as "a sign and a witness unto the Lord of Hosts" (Isaiah), as well as to be a parable and wonder to all intervening ages (Jeremiah xxxii. 18—20).

(3.) Next, please to remark, that at every structural point where the workmanship of it is examined with sufficient minuteness, ability, and knowledge, the Great Pyramid is found not only unlike the most characteristic buildings of the ancient people of Egypt, but is actually antagonistic to them. Especially is this the case in the
Great Pyramid's opposition to their inveterate tendencies towards idolatry, animal worship, egotistic assertions of self-righteousness, Cainite boastings of themselves, with contempt and hatred of all other peoples. And while all these latter native and indigenous buildings, together with the gigantic stone idols of Egypt, are doomed in the Scriptures to bow down, to be destroyed, and their country to become the basest of kingdoms (see pp. 106—110),—the Great Pyramid, on the other hand, is alluded to in the most honourable manner, both in the New and Old Testaments; its headstone being even taken as a type of the Messiah; and the prospect of its being brought forth to view, having been described there, as a sight which caused the morning stars to sing together, and all the sons of God to shout for joy, with cries of "Grace, grace unto it!" (See pp. 504, 506.)

(4.) The Great Pyramid, in a land where all other characteristically Egyptian buildings are profusely decorated and covered from top to bottom, and both inside and out, with inscriptions of portentous length and giant size both in writing, painting, and sculpture,—the Great Pyramid has, in and upon its finished parts,* no decoration, no painting, no inscription, no destination given to it, in any human language under the sun.

And yet, while no other Egyptian buildings can speak to their own absolute dates, and have, by the imperfections of their merely differential chroniclings, sent all the scholars of the museums and universities grievously astray on impossible, ridiculous, mutually contradicting, and totally anti-Biblical chronologic schemes (see p. 456),—the Great Pyramid sets forth its own absolute date on unerring grounds of high astronomical science. (See p. 348.) Whereupon, being already allowed by the best Egyptologists to be relatively older than all other known build-

* Excepting, therefore, the oft-mentioned rude quarry-marks on the rough stones in Col. Vyse's "Hollows of Construction."
ings of any kind of pretence, whether in Egypt or any other part of the ancient world (see pp. 459, 470),—the Great Pyramid takes at once the lordly position of prescribing limits in time to all those other buildings, or we may say to all architecture whatever; and those Great Pyramid chronological limits are now found to be in an eminent manner confirmatory of Holy Scripture.

(5.) While every other ancient structure of Egypt, and in so far of the world, was built for its own time and its then owners, and has had in their day its utilisation, its attendants, worshippers, frequenters, or inhabiteres, either living or dead,—the Great Pyramid has had no use ever made of it. No living man could enter its stone-filled passages when finished; no dead body either was, or could have been, regularly deposited there; the coffer, or so-called sarcophagus, is too broad to pass in any way through the lower part of the first ascending passage (see p. 224);—the king of that time, according to triple historical tradition, and recently found local indication, was buried elsewhere (see p. 112, and Plate XV.); neither, until the last very few years, was the building in any degree understood by any nation, though all nations have guessed at its hidden mystery, its parable in stone; a prophetic and portentous parable, long since thrown in the very way of the ungodly in order that, "seeing they might see and not perceive, and hearing they might hear and not understand.”

A thousand years ago Al Mamoun broke violently into the building (see pp. 92—105), but discovered nothing of its design as now known and now found to be so invaluable; and though others smashed many of the stones, chipped the edges of more, and performed whatever mischief man could perform with axes, hammers, pitch, profanations, and fire,—yet they have no more prevented certain grand ideas with which the whole building was fraught in the beginning of the world, coming to be appre-
ciated in these last very few years,—than did the destruction of the Temple of Solomon and the carrying away of all its golden vessels to assist in the service of idols in Babylon,—prevent the accomplishment of the Hebrew prophecies touching their chief end, the appearance of the Saviour of mankind among the Jews in Jerusalem 1,877 years ago.

And when that event did take place, even at the appointed time, Satan himself is held by some writers to have joined with the Chief Priests in deriding the Saviour of mankind as He hung on the cruel cross ("the accursed tree" of the Bible, and nowhere commanded there to be made into a symbol of Christianity or a decoration of the Churches); on a day, too, which seems proved to have been the 1st of April of that year of the Crucifixion,* and to have survived unhappily to this time as a day of mockery and derision, and "of putting forth of the finger," though it is to be hoped in ignorance, among all Christian communities:—yet precisely what Satan and the Jews did think they actually saw to be the ruin and defeat of Him who was their Messiah, proved to be, with His following Resurrection from the Dead, the accomplishment of His then required Divine part, the entering into His glory, and the beginning of the full assumption of His power and everlasting dignity.

So, too, the Great Pyramid, exactly when it was most under the heel of this world, has now been found just then to have risen, not only to the accomplishment of supernaturally difficult scientific questions,—but to have reached forward into things still more difficult, still more important to humanity, than any science; and such as I next propose to allude to under the head—

"Produce your causes, saith the Lord; bring forth your strong reasons, saith the God of Jacob.

"Let them bring them forth, and show us what shall happen: let them show the former things, what they be, that we may consider them, and know the latter end of them; or declare us things for to come."—Isaiah xli. 21, 22.

Now such acts as these are evidently impossible to all men, by the light of merely human reason; and yet do they form the second and most notable part of the object wherefore the Great Pyramid was built; for that part, as already mentioned, appears to begin somewhat thus; viz. to show the reality, and the settled, as well as long pre-ordained, times and seasons for each of the two comings of Christ. Both for that one which has been, i.e. which was 1,877 years ago, and under whose then commenced spiritual dispensation we are still living; and also for that other one, in kingly glory, power, and universal peace, which is yet to beam upon us.

The First Coming was for the sake of inaugurating amongst all men personal, private, and individual Salvation; in which respect, and which respect alone, it was a "finished and complete work."

The Second Coming, on the other hand, is for national, public, and governmental Salvation: a something which men, even with the personal Salvation of the First Coming to guide and assist them, have been wholly unable to bring about; teste the hundreds of thousands of men nationally engaged at this moment in killing, plundering, destroying each other, and more grievously the non-combatant part of the peoples they are invading, in the most horrible and unchivalrous* manner. For the sake of Christ, they say: but in token whereof, in place of Repenting, and loving

* In the so-called Dark Ages a hero, one confessed by the people as such, was a hero indeed. He went into the fight for the defence of the oppressed, and in his own person; often he bore the whole brunt of the battle, and never took any unfair advantage of an opponent; never fell upon and slaughtered him when he was unarmed, or asleep, or looking
their enemies,—they reload their guns, and pay idol-worship to ornamental models of the accursed tree, on which their Lord was tortured when in the human form, by the heathen soldiers of Imperial, Cæsarised Rome.

Exactly when Christ’s Second Coming—which will put an end for ever to all wars and human authorisations for man to slaughter his fellow-men, women, and children—is to take place, is a question towards which the Great Pyramid suggests in the Grand Gallery, that the existing Christian dispensation must first close (in some partial manner), the saints be removed, and a period of trouble and darkness commence; though for how long, it is difficult to say.

Very long the time can hardly be, if the Pyramid standards of the metrology of that universal kingdom—whose angels in love, not soldiers under arms, shall keep order in future over all the earth—are already beginning to appear from out of the place of security where they were deposited in the beginning of the world.

But that place of security alluded to, the Great Pyramid, is in Egypt. Wherefore let us ask, is Egypt ready to receive the Lord?

Of Egypt in the latter day, incomprehensibly wonderful things are recorded in Scripture. It is apparently to be, notwithstanding its ages of baseness and bitter punishments (see p. 106), the first of the three,—Egypt, Assyria, and Israel: and the Lord of Hosts shall bless it, saying, “Blessed be Egypt my people, and Assyria the
work of my hands, and Israel mine inheritance” (Isaiah xix. 24, 25).

But previously to that day, and after the Great Pyramid shall have become manifested as a sign and a witness to the Lord of Hosts,—there shall go up a great cry unto the Lord from the Land of Egypt: “for they shall cry unto the Lord because of the oppressors, and He shall send them a saviour, and a great one, and he shall deliver them. And the Lord shall be known to Egypt, and the Egyptians shall know the Lord in that day, and shall do sacrifice and oblation; yea, they shall vow a vow unto the Lord, and perform it. And the Lord shall smite Egypt: He shall smite and heal it: and they shall return even to the Lord, and He shall be entreated of them, and shall heal them.”

The New Policy of the present Egypt.

Now what is this great cry to go up unto the Lord from Egypt, and because of the oppressors?

Of old, all men who drank the waters of the Nile, whether by open canals or underground filtration into wells, on either side of the lower and final part only of the course of that river, say from Assouan, say even from the Second Cataract in Nubia down to the sea; i.e. from the very moderate southern distance that can pretend to any Coptic civilisation or people, down to the Mediterranean shore in the north,—all these men were considered to belong, by natural law, to Egypt and its kings.

But at that Second Cataract, the Nile is already a huge river; has received all the supplies it is to receive; and has been long flowing from its far-away fountains of the South through tribes and nations measureless to man. Wherefore that old-world command over a few peoples on either side of merely the lower course of the Nile, is not enough to satisfy the modern more ambitious ruler of Egypt: and within the last few years a
hardening of the heart has touched the Mohammedan Court at Cairo, to apply the ancient proverb to all the length of the stream, as well as to the lower part only; and to maintain, that all lands through which the Nile flows, even from its mysterious sources in the southern hemisphere (though those lands have remained unknown to Egyptians from the beginning of the world up to the present day, and have only lately been partially discovered by Englishmen and Christians), that those lands and their inhabitants all belong by right to Egypt.

The main reason, as yet given forth, why modern Mus- sunman Egypt should have a claim to attack and take possession of the other Nile peoples, and not they take Egypt, if there is to be any taking at all amongst them,—seems to be,—that Egypt is the only one of those states which has delighted mankind (but offended God) through forty centuries, with triumphs of ornamental idolatry in architecture, similar profane glories of sculpture, theotechnic mysteries of painting, and written human false wisdom. Wherefore every zealous paid servant of the Egyptian state has now to argue this case to the outside world; and to maintain victoriously against all comers,—that his Highness the Khedive, being the de facto successor of that arch-idolater Rameses the Great, is fully justified in sending up armies to make war on all men and countries so far as they may be found eventually living on any portion whatever of the course of the Nile; and that he has an hereditary Pharaonic right forcibly to annex them all.

The scheme has a certain air of grandeur about it; so majestically ignoring all ordinary ideas of what constitutes a casus belli; and the very notion of present-day Turks, who cannot draw at all, and are bound by their religion to eschew everything in the shape of human portraiture,—the idea of them, of all men, claiming the reward due to Egypt's ancient artistical skill, and her
sculptured idolatry too,—is rich beyond expression. But the underground, burrowing, plotting wisdom wherewith the subtle measures for accomplishing the purpose are being taken, is a feat transcending diplomacy; and yet, "the Egyptians are men, and not God; and their horses flesh, and not spirit;" wherefore out of those very ambitious steps and unscrupulous means, as the pride that goeth before a fall, it may be that the close of the Turkish rule in Egypt’s land will come.

\[\textit{Slave-holders possess Egypt.}\]

In setting up again, and in a new French garden, as the officials of the Khedive are now doing, the statues of Rameses, and the stone and metal idols of old Egypt, in order to claim aesthetic credit with European \textit{dilettanti} (who themselves dabble far too much in the accursed thing), these Egypto-Turks are losing their only claim, as Mohammedans, to any favour from the God of Israel over the reprobate, image, cross, picture, and relic worshipping Christians of the East. These latter degraded men being apparently the wretches who, though firstly plagued by the locust and scorpion-like Saracen armies that proceeded out of the smoke from the bottomless pit (see p. 93); and secondly, more than decimated by the countless armies of warrior horsemen who were loosed from the Euphrates (Rev. ix. 14) for certain 391 or 396 years (see p. 109), yet, to the last, "reptented not of the works of their hands, that they should not worship devils, and idols of gold and silver, and brass and stone, and of wood; which neither can see, nor hear, nor walk" (Rev. ix. 20). And the Khedive’s ruse of sending up a large army to the sources of the Nile, under an \textit{Englishman} first, and then a \textit{United States American}, forsooth, to annex all the negro countries he should discover, to the slave-holding Moham-

* Isaiah xxx. 1, 3. † Sir Samuel Baker, and Col. Gordon, respectively.
The pretended purpose of putting down the slave-trade, when its result can only be to give into the slave-holding and slave-employing hands of the Egyptian Government more extensive and uncontrolled supplies of slaves than ever,—while that ruse carries deception to a point beyond which probably the arch-deceiver himself could no further go, it may be the very item that was required to fill the catalogue of woe, and bring the question of the slavery of mankind to its last footing.

The English emancipation was great; the Russian greater; the American still greater; but the Egyptian may prove to be the greatest of all; for with it, placed as it is, too, at the very fountain-head of African slavery, the slavery of Constantinople and of the Mohammedans generally, will fall too; and that slavery of theirs includes another horror within itself, far beyond all that Christian slavery ever did; for it requires Government manufactories for converting boys into neutral machines, fit to guard the populous harems of rich Mohammedans;* and the pains, the woes, the slaughter amongst the poor innocents, before the fell purpose of their tyrant masters is accomplished, can be known to God alone.

"Oh, but when the slaves do reach Cairo (for these heinous manufactories are a long way up the river), they are well treated!" say some would-be apologists for the secret system of slave-marts which they know go on in Egypt, in spite of all the counter-protestations to Europe by an anti-Christian Government which profits by, and uses, them. "When the slaves do reach Cairo," say these well-meaning but weak apologists, "they get considerate

* This morning, 13th April, 1877, the papers contain accounts of questions asked indignantly in Parliament touching the recent sale in Cairo of 300 Circassian women and girls belonging to the late Minister of Finance therein. Subsequently we hear, from an American missionary, of the Khedive's setting up three of his sons, in a large palace, and furnishing them with two thousand slaves, most of them newly obtained.
masters, enter rich households, and pass far more easy, comfortable lives, than any of the independent Arab, or Coptic, fellahs in their agricultural villages."

"But the principle is bad," insists a man of sterner mould, "and the results must therefore be degrading to the master as well as to the slave; not to say anything of all the previous, and some following, cruelties, which shall make so many afflicted ones in the land of Egypt cry to the Lord because of the oppressors. And though the Lord may have long tarried, the time will come, and the Great Pyramid indicates it to be near, when, in some supernatural manner, God shall send them a saviour, and a great one, and he shall deliver them."

The Egypt of the Lord Christ.

If, then, the present possessors of Egypt be not those of whom the Lord Christ is likely to say (at least, in their present and most unrepenting state), when His personal reign begins,—"Blessed be Egypt my people, and Assyria the work of my hands, and Israel mine inheritance,"—who are those favoured ones, in and near Egypt, likely to be?

Of the present localities of the ancient Assyrians, we do not know much very positively, though there is a growing idea that they have drifted with the human current of history westward from their original habitats, and are now to be found amongst those whom the ethnologists delight to call Indo-Germans; but who seem phlegmatically content to be, and remain, an inland, continental people without a single foreign possession. But of Israelites our nation is now becoming, even year by year, through means of the works of the late John Wilson and the existing and ever-working Edward Hine * and E. W. Bird,†

* See his monthly "Life from the Dead," and weekly "Leading the Nation to Glory," published by W. H. Guest, Paternoster Row, London.
† See his, and Mr. Cookson's, weekly journal, "The Banner of Israel," also published by Mr. W. H. Guest.
far less blind than it has been through all the previous period of its occupation of these Isles of the Sea which contain us now; from whence, too, we have overflowed both to rule with order, enlightened justice, and a firm hand among many Eastern, Equatorial, and Southern nations, and to occupy and make to blossom the "desolate heritages" of distant parts of the earth. While the close and striking resemblance, in so many points, of our earliest Saxon, or Israelite, metrology to the system of the Great Pyramid, both gives us a species of "Inheritance" interest in that building, and may include something else still more noble, and confirmed by "sealing," in connection with the coming Messianic universal kingdom: when "all the ends of the world shall remember, and turn unto the Lord: and all the kindreds of the nations shall worship before Him." That is, when such final kingdom of the Lord's shall at last be established. But before then—what?

Wars, first.
False Philosophy, second.
Rapturous views, third.

Of the Final Wars.

Badly as the last 1,250 years of the Christian dispensation have distinguished themselves by their numerous wars and over-abundant bloodshed, the last few years still remaining to it, or to the nations, subsequently to its close,—threaten to be, even in that way, more terrible than ever. Never before were so many millions of armed men kept up throughout Europe as now, and furnished with such destructive arms: with such sulphurous engines and fiery inventions for rending the human body and murdering man wholesale, as, in size, deadliness, and number, most truly have "not been from the Creation unto this time."

And it is said that Christian countries cannot do other wise in the present age, and live. But is not that a proof
that the Christianity of the First Coming, in spite of all its original and innate principles of Faith, Hope, and Charity, has yet, through the wickedness of man, or the wiles of the devil, or both combined, resulted during our day in a dreadful perfection and enormous magnification of the murderous art of war; and by means partly of drawing away hosts of men from the industrial and self-maintaining arts of the country, to live a comparatively idle, fictitious, and not very virtuous style of existence, but mainly by means of fire; to be let loose on mankind too, for very destruction's sake, by those least to be trusted hands of the whole population; and the largest portion of the budget of every so-called Christian country, even in times of peace, is now for this fiery war expenditure; either debts for past wars or greater preparations for new ones.

Now, can this be a sight to please Christ? Surely nothing but the personal and kingly interference of Christ in a totally new manner can save the world, and even the most civilised countries of it too,—the efforts of their few good men, and preachers of the Gospel amongst them notwithstanding,—from speedily drifting into a general, and perhaps very rapid, destruction "as by fire."

This is apparently the first beast of Rev. xiii., and represents mainly military power; but the second beast is something still more dangerous; for, though having two small horns as of an innocent "lamb," it yet speaks as a "dragon," and causes all who would not worship the image of the first beast, or implicitly and passively obey military power, to be killed.

