

PRIMUM MOBILE,

WITH Theses to the theory, and canons for practice: wherein is demonstrated, PROM
ASTRONOMICAL AND PHILOSOPHICAL PRINCIPLES, THE
NATURE AND EXTENT
or CELESTIAL INFLUX ufos

The Mental Faculties and Corporeal Affections of Man;
 containing

THE MOST RATIONAL AND BEST APPROVED MODES OF DIRECTION,
BOTH IN ZODIAC AND MUNDO: exemplified in

THIRTY REMARKABLE NATIVITIES

Of TBE
Most Eminent Men in Europe,
According to the Principles of the Author, laid down in his - Celestial Philosophy.

2-
Originally written in Latin.
By DIDACUS PLACIDUS DE TITUS,
Mathematician to His Serene Highness Leopold William Archduke of Austria.

The Whole carefully translated, and corrected from the beat Latin Editions. Clustruted with NOIPS and an APPENDIX, containing scteral ustyul Additions to the IFork,

$$
\text { BY J OH } \mathrm{J} \text { Teacher of the Mathematics. } \mathrm{C} \text { O }
$$

gonion:

Printed and Published by DAvis and DICKSON.
No. 17, St. Martin's le Grand, Newgnte Street, Cheapside :
Sold, also, by all Booksellers and Newsmen in the United Kingdom.
-

zinacus 利lacious de Citus.

Engraved and Published by Davis and Dicrson, No. 17, St. Martin'mio-Gned, London.

A

SHORT ACCOUNT

Ot THE
AUTHOR AND HIS WRITINGS.

The Author of this work, Didacus Placidus de Titos, an Italian Monk, was a native of Bononia, and was Mathematician to Leopold William Archduke of Austria. It is very much to be regretted that we are not in possession of sufficient data to. give any very satisfactory account of this most extraordinary Mathematician and Philosopher.

In the year 1647, he published that most claborate Treatise known by the appellation of his Celestial Philosophy, under the title of " Questionum Physiomathematicarum Libri "Tres, in quibus ex naturæ principiis hu" jusqui desideratis demonstratur Astrologia " pars illa, quæ ad Metrologiam, Medici-
' ${ }^{\text {nam, Navigium, \& Agricultarum spectat; }}$ " cum 12 Exemplis in fine." This valuable Work was printed in quarto at Milan, and dedicated to Cardinal Fachinette. It is observable that the title-page of this curious book bears the name " Didacus Prittus," although the Dedication is signed Placidus de Titus. -In this Work, both the Physical and Mathematical parts of Astrology are most clearly explained, and demon: strated by many curious Diagrams.

It was from this book that Mr. Partridge took all the best of the matter which he inserted in his Opus Reformatum and Defectio Geniturarum, though he very rarely acknowledged the obligation.

In 1657, the present Work was printed at Padua, under the title of "Tabulæ Primi " Mobilis cum Thesibus ad Theoricen, \& " Canonibus ad praxim, additis in rerum "demonstrationem, \& supputationem Ex" emplum Triginta clarissimorum natalium "Thematibus." This Work was also printed in 4to, and dedicated to Leopold William Archduke of Austria.

A second edition was printed, at Milan, in 1675. The Theses prefixed to this book are, a Synopsis of the former Work, and contain a short abstract of each Chapter, detached from the arguments, reasons, and proofs, upon which those Theses are founded; and after the Nativities, are inserted, a Collection of Tables for Directions, and a Table of Common Logarithms. He likewise published some Ephemerides, known by the pame of the Bononian Ephemeris, but for what number of years I cannot say, as they never yet came to my hands. But it appears, from the observations to be found in Partridge's Mene Tekel, that they contain some curious matter applicable to the Mundane part of Astrology. It is rather extraordinary that this great man never published his own Geniture, if he knew the time of birth; perhaps, the only reason was, his singular modesty.

THE EDITOR

To the Reader.