That second beast is held to be the peculiar junction of "civil" with military power, which has been denominated "Cæsarism," from the tactics of its beginner, Julius Cæsar,* since whose time it has never disappeared from the world. It is, indeed, that astute state-craft which brings on wars,

* "666, the Number and the Name of Antichrist." Published by W. H. Guest, 61, Paternoster Row, London.
but leaves them to be carried out in blood by others; and which, as in those continental countries where intense Cæsarism now prevails, makes every man of the population into a soldier, no matter what his religious beliefs may be; which "raises itself above all that is called God," and obliges all men, on pain of death if necessary, to obey its human, sometimes devilish, decrees as though they were as infallible and far more binding than those of any Church.

In fact, it "exerciseth all the power of the first beast before him," and with that conjoins these other latter-day features, "that he doeth great wonders, so that he maketh fire come down from heaven on the earth in the sight of men, and causeth that as many as would not worship the image of the first beast, should be killed."

But worse than that still is the mention, apparently simple and innocent enough at first,—

"That he (that second beast) caused all, both small and great, rich and poor, free and bond, to receive a mark in their right hands and foreheads; and that no man might buy or sell, save he that had the mark, or the name of the beast, or the number of his name."

Because this, as we believe, is the adoption of the French metrical atheistic system, when taken up intentionally with the idea of advocating human, rather than Divine, rule on the earth; a proceeding more intensely and actively sinful, the closer that the second coming of the Lord Jesus Christ, to reign practically as a King, approaches.

Yet not only has that France-invented atheistic metrology been taken up by Germany, Italy, and most of the Cæsarised countries on the Continent,—but news from Egypt (July 31, 1875) announces that the Mohammedan, Turkish Khedive there has just ordered that in 1878 the French mètre shall be compulsory as the one and only linear standard measure for that whole country! Whereby, after a most remarkable existence among men through 4,000 years, the long-lived, historic cubit of Old Egypt
(Cainite and idolatrous as it was in its origin) will be sud-
denly brought, or attempted to be brought, to a violent end
next year; but in favour, unhappily, of the modern badge
of materialistic atheism, or of human attempt to deify man,
and thereby produce a revolution worse than idolatry.

Well, therefore, does the author of "Philitsis" remark,
in a recent letter,—"Here is this Caliph of a false Pro-
phet, true to the Nemesis decree of Providence, adopting
a false measure."

But that was perhaps necessary for putting the Moham-
medan Pharaoh more completely into antagonism with
God, preliminarily to and justifying the sweeping venge-
ance necessary for fully purging and purifying the
Egyptian government, land, and people against the coming
day of Christ the King. That day when Egypt is to have,
under help from the Lord,—Israel, not the Turk, "as a
blessing in the midst of the land."

Of Philosophy misapplied.

Yet, though in all the coming events, the promises of
God made to our nation of old, not for our righteousness,
but as descendants from Abraham, are abundant beyond
all that the heart of man could desire or conceive; on the
other hand, our responsibilities are most grave.

For though on our side we are Scripturally told (in
connection with these very preparations for setting up the
Messiah's coming earthly kingdom, the kingdom which is
to fill the whole earth) that it shall be "when God has
bent Judah for him, filled the bow with Ephraim, and raised
up thy sons, O Zion (i.e. Israelites of all the twelve tribes,
the two so long estranged being then united with the ten
so long lost), against thy sons, O Greece, and made thee
as the sword of a mighty man;"—on the other side we
read, "The children of Ephraim, being armed, and carry-
ing bows, turned back in the day of battle."
Such battle, against the sons of Greece, can hardly be anything else than intellectual battle; and the turning back of Israelites, though well armed,—nothing less than a latter-day loss of faith, by our countrymen, in the reality of the Divine inspiration of Scripture, and the acceptation of human science instead. Of human science, too, for guidance amongst those very subjects of futurity and eternity which are the province of God, and not of man.

Now this is a matter which concerns most intimately the purpose of the Great Pyramid, that inspired scientific Appendix to the Sacred Scriptures; wherefore I will endeavour, by its light, to give a short, but faithful account of one of the most able, most popular, but most dangerous, intellectual and scientific books of our time, "The Unseen Universe,"*—and to indicate what the Pyramid teaches to be the species of correction required therein.

"The Unseen Universe" Book.

Basing on the mathematical natural philosophy of the Universities in the present day, and a few experiments made during the present century, the authors of this book become prophetic, and not only undertake to explain the actions and reactions which are going on about us, but to announce all that has occurred to this world on which we live, and even to the elements which originally composed it, before the earth was formed, or man created, through infinite ages almost in the past,—and also what will happen to both the earth, and its combustion residues, in the almost infinitely distant future, when burnt and reformed into new worlds again and again and again; each time into long-enduring sun or planet globes, but none of them absolutely eternal. Man's soul, they claim, is alone eternal; and they consider that they have most

* See review of it in "Life from the Dead," No. 36, for November, 1876.
correctly proved, by their mathematical equations, that God has not been at work anywhere throughout all the immense extent of the visible universe of earth, sun, and stars for countless millions of millions, and millions still, of years or centuries, or ages, or æons, or whatever longer period you like, if only you do not say for ever. And they also hold that God is not, and will not be, at work, in the material, visible universe, for at least as long, long periods to come; that man, therefore, will not necessarily see God through all those awful intervals of future time, though he, man, may be re-established in life on all those successive worlds and universes still to be formed, and still to pass through their immense universe lives,—for during all such enormous periods every step in all the successive existences of all those worlds, and stars, and suns, will be ruled, enacted, brought about, and upheld, they say, by the natural principle of scientific continuity alone, and without any direct agency of God.

This is the general burden of the book, and deserves attention, because it is by the most able mathematical and natural-philosophy men of the day, and by those who have the training of our University youth in similar mathematical studies; while mathematics are becoming more and more every year the very backbone of all competitive examinations throughout the land: and such examinations give even Persian power to the examiners. Has God, then, been pushed out of his own creation by the learning of man, both now, and for some millions of millions of years to come? The authors of the book smilingly confess that it looks like it. And in that case, are the prophecies and the histories of the Sacred Scriptures during three or four thousand years only, backwards and forwards from the present time, not merely flatly contradicted, but infinitely outdone in all they attempted to do or professed to relate, touching the dealings of God with man through history,—by what man can now
ascertain for himself through such far longer intervals? These are the very serious questions which must arise to every thinking, religious mind, when reading that unblushing book; and though the authors would throw dust into the said reader’s eyes by a sudden and unconnected passage, wherein they imply that they hold as equally true, with their own demonstrations against their possibility at any time,—through ages almost infinitely longer than those which separate the Creation of Adam from our own existence,—the reality of “all the (very recent) miracles of the New Testament;” —yet we must put that one contradictory and interested account of themselves on trial for what it is worth, as well as examine the grander statements of their disturbing science as plainly as we have been testing the enunciations of the Great Pyramid from one end to the other of these poor pages.

Let us ask, then,—

1. Has the prophetic science at long range, whether true or not, of the authors of “The Unseen Universe” enabled them in that way, or by that method, independently and originally to discover, identify, and give further particulars of any single one of the many and various miracles, prophetic or otherwise, described in the Bible at very short range of dates?

And the answer is,—Not one; the philosophy of “The Unseen Universe” book has no communion whatever with, nor power of entering into, the Inspired religion of either the Old, or New, Testament; and its authors only knew of any of the New Testament miracles, as any peasant may also know them, by reading in the Bible the words of Divine Inspiration.

2. Have the predictions by the same authors as to the future fate of sun, moon, and stars after millions of millions and billions of years to come, enabled them, or any one else, to compute eclipses and prepare ephemerides of those heavenly bodies during the next six or seven
years only, any more accurately than astronomers did before without their aid?

The answer is, No! The Observatory Astronomers, who practically observe the movements of those heavenly bodies in the sky, and prepare the Almanac predictions of them from year to year laboriously, and with considerable accuracy, are a totally different class from the modern most ambitious, most designing, University Natural Philosophers; and the latter never succeed in performing the duties of the former—or rather they never try; for they will not submit to the "drudgery" of Observatory work. They are spoilt for it by the facility whereby, in a closed chamber, they can turn out seeming results for trillions of millions of years hence, totally uncheckable by any existing scientific observer; and the real practical and physical astronomy of their own times is accordingly not beholden to them for anything.

3. What ideas of Christianity have and hold the most able Mathematico-Natural Philosophy authors of "The Unseen Universe" book?

The following. At their page 199 (3rd Edition) they write commendingly of the beauty of many "Christian hymns," giving descriptions of the joys of heaven, and as a specimen they quote—what? A free translation by Pope of an old Latin poem which, in itself, had no pretense of being, or trying to be, Christian in any one point or degree whatever. Nor has Pope introduced anything Christian into his translation of it, but has allowed that, though amplified, to remain, as Cainite and Epicurean from one end to the other, as the Latin. Nor is this any single slip of "The Unseen Universe" authors; for the very original Latin ode of Pope's translation, in all its undiluted rationalism, is actually adopted by them, with excess of honour to it, on the front of their book, as though it were too truly a most telling preface of their Christianity.

And now, if I have succeeded at all in showing that
these most undoubtedly great educationists have not been able any more than, and probably not so much as, some of the poorest peasants who do read and respect the words of Divine Revelation, to understand and enter into the dealings of God with man during actual human history as it has been, and is still being, transacted upon this earth,—I do not wish to say one word more against them; because they are in truth most able workers in their own exceedingly difficult branches of school knowledge; quite national prizemen intellectually; and as they have not run their whole careers in this world yet, they may still repent in Christ, and become examples of light and truth in religion, as well as masters in science.*

But with regard to the Roman ode they placed at the head of their book, so misleading to Christian faith, we need have no compunction about exposing the iniquities of that. It is the Emperor Hadrian's address on his death-bed to his soul; and, besides improperly asking himself the questions which are to be answered by God alone, the several lines breathe only dull atheism, and a certain pale, cold, naked looking out into the future to come. This is surely bad enough in its mere literality. But who personally was Hadrian, that such miserable comfort was all that surrounded his death-bed? or what were his life-long characteristics that he either should, or should not, in the present day, of all the later days of the Christian Dispensation, be again brought forth from the dust of ages, and be now prefixed with honour to a soi-disant Christian book of Scottish University stamp?

The Emperor Hadrian (born 76 A.D., died 138 A.D.) was distinguished above all the Roman Emperors, whether

* Up to the time of writing this review, and when "The Unseen Universe" book had reached a third edition, the authors had not divulged their names. Since then I am told a fourth edition has been published, wherein, certain of having now a crowd of applauders, and an army of defenders on their side, the authors have named their names, and prove to be just the persons whom I had previously suspected, from the tenor of their philosophy as well as their favourite phrases.
they were generally either good or bad, by the very special antipathy which he bore, not so much to other religions than his own, or to any religion at all, but to the records of Divine Inspiration as given to both the Hebrew race and the Christian Church. The supernatural of the Old and New Testaments was, in fact, his constant abhorrence, and source of disquietude too. Yet, at the same time, he was such an arch-idolater, an idolater of the idolaters, or rather a maker and inventor of idolatry on his own account; a theotechnist, indeed, of most determined, as well as degrading, egotistical order,—that he indulged from time to time in elevating his court favourites, after death, into the number of the gods of Rome.*

This Hadrian had a long war with the Jews, which he finished at last by not only an ordinary conqueror's military destruction of their captive city Jerusalem; but he actually, viciously, and most strenuously attempted to stamp both it, and its very name, out of existence! To which perverse, wicked end he erected on the then utterly levelled site of Jerusalem a new city, which he called, and bade all the Roman world know as, AELIA CAPITOLINA, in part from himself; and then, after peopling this mushroom city with a Roman colony, he made it death for any Jew or Christian to set foot within the sacred precincts again.

Did that most Pagan Emperor succeed in so extinguishing the name and very memory of Jerusalem amongst mankind?

We all know that he did not, though he tried to the last, and had to leave his impious problem as an heirloom to his heathen successors. Then what can mean

* One of his favourites, a young man named Antinous, was further, after being accidentally drowned in the Nile, raised by Hadrian to the heavens of astronomers as the constellation "Antinous," which spurious title still unhappily disfigures many of our celestial maps, globes, and catalogues of stars.
both the bringing up anew, with honour and applause, in modern Christian Society, the impenitent ode of such a man? and that it should even just now become so very popular in extra-educated society, that I have heard last week of a Bishop, a Dean, and a hundred and thirty-eight other gentlemen, university students in their day, being at present engaged, each of them separately, in translating the said Latin lines into daintiest English verse? The only reason that I can suggest as an answer is, that the supernatural events shortly to come to pass at Jerusalem, will be the touch-stone of not a few persons' Christianity; and the trial will be such, that "many shall awake to everlasting life, and some to shame and everlasting contempt."

Of Rapturous Views to come.

If the present volume concerning the Great Pyramid has taught anything, it should surely be respect for all records of truly Divine Inspiration. And if there be any other material record besides the Great Pyramid, of such Divine footsteps, existing still upon the whole surface of the earth, it is—the site of the city of Jerusalem.

Many of the existing so-called Holy Places there, are modern enough, and with that, and all the recent excavations therein, are valueless. While the sufferings of the Saviour are hardly, in and by themselves alone, either sufficient or most, or even at all, appropriate to produce a loving regard for the mere locality in the hearts of sincere, spiritual Christians; though His acts do still, and ever will, and must, form the theme of their praise and their song. Neither again, with the Jews themselves, does Jerusalem ascend to the highest antiquity of their nation; for it was only acquired by them, or by any of the children of Israel, in David's reign. But yet an inexhaustible stream of Divine favour appears to be
poured out towards it through the whole course of the Scriptures: and why?

A step into earlier antiquity than the age of David, or any Jew, was decidedly given to Jerusalem when traditional records were collected announcing that the Shepherd-Prince, Philitis, after the completion of the Great Pyramid, retired into Palestine, and "there built Jerusalem." (See pp. 493, 494.) While, in exact accordance as our knowledge advances of who Prince Philitis was (see pp. 496—501), so must our religious regard for Jerusalem increase.

Yet still would arise the question, Why did that Royal Priest, or Prince, Melchizedek, choose Jerusalem in particular for his sometime post-Great-Pyramid abode, and for the safe emplacement of the faithful followers he brought out of Egypt with him? And here I must confess that my own views were barren and unsatisfying, until, by some remarkable chance, I was led to a knowledge of a little work by the Rev. W. Henderson (R.C.), entitled "An Essay on the Identity of the Scene of Man’s Creation, Fall, and Redemption."*

Published so long ago as 1853, that little pamphlet had been matured in quiet thought and tranquil occupation for its own pure sake, and without the smallest reference to worldly excitements or hope of gain. Without, too, any knowledge of the modern Great Pyramid subject, which had not, indeed, then commenced. And long, full twenty years, did its modest author allow his essay, after its first unsuccessful attempt to obtain a hearing, to remain unread.

"What can the good man have got, or rather how can he have anything, to say, on such a subject?" was my own rash idea, at first, in 1874, when the pamphlet came in my way. But yet on beginning to read, most charmed

* Published by Thomas Richardson and Son, 172, Fleet Street, and 26, Paternoster Row, London, 1853.
was I to find how unexceptionably the first suspicion of
the existence and nature of the final truth arose; how
cautiously it was examined by the light of the earliest
parts of Scripture; how the subject expanded, and then
how the better-preserved or fuller-described passages of
the New Testament were brought to bear upon and assist
the scantier records of the Old,—quite reminding me of
the manner in which, as I had cause to be so thankful for
in recent years, the interior parts of the Great Pyramid
were found capable of explaining and reinstating the
now almost vanished exterior.

And thus had W. Henderson proceeded, until not only
did there seem to be a most good and sufficient reason why
Melchizedek should have chosen Jerusalem's site, and
have dwelt there for a time and commenced the archi-
tectural memorialisation, or perpetuation, of the place,—
ages before the "city of David" was built; reason also,
quite independently of David, why Our Saviour Himself
should have chosen it as the scene of his Cross and
Passion; but a grand idea was still further given of a
general cyclical result, which may in one way or another
be continually more and more exhibited as the years roll
on,—proving that God's word is true, and that every-
thing mentioned therein has a reason for its occurrence,
and if future will have its appointed time, as well as
place, of performance, exact to the minutest particular;
while nothing which occurred at the beginning will be
without confirmation and explanation, at the end.

Because Jerusalem's site, long before the Deluge, and
in a very different state of the earth's surface from what it
has been subsequently to that miraculous event, was the
"Paradise of Pleasure of God," the choice garden in which
He placed our first parents, and where they sinned and
obeyed the Serpent rather than God,—therefore, there, on
that spot, Our Saviour decided that the atonement should
be made by himself, and the fountain of personal salva-
tion should spring up where had been the tree of the forbidden fruit, and where Adam also had eventually been buried; viz. on Mount Calvary.

Not, too, because Bethlehem, a few miles to the south of Jerusalem, was David's natal village; but because originally, in the beginning, on the site of Bethlehem, at that distance southward from the garden of Paradise of the Divine Pleasure, was Adam created by God; therefore argues, proves almost, if not quite, and most touchingly discourses, W. Henderson, P.P., did the Saviour choose to be born there, in order fully to realise the life of man in the aggregate whom He came to save. And because Adam, when driven forth from the garden, went northward, therefore our Saviour's early life was spent in Nazareth; and not till the fulness of time required for his sacrifice, did He seek Jerusalem; where, and close to whose walls, He chose to make the personal, individual purifying atonement, in order that it might be complete and perfect in its historical reference, and each choro-graphical particular, as well as absolute fact.

And now the time is near approaching when Jerusalem will be Divinely visited once more for the sake of the scenes it has witnessed, from the very day of the creation of man, and is still to witness; its King,—no longer to be thought of as the victim of insulting Roman soldiers and their too celebrated cross of atrocity,—but as the Divine, omnipotent, eternal occupant of the future great white throne, which, when once revealed, will never be done away with, until time shall be no more. And meanwhile the Great Pyramid will assist in witnessing to the supernatural preparations which were so securely made in the beginning of the world, for the most extended and far-reaching requirements, both objective and subjective, of the still coming, to come, but not yet actually commenced, universal earthly Kingdom of the returned Lord Christ.
APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>QUEEN'S CHAMBER</td>
<td>585</td>
</tr>
<tr>
<td>II</td>
<td>IRON IN HISTORY</td>
<td>589</td>
</tr>
<tr>
<td>III</td>
<td>THE ROYAL SOCIETY</td>
<td>596</td>
</tr>
<tr>
<td>IV</td>
<td>JAMES SIMPSON'S CALCULATIONS</td>
<td>601</td>
</tr>
<tr>
<td>V</td>
<td>TEXAS LETTER</td>
<td>608</td>
</tr>
<tr>
<td>VI</td>
<td>ALFRETON PAMPHLET</td>
<td>611</td>
</tr>
<tr>
<td>VII</td>
<td>THE RELIGION OF ANTICHRIST</td>
<td>613</td>
</tr>
<tr>
<td>VIII</td>
<td>PERVERSENESS OF MAN</td>
<td>615</td>
</tr>
</tbody>
</table>
QUEEN'S CHAMBER: NEW MEASUREMENTS AT THE GREAT PYRAMID.