Benevolent Reader!
 Ir is humbly presumed that

 the extremely imperfect and mutilated state of the former edition of this Work would alone form a sufficient apology for submitting the present Edition to your candid perusal, as every possible care and attention have been bestowed to make it a fuc simile of the Original, until you arrive at that part of the Work which is composed of Tables, which, from length of time, are now become obsolete, and by far too incorrect to bear investigation by the present improved state of Astronomy, and are, on that account, for the most part omitted; it being in contemplation to publish a more useful collection for this purpose. The Reader will here find their use amply sup: plied by Trigonometrical Precepts, exem-plified by the "Requisite Tables" of Dr. Maskelyne, the late Astronomer Royal; and, by attending to these Precepts, he will be enabled to compute his Data, and thereby his Arcs of Direction, with more facility, and to a much greater degree of accuracy, than by any set of Tables yet extant.
In-order to render this Edition as complete as possible, the Reader will find a variety of useful Notes at the bottom of the pages, and an Appendix containing some curious observations and selections not generally known. The reputation of the Author, and the merits of the Work, being so universally established in the scientific world, entirely preclude the necessity of any eulogium upon either. It is a fact which is well known, that the Original of this Work is so extremely scarce, that fifty Guineas have been refused for a copy; and from this scarcity of the Original we have, in some measure, to regret that it was formerly published so imperfectly.
The manner in which it was before elicited to the public was as follows: About the time
of the commencement of Sibly's "Illustriatiou of Astrology," Dr. Browne, of Islington, being in possession of a Latin copy, caused the same to be translated into English; and that translation he lent to Mr. Benjamin Bishop, then Master of Sir John Cass's School, Aldgate, who copied it, and applied to Mr . Browne for the loan of the Latin copy, for the purpose of copying the Tables, but which was refused. Afterwards, a friend of Mr. Sibly's borrowed Mr. Bishop's copy only for a limited number of hours; and, in that time, it was clandestinely copied, without Mr. Bishop's knowłetge or consent, and published by Sibly, under the title of "Astronomy and Elementary Philosophy," but in the most incorrect state imaginable ; for, in that Work, there is not one single page which is correct, nor had the publishers the means of making it so, as they were not in possession of either the Original Work, or a correct Translation, whereby to rectify the errors committed in the hurry of copying the book.

In this Edition, every line of the Transla-
tion has been very carefully compared with the Latin, and made as correct as possible: so that the lovers of science will now be in possession of a book upon which they may rely with confidence, without the danger of being misled.

That this effort to restore Placidus to his primitive purity may tend to the advancement of science, and be of general utility to every candid inquirer after truth, is the sincere wish and desire of their most humble and devoted servant,

JOHN COOPER,
No. 21, Baldwin's Gardew, Gray,s Inn Lane.

[^0]
THE AUTHOR

To the Reader.

With regard to the revolutions of the Stars and their efficient power, no candid reader will deny that a genuine and true science may exist, though for a man to make a full acquirement in it, must doubtless be acknowledged no very easy task; and the more partioularly, because its object is by nature incorruptible; fts properties altogether immutable; and the passions are concluded in an uniform manner.

We learn from the tananimous consent of Philosophers and Professors of Theology, as well as from the Egyptians, Arabians, Persians, Medes, and other very extensive nations, that this science was cultivated, in the first place, among all the natural sciences, by kings and the greatest princes, and it was also held in the highest honour; the truth of which is found in several places
among their historical amnals. Having at ways' had an eager desire from my youth to attain it, I boldly entered upon it, with no less cheerfulness of mind than hopes of acquiring it. In this pursuit I have spent several years, labouring muck; but I was greatly offended at many things the professors had lately introduced as discoveries, determining, that, thes they were strietly conformable to reason" and experience, and tlie opinions of the greatest doctors in physics and mathematics; to lay aside entirely their whole workst" being, Ihewise, on the point of bidding adieu to all watchings; therefore; after uniting all the powers of my understàndifig, I secretly determined to investigate the chief causes and first primeiples of this science, which, by arguing from reasons, made prornd ton'; and as I found thern divefy where to be probable, and agreeable to reason; I gladly communicated my discoveries to the professors and my friends; and, happily; they were not treated as chimerical; or thoight tb be unireasonable, bnt, on the contraty, they scemed to be greatly desired :- and being fre-
quently entreated to commit them to writing, I have published this short extract, or abstract; comprehending 2 very concise theory and praxis; to which are subjoined several examples, extracted from very eminent author, by whom my own reasons were highly ap: plauded. Under the title of Celestial Phifosophy, I exlibited an universal series of disputations, which might represent the reasons and principles as diffusedly as possible; in proportion as time and fortune gave me liberty: wherefore, having offered to the public, and given an explanation of every thing, some were, indeed, surprised at the strangeness of the doctrine; but none have hitherto attèmpted to oppose the reasons and causes on which they depend.

Sope, with their applauses, mingled no small degree of pleasure, by reaspn that the principles of this most noble science, which were, formerly patural, and aptly suited to reason, were pow clearly explained, and made evident to the senses g and it is evidently certain, that they wonderfulily agree with the true nature of things, and carres-
pond with the aceidental effects; and among the philospphical seiegces, that of the stars may, aild ought, with very good reason, shaim the pre-eminence; but because of the difficulty of the calculations, which I have there explained very copiously, being intended for the dearned, students are greatly diseouraged, I have bere given another explanation for general use, more copious and perspicuous, of all and each of the rules, together-with the tables that are necessary, premising what related to the knowledge of the theory, in very shost theses, that those who had not gone through the labour attending disputations might comprehend, in very few worda, the causes and principles' which I have laid down, and from which all this construction of numbers is derived.

Lastly: I have added, as well to facilitate calculations as to confirm the truth of things, the examples of thirty famous men, which I have extracted, only from!the most learned authors. Yet, let every one remember, that Nature, in her means and effoets, conducteth herself so seeretly, that a man's mederstand-
xiv thb authot to the reader.
ing cannot trace her footsteps without the greatest labour and industry, which the many differences of : opinion maintained ambng the professors of philosophy, who disagree among themselves concernityg the nature of things, must evince : and do not het changes and mighty effects; in this vast construction of the world, appear wonderful, and altogetker unsearchable? Without doubt, it must be confessed that the mind of man is too weak to comprehend them; so that ro one can be surprised if the method of caicu: lating shourd be attended with some dif-ficulty.- The work of the Efficient Infinite Power and Wisdom is the concord and har: mony of nature; but it is like to infinity, at least as to the variety of effects.

In a work; the power and wisdom of the artist are ever perspicuous; what wonder, then, if the understanding of man is utterly unable fully to comprehend the works of God.? For who will endeavour to empty with a cup the waters of the deep, which is as a drop in a bucket compared with the Omnipotence of the Creator? And shall we, with our
confined powers of understanding, presume to comprehend, in any shape whatever, the prodigious extent of the heavens, from an idea of the immensity of the surrounding space? The utmost stretch of human thought cannot attain the least notion of it! Admire the rest, which is almost infinite.

Learn, friendly Reader, by experience, that you may have a true enjoyment in the wonderful works of the Most Hign.Adieu!

7 MA 63

EXPLANATION

CHARACTERS USED IN THIS WORK.

Signs.
\boldsymbol{r} Aries
8 Taurus
II Gemini
tr Cancer
Ω Leo
坎 Virgo
a Libra
I Scorpio
f Sagittarive
us Capricorn
Aquarius

- ※ Pisces

Planets.

5 Saturn ——. $\%$ Venus
24 Jupiter \% Mercury
ס Mars - D Moon
©. Sun
\oplus Fortune
Aspects.
\& Conjunction \triangle Trine

* Sextile

8 Opposition

- Square

39rimum fillobile.

THESES,

From the Frast Boox of the Author's "Celestial Philosophy."

1st. IT is impossible for the efficient heavenly causes (as being so very far distant from things below) to influence sublunary bodies, unless by some medium or instrumental virtue, by which they are united to bodies, subjected, or simple, or both. There can be no actipn in the subject, which is not affected by some active virtue ; for if so, the effect might be produced in the subject, without any efficient cause; which is the reason, we say, that the instrumental cause of the stars is light, and that this only is sufficient to produce all the four primary qualities, by which they arrive at the whole species of natural effecta: by motion the stars apply this light, and we reject a secret influence as superfluous, nay, evea impossible.
2. The principal properties of the light of the stars are two, (yiz.) intension and extension, the less principal colours, which the very senses shew are found in the stars ; nor is it to be concluded from thence that the stars are corruptible, at leate, with regard to the whole,
for the strange phenomena, which very frequently appear to us, demonstrate that there are changes in the heaveas; for colours thay be foond in inoorruptible bodies: in short, nothing is visible unless it have a colour. The other properties in the stars are figure, local disposition, brightress, and dimmesss tocel motion is a kind of passion wherewith they apply, increase and diminish their light, rise, set, and recode, near and at distance.
3. The stars neither act nor suffer allermately in the heavens; they only neceive light from the Sun, which with siteration they communicate to as from the proper colour of each of them: but they vary their actions in the inferior subjects, in proportion as they act together with equal harmony; and this is sufficient for the whole variety of effects.
4. Thongh the stars, by their motion in the beavens, alternately change their constitutione, and bive a determinate tegree of intension, and a definite quantity of extension of their light, they do not.act upon those inferiors, according to the true and real intension and extension of that light which they have in common, butonly according to the apparent; in respect of which they join those passable bodies: for this reason, the stars act upon the sublunaries only according to that degree of intension, and quality of extension of light, by which they are united to those passable bodies: the less are their intension and extension, the greater their distance from the subjeeted things; but their action is the same, with respect to that extension to which they are opposed, as we very plainly experience in the D. They influence according to their situation and proximity to the passable