Reprinted from the Athenæum, No. 2588, of May 19th, 1876.

Amongst other pieces of good and useful exploration which have been going on lately at the Great Pyramid, there has been a remeasurement of the Niche in the Queen's Chamber, which is of more than usual interest. Commenced in 1874 by Dr. J. A. S. Grant of Cairo, and the Rev. F. R. A. Glover, M.A., then on his way to lecture on the Great Pyramid throughout India, the work has been followed up at intervals by Dr. Grant, Mr. Wayman Dixon, C.E., of Cairo and Alexandria, and Mr. Haynes, C.E., of Alexandria, until the accumulated evidence incontestably proves that my numbers for the upper parts of the niche, as given by me on p. 66 of vol. ii. of my "Life and Work at the Great Pyramid," are much needing correction.

There will be little surprise at this announcement on looking at the page in question, because I there stated that the parts concerned were too high above me for any direct measuring, and that their figures given me, estimated only, and called "estimates," were also said to be "rude in the extreme." The lower parts of the niche, on the other hand, which I did measure, agree as well with the new measures as these do with each other; i.e. closely and fairly, though not exactly, for there are uncertainties in every one's work in that chamber of the Great Pyramid, amounting to from one to three tenths of an inch, depending chiefly on the anomalies of salt incrustations at some parts, and mischievous dilapidations at others. The new measuring party were unfortunately not supplied with any ladder, by mounting on which they could have applied their scales directly to all the surfaces concerned; but, standing on the floor, they held up rods bearing candles,
plumb-lines, &c., and decidedly made the best use of such means as they had. Wherefore, reducing each set of determinations to a single expression for each part, we have the following numbers for the niche, as represented in the lettering of Plate IX. :

<table>
<thead>
<tr>
<th>Part of Niche referred to</th>
<th>Breadths.</th>
<th>Heights.</th>
</tr>
</thead>
<tbody>
<tr>
<td>a to f</td>
<td>61·3</td>
<td>61·35</td>
</tr>
<tr>
<td>b to g</td>
<td>52·3</td>
<td>52·40</td>
</tr>
<tr>
<td>c to h</td>
<td>43·3 (estd.)</td>
<td>41·55</td>
</tr>
<tr>
<td>d to i</td>
<td>34·3 (estd.)</td>
<td>30·06</td>
</tr>
<tr>
<td>e to j</td>
<td>25·3 (estd.)</td>
<td>19·66</td>
</tr>
<tr>
<td>North wall to a</td>
<td>97·2</td>
<td></td>
</tr>
<tr>
<td>South wall to f</td>
<td>46·6</td>
<td></td>
</tr>
<tr>
<td>From the vertical pendent from culminating point of east wall, and which falls between a and f, to a</td>
<td></td>
<td>6·5</td>
</tr>
<tr>
<td>From the same vertical to central vertical line of the whole niche</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Whole height of niche</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Next certain parts of the niche, not before attempted at all, were measured on this latter occasion. Of these were the breadths of the overlaps on either side, and at every successive stage of the niche, thus:

<table>
<thead>
<tr>
<th>Names of part referred to</th>
<th>Breadth.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>North Side.</td>
</tr>
<tr>
<td>Topmost overlap</td>
<td>British Inches.</td>
</tr>
<tr>
<td>Second</td>
<td>5·55</td>
</tr>
<tr>
<td>Third</td>
<td>5·40</td>
</tr>
<tr>
<td>Fourth or lowest overlap</td>
<td>4·30</td>
</tr>
</tbody>
</table>

This table well shows the origin of the error of my assumed...
breadths for the upper parts of the niche, for I had measured the overlaps of the lowest stage, and then assumed for the others (which I merely saw with difficulty by the light of a candle over my head), that they would be of the same breadths as that one; whereas it now appears that they are decidedly and intentionally different from that, though how far the smaller differences from each other may have also been intended, is a more difficult problem.

Next comes the question whether the sides of the niche, apparently straight lines and parallel at every stage, are really so; or whether they contain any curves. But the data here are still imperfect, and apply only to the two following stages of the niche.

<table>
<thead>
<tr>
<th>Parts of the Niche referred to.</th>
<th>Breadth at Top.</th>
<th>Breadth at Middle.</th>
<th>Breadth at Bottom.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fourth stage, or (b) to (g).</td>
<td>British Inches. 52.0</td>
<td>?</td>
<td>British Inches. 52.84</td>
</tr>
<tr>
<td>Breadth at the very Top.</td>
<td></td>
<td>At a few inches under the Top.</td>
<td>At two-thirds from Top towards Bottom.</td>
</tr>
<tr>
<td>Broadest and lowest portion, viz. (a) to (f).</td>
<td>43 + 52.84 + 4.3 = 61.44</td>
<td>61.25</td>
<td>61.35</td>
</tr>
</tbody>
</table>

Whatever we may conclude from the fourth stage numbers, there will probably be little doubt that the broadest and lowest portion, or \(a \) to \(f \), should be considered as formed by lines practically and originally straight and parallel, and that its true breadth is nearer 61.35 inches than any other equally round number.

There then comes the deduction of the horizontal distance, or the excentricity of the niche from the vertical line pendent from the culminating point of the east wall in which the niche is situated; and the exact amount of this excentricity has so important a bearing on the whole of the modern, scientific, and sacred theory of the Great Pyramid, that I give the passage relating to it verbatim from Mr. Wayman Dixon's last letter:—

"After the niche was measured, we then held the rod up to the apex of the roof against the east wall, put a candle on the
rod to illuminate the roof there, and from the other end of the chamber sighted to see that the plumb-line hung direct under the joint of the roof-stones, and then measured from this plumb-line to the side of the bottom compartment next it, thus giving us the means of deducing the distance from centre line to centre line. And strange to say, I have found out just this moment that taking the average of two measures written down at the time gives us exactly 25·025 British inches as the distance. Thus—

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Half breadth of top compartment $\frac{19·55}{2}$</td>
<td>$9·775$</td>
</tr>
<tr>
<td>From side of top compartment to side of bottom compartment produced</td>
<td>$20·6$</td>
</tr>
<tr>
<td>Sum</td>
<td>$30·375$</td>
</tr>
<tr>
<td>Less distance from centre line of roof to side of bottom compartment</td>
<td>$5·5$</td>
</tr>
<tr>
<td>First result</td>
<td>$24·875$</td>
</tr>
</tbody>
</table>

"But if we proceed as follows, we get a slightly different result; thus—

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Half breadth of bottom compartment $\frac{61·35}{2}$</td>
<td>$30·675$</td>
</tr>
<tr>
<td>Distance from wall of this compartment to the centre line of roof</td>
<td>$5·5$</td>
</tr>
<tr>
<td>Second result</td>
<td>$25·175$</td>
</tr>
</tbody>
</table>

[Mean of the two results = 25·025 British inches."

Of the momentous consequences of that particular length being found to be permanently and intentionally signalised in that part of that most ancient building, I had already written in the second edition of "Our Inheritance in the Great Pyramid;" and the account still holds good, except as regards the breadth of the top of the niche, which part, being there both erroneous and not necessary to the general argument, may be simply expunged (and is so in the present third edition).
APPENDIX II.

IRON IN HISTORY.

Under the modest guise of a scientific paper read before the Philosophical Society of Glasgow in April last, and now published as a pamphlet,* a very important contribution to the archaeology of man has just been made by Mr. St. John Vincent Day, Civil Engineer, in Glasgow.

Mr. Day has long been a practical, and by no means unsuccessful, worker at the subject of the Great Pyramid as a sacred monument, and his present inquiry into ancient iron manufacture was commenced chiefly to clear up an essential point in the modern explanation of that building's original construction. The point was a most knotty one to discuss, but Mr. Day brought to it (quite exemplarily as to how other men should also act in their respective parts) his large professional experience in the modern preparation of iron and steel for the market, together with unrivalled energy and dauntless earnestness in prosecuting whatever he takes up. And if the ancient structure, in whose cause he has laboured, was really built under Divine inspiration in its own primeval day, but with prophetic intention of its being understood, and conveying an important message to mankind in these latter years, what wonder that such faithful research should find itself rewarded in the end with far greater success and more widely reaching results than could have ever been dared to be hoped for at the beginning? And yet such really appears to be the case.

"Were iron tools used in cutting and squaring the stones of the Great Pyramid?" may seem to some persons a question of comparatively small importance in itself; so long, at least, as we have the results of the work. But the full realisation

of the almost incomprehensible nobility of a Divinely inspired plan of a building demands that every detail, even the smallest, shall be exhaustively studied, if it is ever to be eventually made plain. And in the process of making this one in particular plain, a most salutary check has been unexpectedly given to certain modern theories of archaeology, which, founded in utter rationalism, were rapidly shutting out of view the Divine creation of man, and substituting in its stead the following human ideas of how he might perhaps have been originated in a small way, and have grown thereupon.

Say the German archaeologists, and after them the ordinary antiquaries of most other nations too—man must have begun as an ignorant, helpless savage, little better than an ape, and then have risen to his present state of civilisation by his own slow improvements only, on the simplest possible beginnings. Wherefore, when these specious philosophers find, perchance, an accumulation of various implements on opening some old tomb, the rough stone tools amongst them are voted the oldest; the polished stone, or bone, the next; then the gold, copper, or bronze, as being easily worked metals; and last of all the more difficult iron, if, indeed, its terrible rapidity of rusting away has allowed its presence to remain in any tangible form. That is the theory: and then, to convert it into fact, the objects are unblushingly arranged in Continental Museums, in that order, ticketed with dates corresponding therewith; and then used for proving beyond doubt that the history of man on earth began with an age of rough stone weapons; then came an age of smooth stone or bone; then the age of bronze; and finally that of iron, under which we are now living.

If this be true science, then, undoubtedly, science and religion are at variance; for the Bible has a very different history to give of human affairs; and, as its inspired doctrines on this head were well collected and formulated by the late admirable Egyptian scholar of Leeds, William Osburn, we may hold that the Bible declares the savagism of man to have prevailed, not in primeval, but medioval, times; and was the fruit of sin, idolatry, and wilful degradation from the high level on which he had been first placed by his Creator.

Poor William Osburn, however, was not listened to in his day; and the archaeologists went on unchecked with their successive ages of stone, bone, bronze, and iron; repeating them in and transfusing them through all our modern literature. But then comes out the testimony of the Great Pyramid, always in accord with the Bible, and testifying
that the oldest piece of architecture amongst men, so far from showing primeval savagism, is still the largest and best built to be seen anywhere; and with its component stones so grand, so hard, and yet so truly and exquisitely cut and squared to accurate mathematical forms and sizes, that the workmen must have had iron tools abundantly at command.

So, at least, said a practical engineer like Mr. Day, who knows what can be accomplished with iron, and what must be failed in without it, on a large scale in the open air.

But so would not admit all the crowd of archaeologists and antiquaries of the societies, museums, and books; unpractical men, all of them; generally unacquainted with the grandeur of the Pyramid work as it stands under the blue sky of Egypt; and besides that, having their own previously formed theory to maintain, viz. that if the Great Pyramid is (as every one now confesses) the earliest piece of architecture that has come down to us, it must, therefore, have been executed in the rude stone-implement age of mankind, when chipped flints were the only tools in use. Perhaps, indeed, they might allow one or two of the earliest specimens of copper, but no iron on any account, because a grand bronze age, according to them, intervened between the age of stone and that of iron, rendering the latter impossible for the Great Pyramid's date: while they also alleged that iron is, on chemical grounds and its strong affinity for oxygen, the most difficult of all metals to manufacture, and only fully amenable to the enormous blast furnaces and highly developed manufacturing systems of modern times.

Thereupon our present author, Mr. St. John V. Day, stepped to the front, and called attention to a large piece of wrought iron which Colonel Howard-Vyse had extracted out of the solid masonry of the Great Pyramid at the bottom of a deep hole he had been forcibly making in it. This remarkable curiosity had been presented to the British Museum, but was sadly neglected and undervalued as to its immense importance. True, it was only one piece; but one piece, even if it had been of less size than this one, preserved through 4,000 years by the strange accident of having got embedded in mortar between the stones, is quite enough to prove a principle; while the years elapsed since then are far more than enough to have oxidized and caused to disappear any number whatever of its once companion iron implements in any ordinary situations and exposures.

Yet where, in that early day, did the Egyptians get iron enough for many such tools, when there is very little iron ore
of workable kind to be found in situ from one end of the Nile land to the other?

Mr. Day had already concluded that the supply used to be obtained from the adjacent Sinaitic Peninsula, whose mineral constituents are well known to be exceedingly rich. But he has only recently still further ascertained from the researches of Mr. Hartland,* who has established himself in that region for mining purposes, that near Surabit-el-Khadem, and not far from the Wady Meghara, there are not traces merely, but colossal remains of iron-works belonging to the earliest kings of ancient historic Egypt; on a scale, indeed, so vast, as to be testified to by almost mountainous heaps of genuine iron slag and veritable iron furnace refuse.

Here, then, was an ample source for furnishing any amount of iron tools required for the Great Pyramid: and here, also, or in the immediate neighbourhood, is the very tablet of King Cheops, or Shofo, of the Great Pyramid age, overlooking the scene. These engraved records begin, indeed, with a slightly antecedent king, under whom the Egyptian nation seems to have been put through its apprenticeship to the trade of working in iron. A most remarkable period, too, of Egypt's career; for before that time it has no monuments; but after it, beginning with the Great Pyramid, its most unique and wonderful outcome, there commences the series of grand, though generally profane, monumental testimonies of Egypt, the marvellous record-keeping against itself of the early world, and whose practice was never altogether left off so long as that people retained the command of their foreign iron supply.

Now here is not only an overthrow of the much insisted-on stone-implement age of the modern archaeologists for the date of the Great Pyramid, and a demonstration that it did not rule in the earliest ages of Egypt; but the iron manufacture, which, against all antiquarian expectations, took the rude stone-axe's place, had the further unscientific and irrationalistic feature to them, of having reached its immense magnitude and pitch of perfection suddenly almost, and not by the slow steps of merely human progressive developments throughout all the supposed period of the primeval infancy and savagism of the early world.

How is this to be accounted for?

By nothing else apparently than by reading the inspired history of man in the Bible, and these earliest Egyptian facts, side by side.

The forefathers of the Egyptians, as William Osburn has admirably shown, were both driven and assisted by the Divine power and by supernatural punishment at the dispersion of mankind from Babel to Egypt, there to become the future Egyptian nation, but with the burden on them of first building the Great Pyramid for other purposes than theirs. Now in coming as they did from Mesopotamia, the land of soft alluvial soil, where they had bricks only to deal with in place of "stone, and slime had they for mortar," they had no occasion then for many iron tools. Neither had they during the first two or three centuries which God allowed them to settle themselves and organize their preparations for food and government in the land they had arrived in of Lower Egypt; an almost more than Mesopotamian country, with its abundance of Nile watercourses, finely divided soft soil, and facilities for forming sun-dried bricks.

Of themselves, perhaps, these Neo-Egyptians might have been content, with wooden spades, to go on lazily and ingloriously irrigating their gardens, raising cucumbers, and living in mud huts; but that was not all the Divine purpose in sending them there. The Great Pyramid had to be constructed by them in hard stone, and at an appointed time, even a set day, known to God alone. Wherefore, after they were firmly settled in the land, but a few years before the Pyramid's coming epoch, divers nomad robbers of the Sinaitic hills were caused to offend the new-comers, in order that, on being pursued by the Egyptians, these men' might be brought in large numbers before the iron, the copper, the turquoises, emeralds, and other treasures of that exceptionally rich mineral region. These materials were doubtless all made due note of, though the one material which evidently then excited the Egyptian attention most, was the iron. One of their kings surnamed himself "the lover of iron;" and the nation devoted itself so immediately and effectively to the manufacture of their new supplies of the metal, that the infinite quantity of iron tools requisite for the Great Pyramid's erection were all of them ready when, at the appointed moment, Melchizedek, as a Shepherd-Prince from Palestine, entered the Egyptian land, and proceeded to move King Cheops to commence the marvellous structure.

Such was the more than human rise of iron manufacture in Egypt. But there is more than this one case of early iron history unravelled in Mr. Day's valuable pamphlet; for he goes on to show that among the origines of all nations, as Babylonians, Greeks, Hindoos, Chinese, and others, both iron and steel were (in spite of modern archaeologists) well and abundantly known.
in the earliest times of their respective histories. Furthermore, too, he finds that a special and very admirable mode of making steel, near akin in principle to the Bessemer method of the present day, was practised simultaneously, but quite unknown to each other at the time, by nations so far separated as the Greeks in the West and the Chinese in the East of the world, and this in an age many centuries before Christ. And the only manner in which he can explain the phenomenon is, by recurring to the Biblical dispersion of mankind from one centre, and to each national family or tribe having then received from the common Noachic stock of knowledge, whether antediluvially acquired and transmitted through the Flood, or given by inspiration since then, some of the same series of useful arts and practical methods which were to enable them to hold their own in the new and distinct quarters of the earth appointed to them to inhabit.

Hence, too, the Egyptian forefathers, though they might have come into Egypt from Mesopotamia with few, possibly without any, iron or steel implements, yet they brought the traditions of these metals, the modes of preparing them, and their powers, with them; so that when they were at last introduced to their almost unlimited possession in Sinai, it is less to be wondered at and more to be admired that they plunged so immediately, and even vehemently, into the manufacture and utilisation thereof. And yet, true to their Cainite nature and faith, they used these hard metals, given to them by God, most frequently for inscribing both the natural rocks and their own buildings according to their original and rebellious Babel purpose; or for "making themselves a name, lest they should be scattered abroad over the face of the earth;" and also, according to their own traditions, of so engraving their histories everywhere, that their memory would not be lost, were a second Deluge to overflow the earth.