principal kinds, vif. into the pasaive or feminine, and the active or maculine. To the fiest sort, we agaia call in matter und quantity, or quality, so for as it is passive, with all the other qualities which are decived from its moisture, dryness, rarity, demsity, levity, \&cc. To the masculine kind, substantiad and material forms, the qualitien which are active, as light, beat, cold, smell, sound, and all the active virtues of the compounde, \&ec.
8. We call dommixion 2 union of altesed miseibles, but we add, porfected by tbe efficieat superiors, Order and Nature, that is, from a celestind quality, on which the eonicoction of those miscibles depend $;$ whence the compounds, which have a larger and more perfoct concoclion with those miscibles, and concequently a more intease celestial quality, are more perfect; such as have a less, the contrary.
9. The vistue of the compound, the qualities, which; indeeds with respect to the great momater, variety, and effecta, deserve our admiration, we do not call clem mentary; nor proceeding from the elementa, bot celestial qualities, which are altogetker derived from the celestial light 3 wherefort, the elemonitary and odestial qualitien are of different kinds a and though the stare may prodoce elementary qualities in thesir strexate urensprutation, they seidl produce othere moro exoelliont, whereby they attini the production of the whole specios of the compounds.
10. The vital heat and radical moistore in mimalls, we agree with Aristotle in terming qualities entirely eeleatial, producod frems the light of 0 and 1 ; with the concurrence (whieb cementot be denied) of all twe other
start; from which a distinction is made of the whole diversity of compounds, though of a nature so opposite to each other, that the luminacries, with the malefict, generate the poisonous, or the hostile, instend of thove that engender wish the benign, and on the contrary; whence the antipathics and sympathies of thinge are matually derived.
11. The qualities, both of the compounds and ele. moats, are at firt powerful, at least, according to nature; then active : but those that are active have their existence by succemive motion; for they successively come forth to action from their powerful atations: for which rea-son they are again revtored to their co-natural state of actual qualities.
12. From the vital hear and malical moisture of the animal power, ariot sensinives, appotivives, digestives, reventive, expaloives, \&co. distinct from each other, and each hath its exereise and wetion; wherefore those powers have firk a powerfal, then an active existende.
18. Those vital qualities are extingurshed in a twofold maner, natarally, and violently. First, by a frinal consamption of a pre-existing power in an extrene old age; becondly, by a viotent extinction, exhibited by a different concurfent cause.
14. The powers amploy their inffuence on matter, suitable to every one of them; the sensitive on objects, the regetative on elements; which, the more perfect they are by the comeoction of mixture, the greater and quickor is their nourishment; for it is converted with greater ease and perfection into the substance of the animat, $8 \times$.
15. There are four piscipal colours, vic. white, black, fight, and daxkness : by light, we do not necas. that which is diffirsed from the \mathcal{O} and frem fire, but ' that colour which arises from the interaion of ohme light. which is aluost like gald; by daskness, its privmion.: But there are sone colours which are cemposed of celestial qualities, otbers elementary of these clemecitsos: but there posibiby flow infinite from their allernate permixion. White is a coloar menely pansive, bighs amactive.
16. The stars, thoagh they mever ceave finm action, and cassing an alteration in thinge belows yet from that. change they produre no remarkable, effect, maless is familiaritics. We call the fatoiliarity of the huminavies. meting with power, proportiomal by an influm motion. Under the name of lempinaries, we madarstand mot omiy all the stars, hat, likenise; camopo phemomenn; and we exclude every olber place io the beavess whirk is void of light, for it is , by, light ooly the ateis inflacsee, ss has been said before. Ry the power of the conjuncts, we exclude from the fumiliarities those stans whick catomot, by any means,. be conjoined together; but it is, plain that the fapiliarities have not their being is the beavens, bat in the inferior passable subject, nampetys. according to their mode of receiving them, $a s$ is manifest.
17. Authors treat of the racious and different distinctions and dixisions of the celestial houses, whereof we only approve of that which Ptolenay places, thet is by the two temporal hours = we reject all the rest as vain, and quite incousistent with nature.
18. The signs and houses have not a real distipction
in the heavins, but in the inferior passable subject, ace cording to its mamer of receiving the influx of the stars; the signs likewise have a true and certain sex, in the same manner and masculine, by a proportional influx, to the places where the active quality commences; feminine where the passive; which we shall mention hereefter.
19. Froma the intension of fight, proceeds an active quality; from its extension, a passive; in short, every uatural principle of an active virtue has its rise from the intension oflight; but the principle of a passive virtue, from ite extension. For this reason, the substantial and material Forms, and all the qualities active in kind, are referred to the Sun; but to the Moon, that principle, Matter, and all its qualities, passive in kind.

Hence it is manifest, that the Sun has an active virtue, by reason of the intension of his light; but the Moon, a passive, by reason of extension, though, in reality, there are intension and extension in both; but in the Sun, intension is prevalent, and in the Moon intension is inconsiderable, and extension prevails; and as by its increase and decrease, it shews us the various quantity of its light, in thinge it augments and diminishes matter and moisture.
20. The variety of colours in the stars produces 2 diversity of effects. Thus the colour of the luminaries -O or of gold, is possessed of an active virtue, the same as the intension of light, for it proceeds from the intension of light, and, as it were, from the approximate cause. White possesses a passive virtue, as does extension; but these two primary colours relate to
effects of a simple nature which are exeellent; such as material substances, \&cc. The other colours in the stars are the cause of specific qualities; so the blue and yellow, such as are in 4 and \%, which are a mixture of white and gold, give signs of a temperate nature from heat and moisture; in the blue, heat is predominant; in the yellow, moisture; and therefore these two planats confer that which is good, useful, and pleasant : the former is masculine, by reason of the too great heat ; the latter, feminine, owing to excess of moisture. Leaden and fiery colours, such as are in 5 and δ, shew an intemperature, cold and dry in ζ, hot and dry in δ. b is more cold than dry, and therefore masculine; δ more dry than hot, and therefore feminine.
21. But in general, effects, according to their nature, properties, passions, motions, \&cc. imitate their cause; for the manner of acting follows that of being. As the work of Saturn is unpleasant, rigid, cold, dark, and black, his motion slow, \&c. nay, more, from the passions of the luminary which proceed from local motion, follow the passions in the effects; as from access and recess, follows the access and recess of the passion and effects; from its near and distant situation, the near and remote action is derived; from its inception, the beginning of the action; from continuity, its continuance; from its increase, the increase.
22. From the access and near situation of the stars follows the increase of their light, according to extension; and from the increase respecting extension, follows a still greater intension of the light, acçording to the degree, at least in the effect. From
the increase of the luminary, with regard to extension, follows an increase of moisture : from a greater intension of the luminary, follows a greater heat; and so in every one of them. Aristote's Second General Treatise, page 56, in his researches into the cause of the perpetuity of the rise and fall of things, informs us, that not only one inference may assign the cquse of this rise and fail, but also that which contains different motions, to which the causes accede and recede, are near or distant in their constitution; and their access, and near situation, are the cause of generation; their recess. and distant situation, of corruption.
23. There is a formation of four conjugations of the manner of starry influence, vis. in the luminary's increase and near situation; in its near situation and decrease $;$ in its decrease and distance $;$ and in its distance. and increase. By these conjugations are constituted four quarters; First, in the world, which are the circuits of the stars by day from east to south, from south to west, from west to the lowest, and from the lowest to the east. Secondly, in the Zodiac, and the annual
 from if to r.
24. There are four reapects of the planets to the Sun; from the apogee of the epicycle towards the frst station (in the D towerds the first decatom); from the first station to the perigee; from thence to the second station (in the D towards the second decatom), at least as far as the apogee. From these are derived an excellent reason, why the three superiors are supposed to be stronger 1 if they are found to be matutine or eastern, from the \mathcal{O},
the three inferiors vespertine, or western; for then thej have a greater degree of light, in which consists their virtual influence, and then they are called oriental; but oocidental, if otherwise. Every one knows how largely, yet to no purpose, authors have treated of the orientality of the planets.
25. From the cardinal points of the world, and the Zodiac, the stars begin to influence the four primary qualities; from the imum coeli and tropic of $\boldsymbol{\Phi}$, mois. ture; from the ascendant and \boldsymbol{r}, heat; from the medium cali and tropic of $\boldsymbol{v p}$, dryness; from the west and $\boldsymbol{\omega}_{\text {; }}$ coldness; but by all these means, the stars, though they: have their nature absolute in themselves, they nevertheless produce all the four primary qualities, though. with a difference, on account of the diversity of tho nature of the stars; but they continually increase the qualities they produce, by advancing succescively to the opposite peints; such is the reason they. likewise lessen the contrary quality.
26. From these, it is inferred, that the ioflux and rays of the stars depend on real motion and illumination, not on the quantity of the celestiat spaces nor the situa-: tion: and therefore the stars in the cadert houses are weak; in the succeedents strong; in the cardimals strongest, \&c.
: 27. All the active qualities, whether of the elements, or of the compounds, depiend on the horary extent of the stars round the world; but because the duration of things is various, annual, monthly, andi diurnal, with which Ptotemy agrees in his chapter of those that have no Nourishment,and the Second Stagyrite and