Whether, then, in one way or another, Mr. Day does most effectually succeed in showing that not only were there iron tools in abundance at the building of the Great Pyramid—though the rationalist theories of human origin and a stone age, by the archæologists of the museums, would declare it impossible—but that those early days enjoyed far more iron help than any subsequent period up to close upon modern steam-engine times, and used it much more peaceably. Also, that from those primeval days of supernaturally assisted iron knowledge and use, men, in too many cases, retrograded and degraded down to, instead of advanced upward from, stone and bone implements; becoming thereby, and sometimes even still remaining, the most painful examples imaginable of the
ultimate consequences of man determining to walk in the world according to his own lights only, and against the expressed will of his heavenly Father.

But for further and more precise particulars we must refer our readers both to Mr. St. John V. Day's pamphlet already published, and to a still larger work by him of nearly the same title, and of which I am delighted to say a first copy has just appeared (August, 1877).

P. S.
APPENDIX III.

THE "ROYAL SOCIETY."

ITS REPUTATION FOR ACCURACY IMPEACHED—THE WAY IN WHICH THE ASTRONOMER-ROYAL FOR SCOTLAND WAS TREATED.

From the New York Daily Tribune of Thursday, May 21st, 1874.

To the Editor of the Tribune.

Sir,—Hitherto anything published under the auspices of the Royal Society (London) has been considered worthy of utmost credence. Such trust can no longer be reposed in all its official statements. I cannot believe that the Fellows at large have consented to the perversions of truth lately issued in the name of the Society, but they are none the less responsible or free from blame in permitting officers who can lend themselves to such perversions to continue in their exalted positions. I have before me a pamphlet, published in London, March, 1874, containing the correspondence between the Astronomer-Royal for Scotland, Professor C. Piazzi Smyth, and the President of the Royal Society; and the Royal Society, as represented by its officers, appears in a very unenviable position. Differences in opinion from those who, at least in their own estimation, are the leaders in the world's progress, "the advanced thinkers," cannot, it seems, be for a moment tolerated. The . . . has determined the Mutual Admiration Society (which can permit no discovery or improvement which originates outside the charmed circle, to be worth anything) to nip at once all interference in the bud. As for justice or truth, that is altogether a secondary question.

At the late meeting of the British Association at Bradford, Professor Clerk Maxwell, F.R.S., was unwittingly led into an error, in a statement as to the length of the Egyptian cubit, in
the course of his eloquent and excellent lecture on Molecules. It is true that he used the erroneous statement in such a manner that no particular harm was done; but still he had all the authority of the published "Transactions" and "Proceedings of the Royal Society" to back him, and he thought these might be trusted. To correct the unfortunate blunder, published under their sanction, the Astronomer-Royal for Scotland addressed a communication to the Royal Society, of which he was a member, and, after a very long interval, he was informed that a sub-committee, to whom the paper had been referred, had reported it was "not of a nature suited for public reading before the Society!" Now the paper itself, which is published in full in the pamphlet to which I have alluded, is a very short one, and it certainly does present General Sir Henry James, R.E., F.R.S., in no very enviable light; and as the said "Chief of the Ordnance Survey" is one of the members of the Mutual Admiration Society, of course the paper could not come before the Royal Society at large, to be publicly read, and thus given to the world. The errors in question, published under the sanction of the Royal Society, all come from the very ridiculous theories of this gallant Knight in reference to the Great Pyramid in Egypt. The first theory, enunciated in the "Athenaeum," in a communication dated "Ordnance Survey Office, Southampton, Nov. 9, 1867," gave that the sole reason wherefore the Great Pyramid had been built of its actual basal size was to allow a side of the base to measure 360 cubits of 25·488 inches each, and so the base-side length was stated by Sir Henry James to be 764 feet = 9,168 inches—and as this was the actual measurement of Colonel Howard-Vyse, that most worthy pyramid explorer, the accord seemed perfect. It was afterwards pointed out to Sir Henry that 360 \times 25·488 amounts to 9,175·68 inches instead of exactly 764 feet, as he had stated—an arithmetical blunder from the "Chief of the Ordnance Survey," which, if committed by any boy in our public schools, would be considered worthy a good thrashing. Moreover, he could find no authority for the ancient cubit of 25·488 inches long, and so he let that cubit drop.

The next attempt was in the classical line, and never was the old saw, "A little learning is a dangerous thing," better illustrated. Finding somewhere—in a translation, I presume, and perhaps a quotation—the Egyptian cubit mentioned by the "Father of History" as equal in length to the Samian, he immediately jumped at the conclusion, "Samos? Why, that's Grecian! Here we have it—the Egyptian and Grecian cubits are identical!" And so forthwith the Egyptian cubit
was pronounced to be 18·24 inches in length, to the confounding of all the time-honoured Egyptologists, Sir Gardner Wilkinson, for example, and that learned Babylonian scholar, Dr. Brandis of Berlin, of Sir Isaac Newton, and almost all other authorities, who have supposed it about 20·7 inches in length. He was in utter ignorance that when Herodotus wrote, Samos was regarded as Asian and Persian, and the first attack upon it by the Lacedemonian Dorians, he terms their expedition into Asia. (Thalia, 56; see, also, 55.) All of which, long ago, was expounded by the Rev. Canon Rawlinson. Now in giving this new length of the common Egyptian cubit, requiring a base-side length of the Great Pyramid to be 9,120 inches, in order that it might contain 500 of them, he ignores Howard-Vyse, his great authority before, ignores all the splendid work of the French savants, and the laborious measurements of Professor Smyth, and selects two of the smallest measurements he can find. Even here he puts on a par with the work of his own pet engineers that of a young engineer, who performed the work in measuring single-handed, and all to get this cooked number, 9,120 inches (which is ten inches less than his own engineers obtained), and to suit his new, Samo-Egyptian cubit. To their credit be it said that the measurement of the Royal Engineers taken by itself does come nearest to what is the best mean of all the best measurements hitherto made, though still much too small, if we accord any weight to Vyse and the French savants.

These blunders were published in the "Proceedings" of the learned "Royal Society of London" for June, 1873. In his communication to the Society correcting them, Professor Smyth claims that the new length was brought in by its author, General Sir Henry James, R.E., by means of (1) an unfair selection among the standard modern measured lengths of the base-side of the Great Pyramid; and (2) a meaning attributed to certain words in Herodotus, making them tell the very opposite story to what they were intended to do. No wonder the Admiration Club was ashamed to let the world know of these misstatements of facts and classic blunders, and determined to snuff out the light of Piazzi Smyth instantly.

And here comes the sorriest part of the whale business. On the 7th of February, 1874, Professor Piazzi Smyth addressed a letter to the President of the Royal Society as follows:

"Sir,—With reference to my letter of last October 27, forwarding to the Secretary of the Royal Society, a short paper 'On the length of a side of the base of the Great Pyramid,' intended to correct the errors on the same subject printed by the Secretary in 1873, first in their Proceedings, and subsequently in their Transactions, and with reference also to the
rejection and return of the said paper to me on the 22nd ult., by the Secretary, on the plea, by a sub-committee, of its not being of a nature suited for a public reading before the Society, I beg to say that having thus failed in all that I can do to open the eyes of the Society as to whether they are seeking ‘accurate measuring, truth-stating, and justice-doing,’ or the exact opposite thereof, in researches concerning the most ancient and exalted monument of intellectual and religious man on the face of the earth, there is nothing now left me but to come out of the Royal Society, as I do hereby, resigning my Fellowship therein, and hoping that you, Sir, at least, will not consider my reasons for withdrawing ‘not suitable for a public reading before the Society.’—I have the honour to be, your obedient Servant.

“To the President of the Royal Society, London.”

Will it be believed that an honourable man, such as we have always hitherto supposed Dr. Hooker to be, under fear of the Admiration Club, probably under their instruction, simply announced the resignation from the chair, without reading the letter or giving the reasons? When Piazzi Smyth, suspecting him to have concealed from the open meeting of the Society that the truth of its statements about the Great Pyramid had been most seriously challenged, puts the question directly to him in a second letter, Dr. Hooker states that—

“As your letter giving your reasons for withdrawal is of the nature of a communication to the Society, and as it further appears to me to contain reflections on the motives as well as the actions of the Fellows generally, I have considered it to be my duty to lay it before the Council, with the view of taking its opinions as to the proper course to be adopted with regard to it, and of which course you shall be duly informed.”

In reply, Professor Smyth said that—

“Dr. Hooker was keeping back from the Fellows the part on which the withdrawal depended—out of which it originated—which it was most important for the Fellows to know of, and which I so pointedly requested of you as President, and when I was still F.R.S., to read to the meeting, and because you saw that that part of the letter was ‘of the nature of a communication to the Society!’ As for any subsequent efforts that you may only now be going to make, after I have ceased to be F.R.S., to bring the part of my old letter you were previously silent on before your Council, not for correcting your Pyramid errors, but under the odious charge against me that I reflected therein on the motives and actions of the Fellows generally (when you know perfectly well that it was the Executive only, and their refusing to let the Fellows know what was going on, that I was dealing with), the thing is so transparent that I shall take no other mode of answering you than that of laying your own words before all the Fellows and the world at the same time.”

There the matter stands just now. I do not blame Professor Smyth for withdrawing, and yet I am sure he could have done more for the cause of light and truth had he remained, unpleasant as it might have been for awhile. Still, it will
stir up a breeze, and, I hope, expose the facts so thoroughly, that these men who are largely—some of them almost exclusively—supported by the people, but who scorn to recognise any rights outside themselves, may learn their true position, and that the world is not yet their exclusive possession. To use the glowing words of Professor Clerk Maxwell, closing the very lecture which seems to have been the turning-point in bringing about this sad state of affairs, I hope that they may learn that those aspirations after accuracy in measurement, truth in statement, and justice in action, which we reckon among our noblest attributes as men, are ours because they are essential constituents of the image of Him who in the beginning created, not only the heaven and the earth, but the materials of which heaven and earth consist."

HOBART COLLEGE, GENEVA, NEW YORK,
April 10th, 1874.

H. L. S.
APPENDIX IV.

MR. JAMES SIMPSON'S FURTHER PYRAMID CALCULATIONS: IN A LETTER FROM HIMSELF.

EDINBURGH, 15th December, 1873.

I have the pleasure to return the four letters on Great Pyramid measures which you kindly sent me on 8th current, and in doing so would take the opportunity of mentioning the following points, some of which you may not have noticed:—

As before stated, the diagonal of either end of King's Chamber bears to length of Pyramid's base the same proportion nearly, that one day bears to the number of days in a lunation. The error is, however, too great to be neglected, for it makes the base-side 9127.84 Pyramid inches, instead of 9131.05, or more than three inches too short. Yet the relation seems intentional; for when all four sides of the base are taken as the measure of a lunation, then, instead of the above-mentioned diagonal, we have the circuit of the King's Chamber floor—equal to 12 of the chamber's units, and also to the 24 arris lines of the coffer—as a not altogether unfitting representative of the cycle of a day. To represent the year on the same scale would, however, require a circle with radius 71,871 inches. In connection with this it may be noted that the King's Chamber floor consists of two squares, each of which has an area in exact decimal miniature of the surface of a sphere described about the sun, at the mean distance of the earth; in other words, each half of the floor would receive 1×10^{22} of the rays of a vertical sun, shining constantly upon it, or the whole floor would intercept the same fraction of its rays, shining 12 hours out of the 24. This decimal relation is a simple deduction from the theorem which connects the King's Chamber's proportions with the Pyramid's vertical height, and that which connects the vertical height with the sun's mean distance. The division of the said sphere-surface into 10^{22} equal areas is in a manner contemplated in the origin...
of the Pyramid: for, dividing the sphere's equator into 10^{11} equal parts for meridians, and its axis into 10^{11} equal parts for latitude planes,—these parts will be respectively $365\cdot242$ and $\frac{365\cdot242}{\pi}$ inches. The portion of the sun's surface corresponding with one of these parts would be about $\cdot9148$ square inch.

It is a fact curious enough in itself, and which perhaps furnished the Pyramid builders with a natural precedent for their extensive adoption of the same ratio,—that the volume of the sun is so nearly $1\cdot10^{30}$ of that of the sphere just referred to; the mean radius for the sun which would give that ratio exactly, being $426,272$ British miles. From which it would also follow that the sun's volume is 10^{20} times that of a sphere whose radius is the height of the Pyramid: for the latter sphere is to the sphere of the earth's mean distance from sun, as $1 : 10^{9\times3}$; and $10^{9\times3}$ divided by 10^{20} is 10^{20}.

There is another and smaller sphere which may have something to say here. You have shown that Solomon's "Molten Sea" was, as to its general form, almost certainly a hemisphere, and its hollow contents a remarkable gauge of the size and weight of the earth. If its outer diameter were $250\cdot4756$ Pyramid inches, or but a fraction greater than the 10 S. cubits assigned to it, the contents of the whole sphere would be just $1\cdot10^{26}$ of the sun. And nearly the same result would be brought out by considering its form as slightly spheroidal, so as to make the vessel a perfect model, on a scale of $1\cdot2,000,000$th, of one hemisphere (in equatorial section) of the earth. Then, if the hollow interior were similar, and its contents $50 \times 71,588$ Pyramid cubic inches,—or $1\cdot20$th of the sphere described about the King's Chamber,—the thickness of the brass, varying from $5\cdot7244$ and $5\cdot7229$ on the principal equatorial axis, to $5\cdot7146$ on the polar axis, would be eminently expressive, in inch units, of nearly the same earth-density as is denoted by such interior capacity—namely, $5\cdot727$.

There is implied in the foregoing a certain near commensurability in size between the earth and sun, which can be readily shown by comparing both with the Pyramid's altitude. Let the mean diameter of the earth (say $501,106,000$ Pyramid inches) be divided by a million, and by the cube root of 10; the result will be $232\cdot5924$, or the number of S. cubits in $5813\cdot81$ inches, while the theoretical height of the Pyramid is $5813\cdot01$, or $1\cdot8$ inch less. Letting this difference pass, it will be seen that if the earth's mean diameter were half as great as it is, the volume of the earth would then be
10^{10} times the sphere whose radius is the Pyramid’s height, while the sun is 10^{30} times the same, and is therefore = 1,250,000 earths. But in order that this should be exactly true, the earth’s mean diameter would require to be 500,950,000 Pyramid inches.

The ratio of the Pyramid’s height to the earth’s diameter is the duplicate or square of that of the earth’s ellipticity at some one meridian—the ratio to the mean diameter being 1.293·606th, which is probably not far from the ellipticity of the Pyramid’s own meridian. Let $E =$ linear value of this ratio, $M =$ earth’s mean diameter (or its diameter at the Great Pyramid?), and $A =$ Pyramid’s height. Then

\[
\frac{A}{E} : E : : E : M; \text{ or } AM = E^2
\]

and expressing M in terms of A (see preceding paragraph),

\[
A (40,000 \sqrt[10]{A}) = E^2; \text{ or } 40,000 \sqrt[10]{A}^2 = E^2
\]

Square root of which

\[
= 200 \sqrt[10]{A} = E
\]

And

\[
100 \sqrt[10]{A} = \frac{E}{2}
\]

From this and previous propositions it appears that (neglecting small differences) the Pyramid’s height is commensurable, in terms of integral powers and roots of 10, with—

1. The difference between the polar and some one equatorial radius of the earth;
2. The earth’s mean semi-radius;
3. The sun’s mean radius; and,
4. The mean distance of the sun, or mean radius vector of the earth’s orbit;

Or with decimal parts of these quantities.

The theory of squares in Queen’s Chamber gives for the cubic diagonal of that room 356·915 Pyramid inches. This is doubtless nearer the truth than the 356·04 derived from your mean measures, which are uncorrected for wall-incrustations,—and accords very nearly with another theoretical quantity obtained as follows:—Ten million is the number of S. P. cubits in the earth’s semi-axis of rotation, or of 50-inch cubits in the whole axis. If 10,000,000 square inches be formed into a circle, the diameter of that circle, divided by 10, will be 356·8246, or the cubic diagonal of Queen’s Chamber. But 356·8246 is the diameter of a sphere whose contents are

\[
1000\text{ coffers divided by } 3, \text{ or } \frac{1000}{3} \times 71,365; \text{ and } 356·8246 \times \frac{1000}{5} \text{ is also } 71,365. \text{ Again, if } 10,000,000 \text{ cubic inches (the}
APPENDICES.

capacity of the Queen’s Chamber) be formed into a sphere, the diameter of that sphere, divided by 10, will be 26.73008, or the interior breadth of the coffer; and 267.3008 squared is 71,449. A more direct connection between Queen’s Chamber and coffer is this, that the cubic diagonal of the former is just 4 times the cubic diagonal of the interior of the latter: 356.8246 / 4 = 89.206; or 356.915 / 4 = 89.229; as compared with 89.168 from your mean measures of coffer. Hence, if 10,000,000 square cubits be taken and made into a circle, that circle will have a diameter of 89,206 inches, = 1000 coffer diagonals. But it is possible that the 4 interior diagonals of this vessel (perhaps, also, the 4 exterior diagonals) were purposely of different lengths. For instance, the mean length of the Pyramid’s arris lines, divided by 100, is either 89.0946 or 89.3404, according as the base-side is called 365.242 or 366.255 S. cubits; and the latter number cubed gives 10 times the coffer’s contents, or 713,090 cubic inches; while the mean (89.2175) agrees with the coffer diagonals derived above from Queen’s Chamber.

If the cubic diagonal of the exterior of the coffer were 4 times the interior breadth, or 106.920 (my measures, however, give only 106.468), it would make the circumscribed sphere just one-tenth of that inscribed in the King’s Chamber’s height: for 230.3886 / √10 = 106.912.

Perhaps the coffer’s size, shape, and position in the Pyramid may be indicated in the following way. Mr. F. Petrie has observed that it stands at a level of 100 times its own height, below the Pyramid’s summit:

Let 40.9954 (King’s Chamber semi-diagonal / 2π) = least or central height of coffer; then Pyramid’s height, 5813.01, — 4099.54 = 1713.47, = level of top of coffer above Pyramid’s base.