General Treatise, p. 57. They are diurnal, as being the first and immediate in the order of the work; for in the perder of perfection they are the lowest, and the annual durations are in the first place, by reason of their petn fection.
28. The virtual qualities of the elements depead on the latitudes of the stars in the Zodiac. The vital qualities of such as live through monthe and years, depend on the Sun's place in the Zodiac, and the Moon, in respect of the Sun, as from present causes, but are preordained by the Sun's motion round the world, and by the Mcon round the Earth: whence the motious of the directions and progressions are derived.
29. The differences of the celestial qualities that are in the compounds, both vital and those that are not vital, depend on the various congressions and familiaritios of the luminaries, with the other stars both erratic and fixed, and on the different places in the Zodiac, so far as they are of a different nature; for from the simple phaces, both in the Zodiac, as well as round the wortd, that is (if they are thus considered), the primary qualities of the elements arë derived.
: 30. The true moment of the day, on which ang cae is bors (laying aside all opinions of aothors), is when the. feetus becomes independent on ite finitimate cause, or its ministry; an immodiate influx then takes place. At the constitution of the celestial moment, there is no need of its longer perseverance, to make the effects the camse of preservation; for that is impossible; but it is sufficient thatir concur with the nearest causes, to confer being, and the co-natural qualities: for so it
is, that ho who is born, throughout his whole life has a reference to, and, as it were, represents the effects; and as a stamp resembles the seal, so does the constitution of the stars his nativity.
31. The stars insert their power in an animal, and the virtual qualities in certain latitudes of a shorter time: these they pre-ordain with effect. The accidents naturally active, operate at their appointed times to the conclusion of life, and begin at the moment of the nativity ; but they are the latitudes of days and months, and pre-ordain successively, therefore orderly, and in 00operation ; and they are ready to act at the time preordained, when the favourable constitutions are the same as their causes of pre-ordination; for dissimular present causes cannot produce any effect but what agrees with them.
32. In the constitution of the stars, the nativities are said to continue immoveable, as well as the significators and promittors of effects; and this only, by reason of the retrospect of that nativity's temperament to those places: for while the stars concur with the nearest causes in conferring existence, they imprint on that animal so many degrees of their qualities, as they effect from those places in which they are found ; and therefore that animal respects, all its life, the places of the stars of its nativity, as being always immoveable.
33. But as there is a double motion of the stars, that is, under the primum mobile, and round the world, by both which, 24 we have said, they influence, we must consequently suppose, that the significators rule over thing subjected to them by this twofold (or double)
metion, to wit, under the primum mobile, and round the world. So in the former moderation, the significators reinain immoveable in the world, i.e. in their horary circles of position; in the latter they are in a state of immobility in their places immediately under the primum mobile: the promittors in the former moderation remain imanoveable under the primuan mobile, but are moved with their parts of the Zodiac to the horary cirele of position of the same significator. In the latter moderation, they remain immoveable in the world, that is, in the horary circle of position, but are moved in a manner immediately under the primum mabile, to the moderator's place taken under the primam mobile.
34. We say that the significators continue immoveable in their mundane situation. By mundane situation we mean the horary circle, i. e. (according to Ptolemy) of unequal hours, not the circles of position which pass through the common sections of the horizon and meridian, as will appear more fully hereafter. Likewise, when we say that the significators in the former moderation remain immoveable, in such a situation, we do not exclude the change of declination; we mean that the moderators should always continue and advance by their own real and natural. way ; as if we speak of the Sun in the ecliptic, or the Moon in her circle, constituting the Dragon, in which she is in perpetual motion, and in which she successively alters her latitude.
35. The Sun, when it is found in the space of the crepascales, before rising and after setting, does not ra main there immoveable under the horary circle; but in the crepusculines, parallel to the horizon, in which it
always affords us the same degree of the intension of light, from which equality of the intension of light itis said to continue immoveable; for if it should, with. regard to us, vary in the degree of the intension of light, it could not be said to remain immoveable, but. would be in a state of motion. In the remaiuing space of obscurity, the Sun must be directed, with a reference from the limits of the crepuscles to the lowest; as if we should say, from the proportionable division of the obscure arcs, they were seminocturnal arcs. This will be more fully shewn hereafter.
36. Moderators of things are five, viz. .the Sun, the Moon, Medium Celi, Horoscope of the Country, and the Lanar Horoscope; every one of these so moderates its own proper species of things, that it cannot attain ta that which relates to the other : it is necessary to observe this, that we fall not into error and confusion.
. 37. The Aphetic places of the world, or those wherein are, received the modepators of life, are five, viz. the House of the East, the tenth, the ninth, the seventh, and the eleventh; in any of which the Sun being found, always becomes the moderator of life; but if he is absent, the Moon, \&cc. according to the doctrine delivered by Ptolemy in his third book, which we ought to follow so rigorously, absolutely, and without the least exception whatever; that whoever, by neglecting the luminaries, if in the Aphetic places, should receive the horoscope as the moderator of life, would be guilty of a very great error, and would be unworthy of the name of a professor of the truc and natural Astrology.

THESES

From the Second Book.
38. There are two motions of the stars, whereby they influence those inferiors, that is, under the primum mobile, and round the world; but familiarity is nothing more than a proportional influx, exhibited by the motion, as has been said. It necessarily follows, that there are two kinds of familiarities of the stars; the one under the Zodiac, the other round the world : these two kinds of familiarities are delivered by Ptolemy in several places ; first, in the Almagest, Book viii, chap. 4, in these words:
cs It remains now to write of their aspects : of these, * thervfore (excepting those that have a mutual forma"s tion, and are thought immoveable, as when in a "s right line or triangular aspect, and others of the like), "s some are aspected to the planets only, and the Sun cs and the Moon, and parts of the Zodiac ; some only "s to the Earth; some to the Earth, together with the "s planets and the Sun and Moon, or parts of the Zob "diac," \&ec. From which words, it is evident, that Ptolemy places these two kinds of familiarity, viz.' in the Zodiac, and towards the Earth, that is, towards the world.