Let 41.4096 = greatest or corner height of coffer; then 5813.01 — 4140.96 = 1672.05, = level of bottom of coffer above Pyramid’s base.

And the square roots of 1713.47 and 1672.05 are 41.4 and 40.9 nearly.

Let 5813.01 be divided into two parts, such that the square root of the less shall be 1/100th of the greater, these parts will be

(a) 4117.57,
(b) 1695.44,
and will represent the mean level of coffer, or level of its centre. And the square root of (b) = 41.1757 is the coffer’s mean height, while the square root of (a) = 64.1683 is the mean of its mean length and breadth: which dimensions, combined with a proportion of 3 : 7 for length and breadth, give for cubic contents of exterior 142,704, or 71,362 X 2.

Also, if 4117.57 be taken as radius, then circumference (or perimeter of plane through Pyramid at level of coffer’s centre) = 25,871.5, or the years in Precession Period; agreeing closely with cubic
diagonal of King's Chamber, measuring to foot of wall, \(\times 100, = 26,873 \).

As the sum of the 24 arris lines of coffer is = circuit of King's Chamber floor, their mean length, and also the difference between length and breadth of base, will be 51.5165 inches, = diameter of a sphere whose contents are 71,588, which, though larger than most of the values for coffer's contents, seems entitled to some weight, as it is repeated in the sphere described about King's Chamber.

It would appear that the numbers 3, 5, 7, and 10 (whose sum is 25) play a prominent part in both the King's and Queen's Chamber, with this difference, that while in the King's Chamber 3 is coupled with 7, and 5 with 10,—as in the arrangements of the coffer, \(\pi \) proportions, and general "fiftiness" of the room;—in the Queen's Chamber it is 3 that is associated with 5, and 7 with 10,—as in the \(3 \times 5 \) arrangement of the squares, the 7 sides and 10 angles of the room, its \(5 \times 3 \) arris lines, and its 10' inches' capacity.

JAMES SIMPSON.

SECOND LETTER FROM MR. JAMES SIMPSON.

6 Sept., 1875.

One point I kept out of my last letter, because it seemed to suggest a too-fanciful allusion to the Tribes of Israel; but as it may admit another interpretation, and seems wanted to complete the King’s Chamber’s Sabbatic symbols,—I trouble you with a matter small enough in itself.

The symbol of a day was shown to be repeated seven times in the Chamber and its roofs; and to be traceable in

1. number;
2. height, a linear measure; and
3. cubic measure.

But superficial measure was left out, and may be thus stated:

1. The area of the King's Chamber floor, or the base upon which the 7 day-symbols stand, is about 84,926 Pyramid square
inches; and if divided by 7 would show 12,132, or a round 12,000 inches for each day. As the seven days may be said to be bounded by two such horizontal areas, one below, one above, it is no great effort to liken these boundaries to the twelve hours of the day or night respectively, at the rate of 1000 inches to the hour.

Next take the vertical bounding areas—the four walls of King's Chamber as produced up to topmost roof of the Chambers of Construction. The circumference of these walls is—

(1.) = 12 King's Chamber construction units, and
(2.) = 24 of that remarkable coffer quantity 61.61, &c.

—the Cofer itself presenting the sum of these 24 units on its surface, 12 within and 12 without. Secondly, as the height of a day-unit was in one case reckoned = 116.260 inches: multiply that by one-twelfth of the circumference (103.033), and we have an area of 11978.6 inches, which is repeated 12 times round the girth of each day-space. But keeping in view the second height of the Chamber, which is either

\[
\begin{align*}
(1.) & \text{ From circuit of N. or S. wall, or } w \text{ length } & = 235.243 \\
(2.) & \text{ From length } : \text{ height } = 7 : 4 & = 325.604 \\
(3.) & \text{ From contents } = 20,000,000 \text{ inches } & = 235.498 \\
\hline
\text{Mean} & = 235.415 \\
\text{and meaning those with first height} & = 230.589 \\
\text{we get mean} & = 232.902 \\
\text{and } \div 2 = \text{day-unit} & = 116.451
\end{align*}
\]

and this x 103.033 produces an area of 11,998, or, practically, 12,000 square inches, repeated 12 times round the room; or when x the hour-representative of 51.516, gives 6,000 square inches for every hour. Whether this indicates a division of the hour into 60 minutes, as almost universally employed, or whether there is anything at all in the circumstance, you may judge: and the whole subject is but trifling compared with the prophetic indications of the building.

An allusion is made by "An Israelite," in Mr. Hine's smaller journal, this week, to the tribes of Israel being necessarily to be forthcoming somewhere, as a nation, at least seventy millions strong—foundering, I suppose, on the estimated Jewish population being at present about a twelfth of that number, and drawing confirmation from the fact that the people of pure Anglo-Saxon blood do number at present somewhere about, perhaps rather under, that same figure.
type of the Jewish dispensation, with its temporary foundation of types and ordinances, destined to pass away and be replaced by a finished and perfected structure. But the grand scheme of salvation keeps on its ascending way, infinitely superior to the old narrow and defective dispensation. Its ending in 1881 or 1882 seems to me to point to a completion of the revelation of the Pyramid, and to be the date when its time for the work assigned to it has fully come. In the perpendicular step at the end, and the broken character of the end of the gallery, there seems to me to be an intimation to look higher for the continuation and completion of the revelation. It is hardly in accordance with historic truth that mankind universally deteriorated from the dispersion to the exodus; surely the calling of Abraham, if not the previous consecration of Melchizedek, is an era in the spiritual history of the human race. The Divine leaven then introduced did not cease its working, but God's scheme of redemption went on gloriously and continuously to its final consummation. I therefore believe that there ought to be a passage diverging at this point, which, if parallel to the other, would culminate on the 75th layer, and in which the same general character of passages will be found, and the same time-measures repeated. In this connection I call your attention to a significant fact. On page 358 of your book you ask whether the ascending passage would ever have been discovered but for the falling out of the block that concealed the entrance? and you reply, that on careful examination the floor joints, which everywhere else are perpendicular to the axis of the passage, are here oblique, and between these exceptional joints is the stone supporting the block in question. What, then, is the meaning of the oblique joints just before the line marking the date of the building? Why is this departure from the rule? It is hardly to call attention to the line, as they are beyond it, and, I believe and hope, they point to an opening above. If my theory is correct, we shall find here a passage typifying the progress of God's kingdom in the world, not outwardly by nationality, but inwardly in the heart, as the whole body of believers of every race, continuously from Abraham to the final consummation. I may be in error, but the subject has so taken possession of me that I cannot rest till I have written you my views.

Another characteristic of the Divine method is a full provision for all contingencies. For the Pyramid to enforce its mission, it is essential that it give no uncertain sound. In order that the scientific sceptics may be put to silence, the evidence must be before them to be weighed, and measured, and proved, beyond cavil.
The coffer, the crown and end of all, is now so broken and dilapidated that its original size and condition can hardly now be determined; and we know not what the lid contained, or what other evidence necessary to the full understanding of much that is now dark and mysterious has been lost or destroyed. What could serve better to call general attention to the message of this wonderful structure than the finding of a duplicate set of passages, unopened since the foundation of the structure, with the contents all intact and untampered with, and capable of the most minute demonstration? The discovery of the ventilating channels in the Queen's Chamber is a proof that there were passages not only not discovered, but not intended to be discovered until the fulness of time. To look for a passage on the south side, is to ignore all the structural intentions of the plan, but a passage on the north side, as much to the east as the present one is west of the centre, would equally fulfill every indication and purpose of the present set of passages. And what better method could be devised of preserving the secret for future ages, than to provide that if an entrance was obtained, the difficulties and complexities of the internal structure should so fill and occupy the minds of those who entered it, that they would necessarily believe they had found the whole secret? You suggest that the object of the architect in placing the entrance on one side of the centre was, at least in part (see pp. 97 and 403), to protect it from discovery. If so, he has failed, utterly failed, and if we believe that the building was inspired and intended by the Almighty as a revelation to future ages, can we attach the idea of failure to His purpose? I say He has not failed, and in His appointed time the revelation will be given to the world in its pristine perfection. May He hasten the day!

With much respect, yours, &c.,

(Signed) HENNELL STEVENS.
APPENDIX VI.

ALFRETON PAMPHLET.

While the last of these pages is going through the press, a remarkable pamphlet has been published by Mr. William Rowbottom, of Alfreton, England—of which I can do little more at present (in Lisbon on astronomical duty) than give the following short notice:—

Mr. R. accepts the measures of the floors of the passages in the Great Pyramid, in terms of Pyramid inches, as indicating dates in years; but he has slightly different meanings for, or events to attach to, some of the signal points; as will be seen below:—

<table>
<thead>
<tr>
<th>Locality of modern measure</th>
<th>Reference-event.</th>
</tr>
</thead>
<tbody>
<tr>
<td>North, or upper commencement of floor of Entrance Passage.</td>
<td>The Dispersion of Mankind after the Flood.</td>
</tr>
<tr>
<td>The fiducial line in the Entrance Passage.</td>
<td>The foundation of the Great Pyramid.</td>
</tr>
<tr>
<td>The commencement of the floor-line of the 1st Ascending Passage, produced downwards to floor of Entrance Passage.</td>
<td>The Exodus under Moses.</td>
</tr>
<tr>
<td>The North beginning of the Grand Gallery.</td>
<td>The Birth of Christ in the year 0.</td>
</tr>
<tr>
<td></td>
<td>The Birth of Christ in the year 1 A.D.</td>
</tr>
</tbody>
</table>

The introduction of new reference-events, for the measures
of the Great Pyramid already adopted, is, I need hardly say, perfectly competent for Mr. W. Rowbottom, or any one else who can bring forward better reasons for them, than what are produced for the older assumed events both in this, and other recent, Pyramid publications.

But Mr. R. much strengthens his attempted reformation of those events, by showing its complete application to an improved system of Biblical dates worked out by himself from the Scriptural text. This system neither agrees with the short chronology of Ussher (hitherto often printed, though without authority, in many English Bibles), nor with the longer chronology of Hales, chiefly derived from the Septuagint text,—but comes between them; and further includes a most important inquiry as to who was the Cyrus of Scripture; that Cyrus having been a personage most highly approved by God, speaking through Daniel and other prophets—but yet a totally distinct individual in date from the ordinarily acknowledged Cyrus of Greek profane history.
A new religion has sprung up throughout Christendom, so profound, and yet so daring in its character, that it can only be described as the New Religion of the Last and Chief Antichrist,—the masterpiece of Satan, which he has been maturing since the age of the Apostles, and which he has hitherto kept back as his last resource in his closing conflict with Almighty God.

Who is the Last Antichrist?

Not the Pope, nor any Roman Catholic!

Some of them may have been earlier, and smaller, Antichrists; but the last and greatest Antichrist is, according to the words of St. John,—

He who confesseth not that Jesus Christ is come in the flesh. That cannot be Popery, because Popery especially makes the coming of the Divine Christ in the Flesh a chief doctrine of its faith.

A double fulfilment of this Antichrist prophecy, as apparently of so many other important prophecies of the Bible, may be looked for:—

First, for instance, such an Antichrist as the Pope has been.

Second, the Antichrist of the last days.

And what the Roman Catholic religion was to the Pope, such must be the new religion of the last days to the Antichrist.

This new religion is not atheism, nor pan-theism,—but anthropomorphism, the adoration of the power of man; the setting up the human species, under education, as a substitute for God.

Its votaries do not seek to brand the Bible as a forgery, but only to explain away its exclusive claims, by swamping them amongst a multitude of other, and, as they argue, exactly similar books. They allow the Scriptures much literary glory and aesthetic brightness, but deny it a monopoly of such
qualities. They speak of Moses and Minos as equally inspired to make laws, David and Pindar to write poetry; and affirm that Newton and Isaiah, Leibnitz and Paul, have in them only various forms of the one spirit from God Most High.

Further still, our Lord himself is put on a level with Mahomet, or even with Voltaire. All are acknowledged as benefactors of the human race, but all of the same rank. Our Lord, they say, is not to be placed above Mahomet.

The Supreme Deity is alone acknowledged as the original Creator, though too far removed to interfere with the projects of man. Divine power may have been necessary to set the world in motion, but now they say it can manage its own affairs, through the divinity of the human intellect and the all-sufficiency of educated man. Wherefore man, in every rationalistic country, is thus fast establishing an apostasy from God, and will not tolerate the idea of Divine intervention in human affairs.

The flexibility of this new religion, the true religion of the serpent, is not the least curious part of its structure. It combines with and homologates every taste, employment, and religion of man. It makes gods of every man who has been the successful originator of movements, or ideas, among men. Mahomet, Voltaire, and our Lord, are each ranked among the Gods of the new religion,—because each possessed a leading mind, and was the author of a great movement. The Pope and his priests are also among the gods of the new religion, because they were in their day the controlling spirits of vast numbers of mankind.

The new religion combines, also, with Protestantism,—leading men to overlook the power of the Holy Ghost and immediate presence of Christ with a single penitent soul,—and to consider only the power of combinations, of societies, and the force of numbers, of men. They insist, moreover, on accounting for all Scripture miracles upon natural principles,—trust to no guide but the human intellect and learning;—and find in the Word of God nothing loftier or better than pure morality or sublime imagination. Atonement, Incarnation, and Divinity, are all denied; and our Lord is reduced to the level of an ordinary man. Popery elevated a certain class of men into the rank of mediators between God and man; but the new religion admits of no mediation, because it believes neither in the existence of sin to be atoned for, nor of Divine justice to be feared; and makes every man a God unto himself.

Such is the new religion now rising in every civilised country, and ready for the hand of the Antichrist whenever he shall appear; and whoever he shall prove to be!
APPENDIX VIII.

THE PERVERSENESS OF MAN.

From "The Nation's Glory Leader" of April 25th, 1877.

Two noteworthy paragraphs appear in one of the public papers (the Scotsman) this morning, March 28, 1877. They are set, no doubt, very wide apart therein; but I shall take the liberty of bringing them side by side, and then remarking upon them.

Firstly.—There is the mention, becoming more extraordinary every week, that a similar mention has to be made, viz. that, notwithstanding all untoward events, notwithstanding short working hours, strikes of workmen, losses at sea, and burnings on shore—yet the already enormous wealth of this Nation is, under Providence, still going on increasing; so that it is recorded this morning that "the revenue up to Saturday last amounted to £76,799,576, compared with £75,673,658 at the same time last year;" and we seem to be more and more Divinely destined to become a nation who "shall lend to all other peoples, but borrow from none."

Secondly.—We read in the same paper, that the Cobden Club is just now most actively engaged in promoting what they speciously term "the equalisation of weights and measures, and the adoption of the decimal system in this country:" but which means the forcing on the people of Great Britain, at pains, penalties, and imprisonments, the Parisian and most inconvenient, as well as atheistic, weights and measures of the French nation, termed the French Metrical System. And this Cobden Club is stated to be working in that nationally debasing design just now with such success, that they have not only got one Mr. A. H. Brown to undertake soon to bring a pro-French Metrical Bill into the House of Commons,—but they announce that they will take an early opportunity to drag Lord Sandon over the coals, and inquire "Why he
struck out from the country's Education Code the clause which they euphuistically imply provided that children of the fifth and sixth standards should be taught the French metric system."

Oh, certainly! and by all means let them ask that question in the light of open day in Parliament, for then our country will be awakened at length to the peril it was in under the late Administration; when certain statesmen did actually seek to pervert the education of the people into an engine for making Great Britain accept the atheistic invention in metrology of another nation; which unhappy nation too, in spite of all the vaunted material advantages of that system, is day by day decreasing in commerce, wealth, and standing before the world.

So by this happily, but unintentionally, devised question of the Cobden Club, we have not only already learned the name of the present Education Minister who has had loyalty and firmness enough to strike out the accursed foreign and godless thing, after he had found it put into the British National Education Code by others; but we may also hope to learn the names of those very men who put such a scheme into the Code for innocent British children all over our land, and endeavoured with such French teachings, to poison the glorious traditional, hereditary, and Biblical life of our Nation in the very bud and source of its humanity.

P. S.

EDINBURGH, March 28th, 1877.
INDEX.

Acme of the burden of Egypt, 100
Adams, John Quunev, report on metrology, 201, 526
Air-channels, 378-381
Airy, Sir G. B., earth's mean density, 100, 162, 412
figure of the earth, 42, 69
Greenwich Observatory Report of 1861, 74
Aiton and Inglis, measure of King's Chamber, 175
uncovered the four sockets, 33, 84, 455
Alfreton pamphlet, Appendix, 611
Alkowa, Ibn Abd, Arab history, 16, 107
Allatif, Abd, Arabian historian, 324
Alpha Draconis, 339-348
Uran Minori, 69
Angle learning, system of, 288
Anglo-Saxon corn-measures, 171
Ante-chamber, Capt. Tracey, R.A., on the, 181-184
east wallacot, why cut down, 181
granite and limestone of, 182
measured height of, 194
more symbolical hints from the, 186, 187
symbolism, 149, 181-185
testimony to sun, earth, and moon, 194
uses of the east and west wallacot, 183
Aphorists, religion of, 613
Antiquity of intellectual man, 147, 172, 411
Appendices, 529-616
Arabs close ventilating channels, 167
A representative antagonist, 195
Argyll, Duke of, introduced metric system in India, 211
Ark of covenant, 361-369
Noah, 360-379
Armstrong, Sir W., on the inch decimally divided, 360
Arrangements of time in religious and metrolological systems, 236
Arthur's Seat, Ordnance survey on, 158, 161
Astronomical orientation, popular ideas of, 67
tables of the East, 150
Astronomy, good Newtonian, 451
Athens newspaper quoted, 7, 44, 503
Austrian Meteorological Society, 167
Azimuthal change in the earth's crust, possibility of, 64

Babylonian captivity, 57
Bagdad, Caliphs of, 95
Baily, Francis, applying theory to observation and observation to theory, 172
mean density of the earth, 165
permanent standard measures, 192
reports on the Elizabethan yard, 206, 307
temperature in observing-rooms, 161
Barnard, President, metrical system, 48, 503-529, 631-634
Berthius, Gaspar, Italian astronomer, 71
Bible, truth of the, 73, 74
Biblical quotations, see Passages views of metrology, 502, 604
week, 416
Birch, Dr., Gages's works by, 330
interpretation of the stone markings in Great Pyramid, 6
Blake, William, quoted, 600, 621, 1130
Bonaparte, Napoleon, invasion of Egypt by, 110
Bosch, mast of the granite leaf, 187
granite leaf, a capacity and linear measure, 238
Botta, era not pyramids, 374
Brandis, Dr., Babylonian weights and measures, 303
Brettell, Mr., C.E., measures of casing-stones, 23
British Association, 302, 330
Journal of Photography, 60
legal weight measure, 245
metrology, 201-222
Brougham, Lord, on weights and measures, 305, 225, 237
Brugach, Dr., Pyramid builders, 462-464
Sphinx temple stone, 476, 478
translation of the word Pyramid, 374
Brunton, Mr. T., chronological data, 340, 343
Brislawe, Dr., calculations on the Pole-star, 346, 349
builders, first, of stone sanctuaries and pyramids, 373-377
Bunsen, Baron, Third Pyramid of Jecseh, 477
Cambridge man’s idea of granite, 123
mathematician, 171
Cambridge, 87
Capacity corn-measures, 240, 241
measure, 229-241
of the coffer proved to be, 146-148
scientific references of, 181
Cartouches pictured by Dr. Lepsius, 400, 461
Casey, C., “Philites” by, 425
the mark, or ruled line, in entrance-
passage, 452, 457-458
Casing-stones of Great Pyramid, 20, 22-
24, 64
Cavendish, Mr., earth’s mean density
experiments, 103-103
Cavignia, H. cleared out the entrance-
passage, 429
proved the Romans had been inside
the Great Pyramid, 87
Ceiling of King’s Chamber, 29, 393
Cepheus not buried in his Pyramid, 112
Chamber, a once concealed, 297
Chambered tumuli, 375
Cleops not buried in his Pyramid, 112
history of, 491
Chisholm, Mr., report on weights and
measures, 206
Christ, His first and second coming, 562-
364, 929
Christianity of the “Unseen Universe”
book, 576
Chronologies, long, not proved, 450-452
Chronology: ecological evidence no proof
of a, 446-451
of the valley of the Nile, 449
Clarke, Col., R.E., earth’s mean density,
412
equatorial and other diameters, 48-
50
latest determination of earth’s polar
axis, 47
Clarke, Dr., granite a natural substance,
127
number of courses of stone in King’s
Chamber, 141
on the well in the Great Pyramid,
429
Clocks in subterraneans, 164
Coffin a capacity measure, 225
breadth inside the, 142
breadth outside of the, 140
capacity determinations of the, 135-
147
depth inside of the, 142
devoid of all inscriptions, 143
diagonal measures of the, 143
earth size, relations of the, 232
external measures of the, 139
granite the true material of the, 123
height outside of, 140
how the idea grew that it was a sarcoc-
phagus, 111, 112
identifid with King’s Chamber, 229
inside measures of the, 142, 229
John Taylor’s theory of the, 116
ledge anomaly of the, 135-144
length inside, 142
literati wrote concerning the, 112
measured in British inches, 137
Coffin measures before the ledge was cut
out, 145
measures by Dr. Grant, 228, 224
measures by Prof. Greaves, 119
modern measures of the, 118
outside measures of the, 138, 226
position of, 230, 405
position of, in King’s Chamber, 147
qualities of the quarter measure of
the, 121
sarcophagi theory of the, 144
standard of capacity in Great Pyra-
mid, 223
standard of measure, 115
substance and shape of the, 143
thickness of bottom and sides of the,
144
weight and capacity measure, tem-
perature, and pressure, data for the,
168-170
why of that size 131
Coloured Pyramid, 128, 577
Conquest of Egypt, 87
Coventry, Mr., Andrew, viii, 415
Cross, symbol of the, 561, 063, 052
Crucial test, 432-445
Cubic, duplication of the, 827
Cubit improperly used for standard, 520
of ancient renown, 526
of Egypt, 532
of Kamiak Double, 221
of Samos, 565-569
of the East, origin of the one profane,
810-814
of the Sethites, 514-519
sacred, 59, 229, 329
used by Moses, 929
used by Solomon, 909
Cubits of Greece and Rome, ages of, 392
mixed and opposing presence of the,
519-523, 519
sacred and profane, 319
Daniel quoted, 515, 545
Davies, Charles, “Metric System” by, 528
Day, Mr. St. John, on the area of the
Pyramid’s right section, 18
on the coffin, 292
on the high antiquity of iron and
steel, 589-595
position of the boss, 188
Days of future trouble pyramidally ex-
pressed, 513
Deluge and dispersion, 50
Differential chronology of the Egyptians,
454-456
Diodorus on Chemnus, 112
Discoveries of Young and Champollion,
461
Dixon, Mr. W., coffin measures, 137-140
discovered large casing-stone, 29
discovery of the Queen’s Chamber
air-channels, 302-305
high Nile inundation, 291
measure of granite leaf, 190-192
masure of the ruled lines in en-
trance passage, 438-444
model of the boss, 187
number of stones in King’s Chamber
walls, 133
INDEX

<table>
<thead>
<tr>
<th>Page</th>
<th>Entry</th>
</tr>
</thead>
<tbody>
<tr>
<td>619</td>
<td>Dixon, Mr. W., on the masonry of the first ascending passage, 286</td>
</tr>
<tr>
<td></td>
<td>on the stone between the diagonal joints, 357</td>
</tr>
<tr>
<td></td>
<td>visit to the mosque of Scottian Hassan, 17</td>
</tr>
<tr>
<td></td>
<td>Dobree, Alex., quickness in detecting casing-stone angle, 26</td>
</tr>
<tr>
<td></td>
<td>Dufeu, M., advocated Heideckean Bey's theory of Great Pyramid, 136</td>
</tr>
<tr>
<td>428</td>
<td>Early Egyptian kings, classic names of, use of iron, 591-596</td>
</tr>
<tr>
<td></td>
<td>Earth axis and year, commensurable result, 35</td>
</tr>
<tr>
<td></td>
<td>Earth-circuit and Pyramid-base analogy, density closely approximated to, 411-413</td>
</tr>
<tr>
<td></td>
<td>mean density, 158, 190-195, 242, 243, 252</td>
</tr>
<tr>
<td>44</td>
<td>polar axis, length of the, 45-47</td>
</tr>
<tr>
<td>43-50</td>
<td>Earth, equatorial and other diameters of, 43-50</td>
</tr>
<tr>
<td>158</td>
<td>Earthquake in Cairo, 106, 178, 185, 189</td>
</tr>
<tr>
<td>189</td>
<td>Earth-size and sun-distance, 44, 51, 104</td>
</tr>
<tr>
<td>149</td>
<td>in Pyramid inches, 43</td>
</tr>
<tr>
<td>651</td>
<td>weight of the, 235, 256</td>
</tr>
<tr>
<td>189</td>
<td>Edinburgh Astronomical Observations, 189, 301, 307</td>
</tr>
<tr>
<td>152</td>
<td>Egmont, Lord, on the King's Chamber, 152</td>
</tr>
<tr>
<td>100</td>
<td>Egypt, some of the burden of, central to land surface, 76-78</td>
</tr>
<tr>
<td></td>
<td>degradation of, 100</td>
</tr>
<tr>
<td></td>
<td>has to accomplish its destinies, 107</td>
</tr>
<tr>
<td></td>
<td>in the latter day, 563</td>
</tr>
<tr>
<td>107</td>
<td>new policy of the present, 564</td>
</tr>
<tr>
<td>563</td>
<td>of the Lord Christ, 569</td>
</tr>
<tr>
<td>108</td>
<td>population of, 1884, 110</td>
</tr>
<tr>
<td>110</td>
<td>record of time, 429</td>
</tr>
<tr>
<td>803</td>
<td>Egyptian cubit, attempt to say there was another than the old, 803</td>
</tr>
<tr>
<td></td>
<td>hieroglyphics versus Greek scholarship, 492</td>
</tr>
<tr>
<td>492</td>
<td>history, resumption of, 106</td>
</tr>
<tr>
<td>301</td>
<td>linear standard, name of the, Pyramid building, 91</td>
</tr>
<tr>
<td>307</td>
<td>Egyptologic details of early kings, 430-435</td>
</tr>
<tr>
<td>435</td>
<td>Egyptological chronologists, good, considerate in monuments, 435</td>
</tr>
<tr>
<td></td>
<td>Egyptologists approve of Leconte's law of Pyramid building, 58-60</td>
</tr>
<tr>
<td></td>
<td>favour the tombic theory, 113</td>
</tr>
<tr>
<td>113</td>
<td>El Fostat, ancient city of, 94, 103, 107</td>
</tr>
<tr>
<td>107</td>
<td>El Makrensee, an Arab historian, 108</td>
</tr>
<tr>
<td>118</td>
<td>El Mustanir, great famine under his reign, 108</td>
</tr>
<tr>
<td>108</td>
<td>En Nabia, persecutor of Christians, 108</td>
</tr>
<tr>
<td>696</td>
<td>Egypt, cubic measures of, equal to one hundred thousand square Egyptian feet, 73</td>
</tr>
<tr>
<td></td>
<td>equal to one hundred thousand square Egyptian feet, 73</td>
</tr>
<tr>
<td>73</td>
<td>Equal surface projection, 70, 284</td>
</tr>
<tr>
<td>284</td>
<td>Equatorial and other diameters of the earth, 48, 49</td>
</tr>
<tr>
<td>492</td>
<td>Ezekiel xxxvii, 15-28, quoted, 542</td>
</tr>
<tr>
<td>278</td>
<td>Fahrenheit, M., thermometer scale, 278</td>
</tr>
<tr>
<td>278</td>
<td>Ferguson, Mr. J., on rude stone monuments, 465-470</td>
</tr>
<tr>
<td>286</td>
<td>Field, Rev. Dr., laid himself inside the coffin, 286</td>
</tr>
<tr>
<td>286</td>
<td>Fifty Pyramid inches, the importance of, 166</td>
</tr>
<tr>
<td>1884</td>
<td>Figure of the coffin, 123</td>
</tr>
<tr>
<td>123</td>
<td>Final contest between the French metre and Great Pyramid unit, 584, 585</td>
</tr>
<tr>
<td>411-</td>
<td>First ascending passage, masonry of the, 305-307</td>
</tr>
<tr>
<td>305</td>
<td>Foot-measures, 272</td>
</tr>
<tr>
<td>562</td>
<td>Foreign weights and measures, introduction of, 206-213</td>
</tr>
<tr>
<td>803</td>
<td>Form of c, the proportion of the diameter to the circumference of a circle, 553</td>
</tr>
<tr>
<td>553</td>
<td>Fournier, M., on the walls of the King's Chamber, 151</td>
</tr>
<tr>
<td>151</td>
<td>French Academicians, 18, 64, 78, 134, 155, 395, 396</td>
</tr>
<tr>
<td>395</td>
<td>metre, progress of the, 525-529</td>
</tr>
<tr>
<td>529</td>
<td>metric bill, 211, 212, 217-219</td>
</tr>
<tr>
<td>211</td>
<td>metric system, discussion on the, 246-252</td>
</tr>
<tr>
<td>246</td>
<td>metric system and the Cobden Club, 615, 616</td>
</tr>
<tr>
<td>615</td>
<td>metric system reference for capacity measure, 189-190</td>
</tr>
<tr>
<td>189</td>
<td>ancient on the passages of the Great Pyramid, 325, 326</td>
</tr>
<tr>
<td></td>
<td>Galloway, Rev. W. B., on "Egypt's Record of Time," 429, 454</td>
</tr>
<tr>
<td>429</td>
<td>General summation, secular and sacred, 449-502</td>
</tr>
<tr>
<td>449</td>
<td>Genesis, 373, 374</td>
</tr>
<tr>
<td>373</td>
<td>Geographical aptitudes of the Great Pyramid, 70-71</td>
</tr>
<tr>
<td>70</td>
<td>indications in the Great Pyramid, 40-48</td>
</tr>
<tr>
<td>40</td>
<td>Gibbon the historian's opinion of Al Mamoun, 94</td>
</tr>
<tr>
<td>94</td>
<td>Girdlestone, Rev. C., number a link between Divine and human intelligence, 128</td>
</tr>
<tr>
<td>128</td>
<td>Gladstone, W., on the metric system, 212</td>
</tr>
<tr>
<td>212</td>
<td>Gliddon, G. R., "Olio Egyptica," 97, 114</td>
</tr>
<tr>
<td>97</td>
<td>Glover, Rev. F. R. A., on the ordinances of the heavens, 803</td>
</tr>
<tr>
<td>803</td>
<td>on the Royal Society's base-side measures of the Great Pyramid, 304</td>
</tr>
<tr>
<td>304</td>
<td>science after, not before, God, 413</td>
</tr>
<tr>
<td>413</td>
<td>Goodair, Rev. J., on Ethnical inspiration, 311, 377</td>
</tr>
<tr>
<td>311</td>
<td>Grand Gallery, closing of the first Christian dispensation marked in the, 511, 516</td>
</tr>
<tr>
<td>511</td>
<td>cubical commensurabilities in the, 418-420</td>
</tr>
<tr>
<td>418</td>
<td>symbolisms in the, 429, 429, 519</td>
</tr>
<tr>
<td>429</td>
<td>symbolology of the seven overlayings of the, 339-341</td>
</tr>
<tr>
<td>339</td>
<td>Granite culminates in King's Chamber, 131</td>
</tr>
<tr>
<td>131</td>
<td>in the dark ages, 124-131</td>
</tr>
<tr>
<td>124</td>
<td>in the Great Pyramid, 542, 543</td>
</tr>
<tr>
<td>542</td>
<td>the true material of the coffin, 123</td>
</tr>
<tr>
<td>123</td>
<td>Granite leaf, 157</td>
</tr>
<tr>
<td>157</td>
<td>base on, 157-159</td>
</tr>
<tr>
<td>157</td>
<td>cubit in the, 189</td>
</tr>
<tr>
<td>189</td>
<td>inches in the, 186</td>
</tr>
<tr>
<td>186</td>
<td>measures of the, 129, 190</td>
</tr>
</tbody>
</table>
Granite leaf, on the, by Capt. Tracey, E.A., 188
- 8 in the, 190-192
Grant, Dr., a duplicate measurer, 436
air-channels in the King's Chamber, 858-859
air-channels in the Queen's Chamber, 892-895
derivation of the word Pyramid from the Egyptian, 374
efforts to identify in Cairo stones from the Great Pyramid, 17
earthquakes in Egypt in December 1878, 458
on coffin measures, 137
on the coffin's entrance into the King's Chamber, 293, 294
on the cubit of the granite leaf, 189
on the hole in the ramp, 420, 421
on the number of wall stones in the King's Chamber, 138
recently discovered stone near the Great Pyramid, 474-478
ruled lines in the entrance-passage, 436
various modes of spelling the name Jesec, 4
Great Britain, survey of, 268-270
Great Pyramid, absolute temperature of the King's Chamber in the, 165
an entry made into the, 55
angles of the, 24-25, 257
antagonistic to all other buildings, 559, 569
antiquity of the, 5, 458, 459, 470
architectural facts of the, 470-472
astronomical azimuth of the, 67
astronomy of the entrance-passage of the, 836, 837
base-side breadth, 24, 28-29, 49
base-side length represented by height in ante-chamber, 184
before science, 67
built in horizontal courses, 154-155
built size of, 45
casing-stone angle of, 90, 22, 64
centrally in Egypt, 77, 558
Chaos was not buried in the, 112
chronological limits in accordance with Holy Scripture, 560
classic antiquity on the interior of the, 90, 92
coffer metrology, 118, 137
- cubic elements omsize of, 254
cubit, scientific of, 38
date of foundation, 384-387, 348
density and temperature of, 149
derivation of name from the Egyptian, 374
details of entrance into the, 388
earthquakes at, 383
earth's density numbers in the, 182
emplacement of the entrance into the, 401
entered by Romans, 98, 99
expresses w, 24, 554, 555
external figure of the, 179
for weight, 256
French accounts on the passages of the, 892, 894
geographical indications of the, 63-62
geographical position, 78
Great Pyramid, glory in its height, 59
grand chronological dial of the, 341
height of, 24, 52, 81
history and exterior of the, 83
inscriptions on the, 5, 6
its w, 477
key of knowledge of the, 181
King's Chamber as a physical observing-room, 194-195
King's Chamber reacts on the exterior of the, 179-181
"Life and Work" book at the, 71, 172, 180, 185, 188, 191, 282, 349, 402, 409, 414-415
linear elements or size of the, 254
linear standard and French metre, 40-45
mean solar day and year marked in the, 268
medieval learning on the interior of the, 87
Mesolithic symbolism of the, 425
meteorological centre for all the world, 116
model of meridian section in ante-chamber, 186
modern measures of the passages, 381-383
modern quarrying at the, 383
New Testament allusions to the, 507-510
no use ever made of the, 560
numbers, references to the, 35-41
observed temperatures at or near the, 168-169
Old Testament witness to the, 509-510
of the future in the, 510
of the sacred in the, 425-429
opposed to idolatry, 569
orientation of the sides of the, 63
parallel of 30°, stands the, 70
physical science of the, 558-537
present appearance of the, 16
Prof. Greses describes the passages of the, 387-389
Prometheus, 578
w proportion of the, 15, 20, 40, 57
question, European mind enters into the, 111
ruled lines in entrance-passage of the, 436
separated from all other Pyramids, 557-561
sliding block, 91
standard of length measure, 393, 399
tables of measure, on the geography and exterior of the, 81, 99
temperature corrections, and how effected in the, 275
temperature reference scale, 285
the geography and exterior of the, 1
the oldest stone monument, 473-478
theory, objections to the, 19-22
time at the, 295-296
time indications in the, 539
ture primary astronomical orientation of the, 76
use of a polar star, 397-399
variation of the compass at the, 69
various measured accounts of the Grand Gallery of the, 513
INDEX. 621