In the Quadripartite, in the beginning of the first book, be speaks thus : "There is one which is first, cs both in place and power, whereby we discover the cc configurations of the Sun and Moon, and motions "s of the stars, both towards themselves and the earth,"
\&cc. Again, book first," The stars are said to appear " in their proper forms, \&cc. When every one of them " are configurated with the Sun, or even the Moon, in " the same manner as their houses are with those of the " luminaries, as Venus in the Sexangular, configurated "with the luminaries, but the Vespertine with the "Sun," \&c. Venus never has the * to the 0 in the Zodiac, as it can only be extended by it 48°; wherefore, unless any one will say that Ptolemy was ignorant of this (which is absurd), he must of course say, he spoke of the Sextile in the world. Likewise, in the third book, chapter of Aphetic places, he says, "As " we are first to suppose those Aphetic places, in which " it is absolutely necessary to find that which is desirous, " 6 to obtain the jurisdiction of presiding over life, as round " the Horoscope, from the five parts first immerging " 6 above the horizon, to the other twenty-five succeed" ing; and that which coujoins these thirty parts with "d dexter hexagonal rays, is called the place of the Good "Genius. Likewise with quadrangular, or the highest " part of heaven above the earth; and with trigonal, "s \&c. and from no other places." It is evident, Ptolemy was of this opinion.
39. The familiarity in the Zodiac is the proportionable influx of the stars by local motion, whereby they are able to effect a favourable conjunction. That these familiarities happen, and are powerful only among the. stars which are there in motion, but that they are powerful to the cardinals and rest of the houses, we absolutely deny ; for omitting other reasons, the stars move not to the cardinals, by adrancing in the Zodiac ; which
is the reason they do not effect any proportional distances to those cardinals, but the rays are no more than proportional distances, \&cc.
40. The familiarities of the stars in the world are a proportionate influx of the sters, agreeable to motion round the world; and they happen, and are efficacious in the proportional distances taken by a proportional division of the diurnal and nocturnal arcs; and no other way.
41. But because the stars have a mutual motion under the primum mobile, and round the world, it happens that they mutually contract both kinds of familiarity; as Ptolemy, in the place already cited, insinuates. But familiarities, taken in any other maaner, and in any other circle, even in the equator (according to the opinion of Maginus), are entirely reprobated, and to be rejected.
42. These two kinds of familiarities being given, we say, that in every kind, neither more nor less than nine species are found, which are $\delta, *, Q, \square, \Delta, S q q$, Bq, 8, and parallels called by some Antiscions, which Kepler, by an exquisite and plain reason, has sclected from their concording harmonies, Of these familiaricies, the Sextile, Quintile, Trine, and Biquintile, are benign ; the Quadrate, Sesquiquadrate, and Opposition, malign; the rest indifferent, with the fortunate stars good, and equally evil with the unfortunate.
43. The latitudinal stars do not commit all their virtual influence to the ecliptic, but preserve it among themselves; and their greater or lesser proximity to the ecliptic, adds not to nor lessens their power of acting: the ecliptic cannot act without the stars, but the stars
have their activity in themselves wholly independent of the ecliptic.
44. The stars alternately conjoined, do not acquire greater or lesser powers to act in a favourable conjundtion, which falls out when another is found within the sphere of the other's activity, from a greater or less alternate proximity; but we only say, that their active virtues are the more or less conjoined. Under the name of the Sphere of Activity, we understand those that Ptolemy has placed, in Jupiter twelve degrecs, in Venus eight degrees, \&cc.
45. But the stars which are found in the same partial longitude, we do not call conjoined in a favourable conjunction, if their alternate distance be greater hy latitude, than is their sphere of activity; as $\&$ with 8° of south latitude, is not favourably conjoined with $\%$, having a northern latitude, though they are found in the same degree and minute of longitude; they may indeed be said to be conjoined by virtual conjunction, if they ascend or descend in the same horary circle, or cardinal, which is one of the species of mundane aspects.
46. The stars therefore should not be candinally placed; nor even those that are fixed, with the other planets, if the latitude distance from the circles of position be greater than their sphere of activity; nor ought any difference to be made between the aspects of the natural constitution, and those produced by the motion of direction in preserving the latitude, as Argol thiuks; shere being equal reason in both cases.
47. In defining the intermediate rays, the half latitude in $*$ and Δ is not to be observed, nor rejected in quar-
tile, as Bhanolinus has taenght, whom some duthors imitate: but the latitude of both aspects are to be obiserved; for the rays are to be projected from the body of ond to that of another, as it mappene that these stars are found by katitude; so that in whatever latitude the planets are, they emit and receive the rays in pitoportional distances, taken with regard to longitude; as the $*$ in the distamee of 60°, the o in $90,88 \mathrm{c}$. We would have this alloyys observed, boek in the daily motions of the planets, and in the directions and progressionts, wherein the significators advance by their own real and natural way, on which they reocive sund emit thic aspects; and in all the motions of the stars.
48. The fixed stats that are it a favourable conjunction with the planets, effect with them the other aspects, in the primum mobile, which otherwise have no effect. The same must be supposed of their familiarities in Mundo.