Great Pyramid, vertical height of, indicates the sun distance, 61, 841, 855
visited by Prof. Greaves, 111
measure, 291-292, 293
what about money at the, 298
what the ancients knew about the interior of, 96
world-wide interest in, 177
writers on the, 178
Great Sphinx, 285
Greaves, Prof. John, offers measures, 118-121
describes the passages of the Great Pyramid, 357-381
discusses the air-channels with Dr. Harvey, 379-381
Great Pyramid measurer, 10, 68, 67, 71
length of King's Chamber as measured by, 175
named the granite leaf, 157, 542
number of stones in King's Chamber walls, 151
on where Cheops was buried, 122
Gregg, Rev. Dr., "Times of the Redemption of all Things," 581
Guest, Mr., publisher of "Life from the Dead," 94

Habian, account of the Emperor, 577-579
Habini, El. the cruel, 107, 108
Hamburg, Mr. R. G., on the Pleiades year, 363, 344
Hall, Mr. Sydney, on the seven overlappings of the Grand Gallery, 546
Hardland, Mr., mineral researches near Surabib-el-Xhadom, 603
Haroon Al Raschid of the "Arabian Nights," 94, 97, 106
Harrison, Rev. J., "Whose are the Fathers," 507
Harvey, Dr., air required in the Great Pyramid, 368, 371
Heat and air pressure, 275-276
Hebrews xi. p. 49
Regina begins and ends Mohammedanism, 545
Hckeyeyan Boy's Great Pyramid theory, 135
Henderson, Rev. W., identity of the name of man's creation, redemption, and fall, 560, 692
Hereditary cubic, 270, 271
pound-weight measure, 297, 298
weight and measures, 115
Herodotus, account of the Pyramid building, 370, 432
a charming relater of history, 306
an ancient Egyptian authority, 7, 9
of the day of, 300
imposed on by Egyptian priests, 104
Mr. Taylor's interpretation of, 92
was the ever inside the Great Pyramid, 190
word Pyramid not known before the visit of, 374
Herschel, Sir John, angle of Pyramid, 23
inch the unit standard of measure, 217-222
Herschel, Sir John, laid down the astronomical law with regard to the Great Pyramid, 354-357
on applying observation to theory, and vice versa, 172
on the diameter and circumference of a circle, 41, 42
"Outlines of Astronomy," 292
Pole-star calculations, 347
relation of earth and Pyramid size, 44, 45, 46
Hieroglyphic study, good done by, 451-454
Hieroglyphists and chronologists, 449-476
History of interior of Great Pyramid, 82
Hooks, Dr., comments on Prof. Greaves, 68, 67, 70, 71
Hopkins, Mr. G., civil engineer, 73, 74
Houses of Parliament burned down, 206
Human religious history, the floor roll of, 430
Human, versus Divine, ultimate rule, 635-638
Hydraulic conditions required for Cheops' tomb, 112, 113
Hydrae, or Shepherd Kings, little known of, 478-498
Hypothesis of the passage-plane's side displacement, 403
Hyposemirical level of King's Chamber, 155

Inch the unit standard, 290, 269, 971
Inches in the granite leaf, 180
Inglis and Alton, measures of King's Chamber, 176
uncovered the four sockets, 85, 435
Indian weights and measures, 211
Inevitable conclusions, 447
Inversions of Egypt, 110
Ireland, round towers of, 375
Iron in history, 628-635
piece of, found in Great Pyramid, 511
Isaiah xi. p. 543
xxix. 10, 90, p. 2
xxv. pp. 78, 106, 107, 448
xxix. 11, p. 413
xxx. 1, 3, p. 588
xl. 12, 13, p. 94
xlil. 5, p. 306

James, Sir Henry, base-side length of Great Pyramid, 54
earth's mean density, 412
the 10:7 shape of the Great Pyramid, 92
Jeeves, orthography of the name, 4
Pyramids, one transcends all the others, 4
Jeremiah xxxii. 19-30, p. 593
Job xxxiv. pp. 2, 92, 194, 289, 290, 635, 638, 413, 604
Jomard, M., mysteries at the Great Pyramid, 885
orientation of, 64
temperature at, 166, 167
touching the tombic theory of the Great Pyramid, 114
Jopling, Mr., J., wild theories of, 153
<table>
<thead>
<tr>
<th>Page Reference</th>
<th>Index Entry</th>
</tr>
</thead>
<tbody>
<tr>
<td>373</td>
<td>Josephus on Cain inventing weights and measures</td>
</tr>
<tr>
<td>522, 605, 707, 229</td>
<td>Julius Caesar's conquest of Egypt by, 87</td>
</tr>
<tr>
<td>154, 180, 912, 257</td>
<td>Kelly, Dr., on standards of weights and measures, 522, 503, 207, 229</td>
</tr>
<tr>
<td>181</td>
<td>Kepler, M., sun distance, 54</td>
</tr>
<tr>
<td>181</td>
<td>Key of knowledge of Great Pyramid, 181</td>
</tr>
<tr>
<td>282</td>
<td>King, Clarence, on pressure of the atmosphere, 282</td>
</tr>
<tr>
<td>113-116, 124, 153, 191</td>
<td>King's Chamber, a marked portion of the, 114 and of the, 114 and other, additional relations between, 496-511</td>
</tr>
<tr>
<td>183</td>
<td>breadth of, a peculiar quantity, 183 described by travellers as a double cube, 183</td>
</tr>
<tr>
<td>191</td>
<td>description of the, 191, 192</td>
</tr>
<tr>
<td>154</td>
<td>lives and theft of the, 154</td>
</tr>
<tr>
<td>175</td>
<td>length of, to express diameter of a circle, 175</td>
</tr>
<tr>
<td>154</td>
<td>logarithmic calculation, 154</td>
</tr>
<tr>
<td>174</td>
<td>measured quantity, 174</td>
</tr>
<tr>
<td>174</td>
<td>measures of the, 174</td>
</tr>
<tr>
<td>174</td>
<td>new school of theorists in the, 174</td>
</tr>
<tr>
<td>174</td>
<td>points on the exterior of the Great Pyramid, 174, 151</td>
</tr>
<tr>
<td>150</td>
<td>well-courses of, 150</td>
</tr>
<tr>
<td>151</td>
<td>Kings' Chamber, 150-151, 153, 171, 151</td>
</tr>
<tr>
<td>420, 491</td>
<td>Kings, lives of, 420, 491</td>
</tr>
<tr>
<td>512</td>
<td>Lane, Mr., length of Grand Gallery, on the wall in the King's Chamber, 512</td>
</tr>
<tr>
<td>161</td>
<td>Latitude, change of, 161-164, 81</td>
</tr>
<tr>
<td>15</td>
<td>Law, H., "Mathematics for Practical Men," 15</td>
</tr>
<tr>
<td>573, 91</td>
<td>Layard, now not Pyramids, according to, 91, 573</td>
</tr>
<tr>
<td>374</td>
<td>Leopold, Dr., enumerates sixty-seven Pyramids, 374</td>
</tr>
<tr>
<td>345</td>
<td>Lewis, Sir G., on Egyptian hieroglyphics, 345</td>
</tr>
<tr>
<td>333</td>
<td>"Life and Work at the Great Pyramid," 333</td>
</tr>
<tr>
<td>321</td>
<td>Louis, Lord, describes the King's Chamber in 1838, 321</td>
</tr>
<tr>
<td>343</td>
<td>Louis and the Egyptian Museum, 343-374 standards, name of different nations for, 343</td>
</tr>
<tr>
<td>374</td>
<td>Literary wrote about the coffers in 1650, 374</td>
</tr>
<tr>
<td>573</td>
<td>MacDonald, M., granite polishing in Aberdeen by, 573</td>
</tr>
<tr>
<td>425</td>
<td>MacKay, Rev. Dr., a Pyramid author, 425</td>
</tr>
<tr>
<td>392</td>
<td>Magna Charta, 392, 392</td>
</tr>
<tr>
<td>69</td>
<td>Magnetic needle, 69</td>
</tr>
<tr>
<td>425</td>
<td>Mammour, Caliph Al, breaking into the Great Pyramid, 425</td>
</tr>
<tr>
<td>451</td>
<td>scenes that would shock, 451</td>
</tr>
<tr>
<td>7</td>
<td>Manetho, ancient Egyptian authority, 7</td>
</tr>
<tr>
<td>499</td>
<td>Margolithon, Dr., on the identity of Melchisedek, 499</td>
</tr>
<tr>
<td>473</td>
<td>Mariette Bey on the age of the Great Sphinx, 473</td>
</tr>
<tr>
<td>513</td>
<td>excavations of ancient idols, 513</td>
</tr>
<tr>
<td>170</td>
<td>Mark, St., 170, p. 513</td>
</tr>
<tr>
<td>537</td>
<td>Martin, W., social crisis in England, 537</td>
</tr>
<tr>
<td>169</td>
<td>Maskelyn, Dr., on earth's mean density, 169</td>
</tr>
<tr>
<td>503</td>
<td>Matthew, St., xxl, p. 503</td>
</tr>
<tr>
<td>507</td>
<td>xxl, 42, p. 507</td>
</tr>
<tr>
<td>508</td>
<td>xxiv, 18, p. 508</td>
</tr>
<tr>
<td>394</td>
<td>Maxwell, Prof. Clark, gives a wrong measure for base-side of Great Pyramid, 394</td>
</tr>
<tr>
<td>189</td>
<td>Measures of the base on the granite ledge, 189</td>
</tr>
<tr>
<td>93</td>
<td>Mecca, looking towards, 93</td>
</tr>
<tr>
<td>513</td>
<td>Mechanical data, 513-513</td>
</tr>
<tr>
<td>499</td>
<td>Melchisedek, some of the earlier mentions of, 499</td>
</tr>
<tr>
<td>501</td>
<td>who was, 494-501</td>
</tr>
<tr>
<td>610</td>
<td>MemlOOK Beys, 610</td>
</tr>
<tr>
<td>503</td>
<td>Mensural data at the disposal of new theorists, 503-503</td>
</tr>
<tr>
<td>176</td>
<td>Mesalian, the sacred pronounced to be, 176</td>
</tr>
<tr>
<td>433</td>
<td>"Metric System," by President Barnard, 433</td>
</tr>
<tr>
<td>531</td>
<td>Metrical system, preparations made for the introduction of the, 531-531</td>
</tr>
<tr>
<td>525</td>
<td>Metrology, preparations for universal, 525-525</td>
</tr>
<tr>
<td>503</td>
<td>Michaelis, J. D., on weights and measures, 503</td>
</tr>
<tr>
<td>189</td>
<td>Mitchell, Mr. H., on the geographical position of the Great Pyramid, 189</td>
</tr>
<tr>
<td>189</td>
<td>Rev. J., earth's mean density experiments, 189</td>
</tr>
<tr>
<td>189</td>
<td>Model of meridian section of Great Pyramid in ante-chamber, 189</td>
</tr>
<tr>
<td>289</td>
<td>Mohammed Ali, 110</td>
</tr>
<tr>
<td>93</td>
<td>Mohammed the Prophet, 93</td>
</tr>
<tr>
<td>545</td>
<td>Mohammedanism dates from the Hegira, and ends in 645</td>
</tr>
<tr>
<td>183</td>
<td>Moigno, Abbé, length of ante-chamber, 183</td>
</tr>
<tr>
<td>60</td>
<td>Venus transit, 60</td>
</tr>
<tr>
<td>529</td>
<td>Money not at the Great Pyramid, 529</td>
</tr>
<tr>
<td>347</td>
<td>Monumental history of Egypt, 347</td>
</tr>
<tr>
<td>473</td>
<td>Moon, lunation of the, 473</td>
</tr>
<tr>
<td>227</td>
<td>Morton, Rev. H., duplication of the cubes, 227</td>
</tr>
<tr>
<td>17</td>
<td>Morton, Rev. H., duplication of the cubes, 173</td>
</tr>
<tr>
<td>17</td>
<td>Moses and Egyptian wisdom, 173</td>
</tr>
<tr>
<td>17</td>
<td>Mosque of Sooitan Hassan, 17</td>
</tr>
</tbody>
</table>
INDEX.

Murray's "Handbook of Mount Shihlllon, attraction of plumbline on, 169
Muir, Mr. C., hypothesis of the passage-plane's side displacement, 405-407
Murray's "Handbook for Egypt," 965

Names of Pyramid authors, 173
the builders of the three largest Pyramids, 490
Napoleon invaded Egypt, 110
Nature, journal of science, 61
Newton, Sir Isaac, guess as to earth's mean density, 48; on the sacred cubit, 315-319, 321
speculated on the coffee, 114
New Zealanders' beginning of the year, 343
Noah, the ark of, 369-372
Norris, Dr., Assyrian name for linear standard, 301
Nonet, M., made refined astronomical observations, 64
Number a link between Divine intelligence and human, 197
and name of Antichrist, 570

Obliquity of the ecliptic, 407
Observations published pure and simple, 172
of Greenwich, Paris, Pulkova, and Scotland, 164
Oeas places of security for treasure, 375
Olympia, gods and goddesses of, 377
Oppert, M., on the Babylonian cubit. 308
Ordinance map, on the scale of the, 270
survey, 46, 303
of Great Britain, 306, 307
Orientation of the Great Pyramid, 63, 64, 67
Oratory of the name Jeezeh, 4
Osborn, W., Egyptian Dead-book, 311
hieroglyphic and Greek studies, 460, 467
late admirable Egyptian scholar of Leeds, 530, 539
monumental history of Egypt, 493, 494
name of Egyptian linear standard, 301
on the Great Sphinx, 473
on the religions of the world, 377, 496
"Ottis Egyptianiss," by G. B. Ollidson, 67
Oxford Astronomers in 1857, 119
graduate on the Great Pyramid, 195, 196

Perring, Mr., measured heights of various
Pyramid, 58
on Egyptological explorations, 423
opinion as to use of Queen's Chamber, 889
Pyramid of Saccara described by, 375
views of the Pyramids, 187
Perverseness of man, 615, 616
Peter ii. 4; 2 Peter i. 22, pp. 507, 509
Petrie, W. F., cubit measure, 570
earth's mean density, 411
Great Pyramid's meridian marked by nature, 73
on the coffee, 409
on the wall-courses in King's Chamber, 153
Pyramid sun-distance, 52-55
Ptolemy the poet quoted, 549
"Philo," by Mr. Casey, 425, 426, 571
the Shepherd Prince, 492-494
Philosophy misapplied, 672
Physical science of the Great Pyramid, 555-557
Pierpoint, W. C., on ante-chamber, 173, 185
"Pillar of Witness," by Captain Tracey, R.N., 497
Pleiades, cycle of the, 339-344
system of the, 341
year, 550
Pocock, Dr., number of stones in walls of
King's Chamber, 151
Pole-star at the time of its greatest elongation west, 69
Pompey's column, 126
Portuguese experience, 222
Postscript in 1877 A.D., 59
Powers, Mr., air-channels, 518, 519
great step in the Pyramid, 519, 520
length of Grand Gallery, 419, 519
symbolology of the Queen's Chamber, 615
Praet, Archdeacon, "Science and Religion not at Variance," 638
Precession of the equinoxes, 65
list of authors on the, 342
Preparations for universal metrology, 525-526
Principle of Pyramid building by Mr. J. Wild, 80
Proctor, Mr., late criticism by, 54
Promiscuous dancing, 180
Prophecy of the Great Pyramid, 515
Proverbs xi. 1, p. 602
xvii. 11, p. 602
xviii. 10, p. 481
Prussian savants in 1818, 5
Psalm cxxi. 22, p. 567
Pulsecz, M., result of Venus-transit observations, 61
Pyramid analogy, Taylor-Herchel, 49
and British linear measures, 268
architect exhibits the quantity in
King's Chamber, 181
base analogy and measure, 34, 44, 304
building, 85, 89
capacity measure, 225
coffee, 100, 143
masonry course, the thirty-fifth, 192-193
mass built in horizontal courses, 192

Passages of Scripture quoted, 2, 69, 78, 84, 92, 101, 107, 113, 194, 200, 208, 236, 238, 413, 448, 498, 499, 502-510, 513, 516-519; 529, 531, 540, 542, 545, 560, 559, 562, 563, 566, 607, 613
Perigal, Mr. H., numerical proportions of the coffee suggested by, 145
Perring, Mr., assistant to Colonel H. Yvoe, 49

INDEX.
Pyramid of the earliest, 439
solar analogy, 51
sun-distance, 51, 55, 57
system of specific gravities, 252-256
the great, 396
the third, 123, 477
the word, 974
used as a symbol, 603-172
weight, 946
Pyramid, ancient base-side length of various, 40
as sepulchres, 4
battle of the, 110
escaped almost unhurt in Egypt's
terrific ordeal, 111
inner time symbolisms, 689
Jeezeh, as described to Al Mammoum, 95, 98
measurements in height of the, 68
number of the, 8
of Egypt Ephemethem, 271
second and third, adorned, 87
Quarter corn-measure, 115
Queen Elizabeth's 4-inch ell, 562-565
Queen's Chamber, 386-388
excauations in the, 384, 385
new measurements at the Great Pyramid,
562-563
niches not in the central vertical line of the,
589
symbolism of, 414-418
unexplained feature in the air-channels
in, 394
Quinby, Dr. W. F., on Mongrelism, 515
Quipo, Don Vincento, on Metrology, 308
Ramps and upper wall-mouth, 490
Rampstone, the missing, 429
Rapturous views to come, 578-682
Rawlinson, Canon, on orientation, 76
translation of Herodotus, 491-494
Reamur's thermometer scale, 276, 278
Reich, Prof., earth's mean density, 160, 161
Religion of Antichrist, 613, 614
Heron's calculations, 171-177, 417-420
ix. 2-11, pp. 92, 109
ix. 14, p. 568
xi. pp. 544, 545
xii. p. 570
Richardson, Dr., on the walls of the King's
Chamber, 161
Romans once inside the subterranean
chamber, 87
Roscoe, Prof., "Lessons in Chemistry," 230
Rotation of earth's axis, 90
Rowbottom, W., on an improved system
of Biblical dates, 611, 612
Memoirs, 183, 161
Report of 1877, 90
Observatory of Edinburgh, 222
Royal Society of London, 308-317
reputation for accuracy impeached,
696-700
on Great Pyramid base-side length,
306-310
Rubbish mounds at Great Pyramid, 23
Rude stone monuments, 466-470
Sacred cubit, 330-332
Sakkara Pyramid of degrees, 5
Saliun of the Cossades, 106
Self-investigations in the Great Pyramid,
416, 507
Samian cubit, 303-309
San, island of, 283
San Francisco paper, quotation from a,
169
Saracen horsemen, 93
Sarcofagi introduced into Pyramids, 87
Sarcofagus, a blind, 145
as a symbol, 145
theory of the coffers, 144
Sauron, Ibn Balhoor, Pyramid treasures
reported by, 95-97
Saville, Rev. R. W., "Truth of the Bible,"
73, 74
Saxon metrology, 201, 237
Schillington, Mount, 159
Schlossmann, Dr. and Mrs., excavations at
Myos-tem, 477
Schubert, Mr., on earth's equator, 13
Scientific references for capacity, 131
Scorpion warriors, 93
Scots, Mr. Patrick, Ode to the Great
Pyramid, 560
Scottish Astronomer-Royal, 165, 157
Scriptural quotations. See Passages
Secret doorway in entrance-passage, 385
sign in entrance-passage, 287, 434
Selim I, Emperor of the Turks (1517),
110
Sepulchral hydraulic conditions required,
113
Shaow, D., on the King's Chamber, 152
Sheddad, Ben Ab, a great antediluvian
king, 85
Sheepshanks, Rev. R., pendulum observa-
tions, 160
Sheifndef shepherds, primeval, 462
Shepherd Kings, 477-501
Bryant on the, 431
Hincks, Dr., on the, 479
Osborn, W., on the, 479, 484, 485
Vynwy, Col., on the, 480, 481
Siberian day, 236-255
Simpson, Mr. James, chamber and other
monuments, 171-177, 417-420
polyhedral diagonals of the King's Cham-
ber, 178
further Pyramid calculations, 601-607
King's Chamber and coffin connections,
283, 412-411
one rule governs the shape of Pyram-
id, King's Chamber, and coffin,
229, 230
population of the world calculated,
541
Pyramid's inner time symbolisms,
503-514
relation of the whole system of
passages, 387, 388
sums of the squares, 177-184, 417-420
Simpson, Mr. William, coffin a symbol
sarcofagus, 145
Slave-holders possess Egypt, 600-604
Smith, Prof. H. L., coffin belongs to the
King's Chamber, 409, 410
earth's mean density, 412
floor diagonal of Great Pyramid,
178
INDEX.

Smith, Prof. H. L., on King's Chamber, 188-185, 226, 241, 337
 on ante-chamber, 183, 391
 proportions between the coffer and other parts of the Great Pyramid, 290
 the ruling angle of the Great Pyramid, 390, 400
 thirty-fifth course of masonry of the Great Pyramid, 193
 Solar analogy, grander Pyramid, 51
 Solomon, destruction of the Temple of, 561
 Specific gravities of Great Pyramid system, 350-359
 gravity, 247-262
 Sphinx, the Great, 472-476
 the recent discovery about the, 473-476
 Squaring of the circle in ante-chamber, 179
 the circle, correct quantity ascertained under the form π, 553
 Standard day and year, 30
 of length, 29-92
 yard and pound, British, 203
 Standards, Warden of the, 34
 Stanley, Dean, on the Great Sphinx, 473
 Stevens, J. H., U.S., Great Pyramid contains a revelation from God, 603-610
 Stewart, Prof. Balfour, on geological evidence no proof for a long chronology, 450
 Stock Archieson, on the Pleiades, 343
 Stockwell, Mr. J. N., on the obliquity of the ecliptic, 407
 Stone prepared without hands, 582, 533
 sanctuaries and Pyramids, 373
 Stones, number of, in the walls of the King's Chamber, 157
 Stone, early Egyptian kings, 488
 on the casing-stones, 19
 what did the builders do with the chips of stone? 37, 78
 Strange, Colonel, on Queen Elizabeth's standard ell, 294, 295
 Struve, Otto, time observations for the transit of Venus, 356
 Substance and shape of the coffer, 123-128
 Sums of the squares, 177-179
 Sun distance, 51
 Superior testimony, 509-522
 Syene, quarries of, 120, 124
 Symbolisms of the ante-chamber, 140, 181-185
 Table of ancient Egyptian dynasties, 456
 early Kings of Egypt, 484
 earth's size in Pyramid inches, 49
 measures of deep-soil thermometers, 164
 measures of the entrance-passage, 382
 measures of the geography of the Great Pyramid, 61, 89
 modern measures of the coffer, 116
 population of Egypt, 110
 Pyramids of Egypt, 458, 459
 Table of temperatures, 278, 286
 the vertical heights of Pyramids, 58
 Tables of coffer measures, 138-143, 147-157, 224-241, 409
 of linear measure, 270-274
 of measures of King's Chamber, 175-179
 of measures of the ruled lines, 437-443
 of Pyr. weight measures, 244-246, 257
 of specific gravities, 222-226
 of the moon, 80
 Talbot, Mr. Fox, Assyrian name for linear standard, 301
 Talma, on the beginning of a solar day, by a poet of the, 294
 Taylor, Mr. John, began Pyramid scientific and religious investigations, 548, 549
 Taylor's, Mr. John, first discovery, 13
 "Great Pyramid," 519
 "Great Pyramid, who built it?" 233, 618
 numbers realise the π proportion, 16
 on the British inch, 41-44
 proposition supported, 23, 24
 proposition tested, 15-19
 Pyramid analogy tested, 43-52, 71, 72
 shape of the coffer, 239
 "The Great Pyr., why was it built?" 10
 theory of the coffer tested, 116-121, 131, 146
 "The Wealth of the Number of the Beast," 206
 window in Noah's ark, 372
 Temperature data for coffer weight and capacity, 163-170
 in Pyramid thermometer degrees, 356
 Temperatures at and near the Great Pyramid, 165-169
 Temple of Solomon, destruction of the, 561
 Terrific ordeal passed through by Egypt, 111
 Testimony of the Revelation of St. John the Divine, 643
 Theban Kingdom, 87
 "The Last Vials," 196, 215, 613, 614
 The stone prepared without hands, 592, 533
 Thermometers, 276
 Three Keys for Great Pyramid, xvii
 Time and angle, 278-288
 at the Great Pyramid, 289-296
 measures, 292-351
 sacred and prophetic, 414-415
 Tobacco smoking, 169
 Tomb theory, 115-116, 171
 Tookey, a Vicerey of Egypt, 107
 Tomkins, Mr. H., "Pyramids and the Pentateuch," 378, 379
 Tracey, Capt., R.A., on the ante-chamber, 182
 on the boss on the granite leaf, 180
 on the lower stone of the granite leaf, 130
 Tracey, Capt., R.N., 407
 Transcendentalism of the Great Pyramid astronomy, 344, 351
 Transit of Venus, 55, 59, 350
 Trigonometrical survey of India, 40
INDEX.

Tulliola's tomb in Italy, 380
Turk's invaded Egypt, 110
Two pathways at commencement of Great Gallery, 516

Ultimate rule, human s. divine, 535-538
Unexplained feature in the Queen's Chamber, 384
Universal metrology, 532-547
Universe, the unseen, 573-578
Useful factors in calculation, 14
Uses of the Queen's Chamber, 387-391, 516

Variation of the compass, 63
Variety of authors and their measures, 16
Venetian, M., on the material of the coffin, 128
Ventilating channels closed by Arabs, 167
Venus, transit of, 85-57, 58, 61, 350
"Vista, the Last," 198, 215, 619, 614
Virgil, the Pleiades in the days of, 539, 846

Vye, Colonel Howard-, air-channels discovered by, 114, 167, 380
causing-stones of various Pyramids, 5, 22-25, 104, 109
chambers of construction, 383
hollows of construction above King's Chamber, 6, 514
length of Grand Gallery, 512
marks on Great Pyramid stones of miscarry, 5-7
measures of various Pyramids, 40, 55, 95, 91
number of Great Pyramid authors by, 16
on how the builders got out after finishing the Great Pyramid, 423
on the ramps so named by, 330
on the remains found in the third Pyramid, 478-482
"Pyramids of Gizeh," 375, 385
rough measure of vertical height of Grand Gallery, 402
rudd quarry marks, 6, 649
tables of coffin measures by, 116, 120
wrought-iron found in Great Pyramid by, 691

Wadee Maghara, cartouches of King Cheops in the, 129
Wall-courses of the King's Chamber, 150
real number of the, 152
Waller, Mr., medical man of Cairo, 223
makes casts of Dr. Grant's orders of granite surfaces in the interior of the Great Pyramid, 227
Warden of the Standards, 207
attempts to establish two cubits in Egypt, 303
his efforts to introduce the metric system, 551
"Wealth the Number of the Beast," by John Taylor, 308
Weights and measures, 242-258
Weights and measures, confusion of, 204
history of, 215-216
importance of, 292, 203
Indian enforced metrical act, 211
Sir J. Herschel on, 217-220
What standard would suit on the scale of the Great Pyramid, 59
What the ancients knew about the interior of the Great Pyramid, 86
Whewell, Dr., pendulum observations, 169
Wild, Mr. James, theory of Pyramid building, 90
Wild, Sir W. R., account of the King's Chamber, 152
Wilkinson, Sir Gardner, 385
Wilde, Sir W. R., doubts whether the body of the King was laid in the coffin, 114
explains Herodotus's mistake in the list of kings' names, 438, 439
Great Pyramid student, 16
Lepeus all Dr. Lepeus's Pyramids cannot now be found, 554
on Egyptian cubits, 509
on Egyptological explorations, 423
on the entrance to the Great Pyramid, 87
on the Queen's Chamber, 384, 385
value of the Egyptian mina, 393
World's surface constant to the cardinal directions, 74

Yard unit would not be generally acceptable, 233
Year, the Pleiades, 329-344
Zechariah iv. 7, p. 505
Zodiae, Egyptian, 430-432

THE END.

LONDON: PRINTED BY VIRTUE AND CO., LIMITED, CITY ROAD.
CLIMATE AND TIME
IN THEIR GEOLOGICAL RELATIONS:

A THEORY OF SECULAR CHANGES OF THE EARTH'S CLIMATE.

By JAMES CROLL, LL.D., F.R.S.,
OF H.M. GEOLOGICAL SURVEY.

With Illustrations, demy 8vo, 24s.

"One of the most philosophical contributions to the science of Geology within the last half-century. Every page is distinguished by close and earnest thought, and the conclusions arrived at, whether we accept them or not, are the result of striking powers of deductive analysis."—Athenæum.

"Whatever verdict may ultimately await the author, it will be readily conceded that he has shown himself master of a very wide range of knowledge, and that his pages are marked by unusual originality of thought and vigour of reasoning."—Academy.

"Admirable alike for its abundance of carefully collected facts, and for the sobriety and force of its reasoning. Our readers must go to the book itself to judge of the capacity and patience with which Mr. Croll's thesis is argued out."—Spectator.

"Mr. Croll's work is everything which a scientific work should be that requires deep research and laborious thought, combined with the boldest generalisation. The theory is at once beautiful, simple, and complete."—Quarterly Review.

"Since Sir Charles Lyell sent forth his 'Principles of Geology,' we do not think we have had a work that is likely to be so influential on the future of the science as this."—British Quarterly Review.

"The publication of this volume marks one of the great eras in the progress of geological investigation. No greater clearing of ground, lengthening of cords, and strengthening of stakes in the fields of geology have taken place since the days of Hutton."—Philosophical Magazine.

"We are not saying too much when we affirm that in the department of geological philosophy which it discusses it will rank alongside Lyell's 'Principles, and will secure the reputation of its author."—Geographical Magazine.

"The patience of true observation and the power of generalisation on remote particulars are to be seen on every page of this ingenious book."—Nonconformist.

"A great part of the volume is taken up with an able discussion of the heating powers of ocean-currents, and the physical cause of oceanic circulation. Mr. Croll then endeavours to show that ocean-currents are caused by the impulse of the prevailing winds of the globe, regarded as a general system. He stoutly attacks all other theories of oceanic circulation, reviewing Maury's and Dr. Carpenter's especially at great length. His examination of these two theories is, indeed, exceedingly acute and searching, and their overthrow is apparently complete."—Scotsman.

"A very important contribution to geological inquiry; and for a long time no work has appeared which in equal measure is so certain to exercise an influence on the future of the science."—Magazin für die Literatur des Auslandes.
By James Geikie, LL.D., F.R.S.

THE GREAT ICE AGE,
AND ITS RELATION TO THE ANTIQUITY OF MAN.

By James Geikie, LL.D., F.R.S., etc.,
Of H.M. Geological Survey.

With much New Matter embodying the most Recent Discoveries, additional Maps and Illustrations, &c.

Demy 8vo, 24s.

"There is a great charm in the well-balanced union of cultivated powers of observation and analytical method, with considerable imagination and much poetical feeling, which runs through the pages of this volume. . . . We have indicated but imperfectly the philosophical spirit which marks every step of inquiry into the wonders of this 'Great Ice Age,' and we strongly recommend the volume to all who are prepared to read thoughtfully, and weigh the evidence of truth carefully, in the assurance of finding that there are indeed 'sermons in stones.'"—Athenæum.

"Every step in the process is traced with admirable perspicuity and fulness by Mr. Geikie. . . . This book will mark an epoch in the scientific study of the Ice Age."—Saturday Review.

"The book shows everywhere the marks of acute observation, wide research, and sound reasoning. It presents in a readable form the chief features of the Great Ice Age, and illustrates them very amply from those great tracts of Scotland in which glaciation has left its most distinct and most enduring marks."—Spectator.

"No one can peruse this most interesting book without feeling grateful to Mr. Geikie for his masterly summing-up of the evidence, and appreciating the spirit of scientific candour with which he states his conclusions. At once, in respect of its matter and its tone, the work forms a valuable contribution to our scientific literature."—Scotsman.

"By far the most important contribution to the chapter of geological inquiry that has yet appeared. We can assure our readers that they will find in Mr. Geikie's book an admirable and satisfactory summary of the present condition of opinion on some of the most interesting of geological questions, which are here discussed in an agreeable and readable manner."—Westminster Review.

"This work, without any sacrifice of scientific accuracy and completeness, is so clear and so free from technicalities, as to be intelligible to any reader of ordinary education. For knowledge and command of his subject, for skill in the arrangement of his facts, and for the clearness with which hereasons out his conclusions, Mr. Geikie occupies a high place as a scientific writer."—Academy.

"Can be cordially recommended both to the geologist and the general reader. The explanations are so full, and the method of handling so free from technicality, that with a moderate amount of attention the book may be understood, and its reasoning followed, by those who had previously little or no geological knowledge."—Nature.
ACROSS AFRICA.

By COMMANDER CAMERON, R.N., C.B.

With 200 Illustrations from the Author's Sketches, Maps, &c.

2 vols. demy 8vo, 32s.

TIMES.

"After reading these two volumes we wonder how Cameron managed to emerge with his life. We hope that what we have written will induce our readers to peruse the volumes for themselves. Their interest is genuine and well sustained from first to last. The value of the work is much enhanced by the many varied and well-executed illustrations."

DAILY NEWS.

"An achievement unsurpassed in the history or romance of human enterprise."

PALL MALL GAZETTE.

"Nothing could have come more opportunely than this narrative of a success which places Captain Cameron in the foremost rank of African explorers."

ATHENZEU.

"The noblest contribution to the literature of geographical exploration in our time. Not even Livingstone's 'Last Journals' can approach these volumes in scientific value."

SATURDAY REVIEW.

"Its very simplicity and downright straightforwardness will prove a recommendation."

SPECTATOR.

"Surpasses all its predecessors in its record of physical suffering and difficulty and its pictures of the slave trade in Central Africa."

ACADEMY.

"A very simple and straightforward account of the great march which has given Cameron's name an undying place in the history of African discovery."

GEOGRAPHICAL MAGAZINE.

"As a scientific explorer he stands first amongst the foremost explorers of tropical Africa... An achievement which was as bravely and gallantly performed as it is now efficiently and modestly described."

BRITISH QUARTERLY REVIEW.

"Has a very real and permanent interest as the genuine story of difficult and dangerous exploration, and will of necessity continue for many years to be the text-book for the geography and anthropology of south tropical Africa."

DALDY, ISBISTER & CO., 69, LUDGATE HILL, LONDON.
NATURE'S TEACHINGS:

HUMAN INVENTION ANTICIPATED BY NATURE.

With Illustrations. Demy 8vo, 21s.

"The book is one likely to attract any intelligent reader, whether young or old, and the illustrations, more than 700 in number, assist in no small measure the argument of the author. The details accumulated show the fulness with which Mr. Wood has studied his subject, and his management of it is light and pleasing. The style is attractive, and aptly told stories, personal allusions, with interesting reminiscences, will sustain the reader's attention. We have but glanced at a volume which deserves to be read carefully. But enough has been said to show the reader the kind of interest that attaches to 'Nature's Teachings.'"—Pall Mall Gazette.

MAN AND BEAST,

HERE AND HEREAFTER.

ILLUSTRATED BY MORE THAN THREE HUNDRED ORIGINAL ANECDOTES.

Third Edition, post 8vo, 6s. 6d.

"The book is delightful."—British Quarterly Review.

"It is filled with anecdotes which are very entertaining."—Saturday Review.

"Extremely readable and interesting. If the talk runs on dogs, cats, canaries, horses, elephants, or even pigs or ducks, he who has 'Man and Beast' at his fingers' ends may be sure of a story good enough to cap the best that is likely to be told."—Pall Mall Gazette.

"Mr. Wood, by means of these very readable and well-condensed volumes, has done more than any one else recently to call into active exercise the latent sympathy towards the lower animals which exists in all of us."—Nonconformist.

"Except White of Selborne, no Englishman perhaps ever wrote more feelingly of animals, and with more sympathetic insight into their habits and ways. They wanted the sacred votes until Mr. Wood wrote; if they were given to passing votes of thanks, the whole of the lower animals would express their gratitude to the author of 'Man and Beast.'"—Observer.

"The volumes are most interesting. Mr. Wood sets his heart on observing the nature and habits of so-called dumb creatures, and few who love them will fail to be interested in these two well-written volumes."—Watchman.

"We recommend all lovers of natural history to read it."—Land and Water.

"These truly delightful volumes."—World.

"An exceedingly interesting and profitable book; it is as readable as romance."—American Presbyterian.

DALDY, ISBISTER & CO., 66, LUDGATE HILL, LONDON.