49. The rays in their kidds, from the brevity or longitude of the ascension of the signns, do not adter their nature from the fortunate to the unfortanate, or the contrary, as it is generally sapposed by authors; yet it may be, that the quadrate in the Zodiac is either Δ or * in the world, of the contrary: but then every one has in effect according to its nature in both kinds, or it may be, thoy atkernately moderate each other; but if these rays be found by the favourable stare, they doubtless produce happinees ; if by the unfortunate, otherwise.
50. That which is rulgarly termed antiscions, we call paralleles ity the primum mobile; because we would have
them to be nothing else but parallels to the equator, as Ptolemy hints, "as they rise at an equal space of "s time, and describe the same parallels," for which reason they are called the antiscions, or parallels in the primum mobile, and are equidistant from the equator; and if it be of the same country, it is called the primary parallel, or opposite if of a different country. The North commands, the South obeys; and they are taken from the table of declination, but parallel, in its physical sense, is an equal power of the influence of the stars from the primum mobile.
51. The twelve houses or mansions in heaven, authors divide several ways, but they all disagree. Rejecting the opinion of them all, we, with Ptolemy, distinguish them by the two temporal hours; for so it is, that there is proportional and equal division, not indeed of the heavenly and aerial space, but of the successive influx of the stars and houses; and the Mundane rays appear equal and proportional. But it is our opinion, that the division of the houses, by great circles passing through the common sections of the horizon and meridian, and the twelve equal divisions of the equator, which late authors make use of, are, of all, the most remote from and abhorrent to natural truth.
52. As many kinds of aspects as are found in the primum mobile, of which mention is already made; so many, we say, are found in the world. Wherefore, besides the usual ray, we likewise place in the world the parallels, which are an equipollence of the influx of the stars round the world.
53. Several resemblances are fuund between the mun-
tape parallels, and those in the primum mobile. (1.) The efficacy of the aspects in both consists in the parity of equal power, and equipollence of the active virtue. (2.) As in the primum mobile, they represent the same quantity of the ascension of the signs : for example, the sigas x and r, also $I I$ and π, ascend in the same time; and with so much likeness do they exhibit the same quantity of ascension and descension in the world, that the eleventh house causes an ascension equal to the descension of the ninth, and the twelfth house equal to the second, \&cc. (3.) As the parallels in the primum mobile are equidistant from the cardinal points of the Zodiac, so are parallels in Mundo equidistant from the cardinal points of the world. (4.) As in the primum mobile they exhibit equal temporal hours, so in the world they exhibit equal temporal hours of the distances from the cardinals. (5.) The parallels in the primum mobile are at an equal distance from the pole of the world; the parallels in the world have the same polar elevation; and other resemblances, if required, will be found.
54. The efficacy of all the parallels, both in the primum mobile, and in the world, consists in the parity of the degree of quality, which the stars effect when found in the parallels; as it is plainly gathered from those which we mentioned in sect. 25 ; for by going through intension, and returning through remission, from the cardinal points, it happens, that they effect an equal degree of quality, as well under the primum mobile as found the world.
55. As for the circles of position in which the signi-
ficators are said to remain immoveable, and upon which they are to be directed, and their oblique ascension to be taken, those great circles passing through the common sections of the horizon and meridian, according to late authors, cannot be received; for this opinion is openly inconsistent with the precepts of Ptolemy; but those seats or parts of the circle are to be received, in which the stars, having a different declination, effect equal temporal-hours. From what has been said, this conclusion is dzawn, and agrees with the divisions of the houses, through the two temporal hours, and with the mundane rays. For this reason, we call such a seat the horary situation of position.
56. The dignity of the planets in the signs and tbeir parts, which are called the bounds and terminations, have a real and natural foundation; to wit, the powerful aspect or proportional influxes to the moveabie points in which the stars begin to produce the primary qualities. So that, according to those things we have explained, in the Philosophy of the Heavens, these are found to agree so well with the Egyptian boundaries, that they are highly deserving of adaniration.

THESES
 From the Third Book.

57. To speak physically, the stars are moved but by one nootion, which is of the primum mobile; vis. from West to East; but for the easier explaining abtronomioat mattets, we say in a simpler lauguage, that the
stars are moved by a double motion; of which frequent mention has already been made; nay, more, we say there are many motions in the heavens, by which the stars change their aspects with respect to us.
58. The motion of direction is that which the Sun causes round the world every day, following that of the nativity, in whatever latitude, preordaining in power and virtue, the vital heat with its natural effects, viz. from every day to every year by Order : for it happens, that at the end of the first, after the natal day, when the Sun has returned to the same equal hour of the nativity, the parts of the primum mobile, with all the stars, have nearly gone through one degree of the equator; and the same happens every subsequent day: meanwhile the stars, as they advance; apply either by body or rays to the stagions of the significators.
59. There is a double motion of direction. The direct, which Ptolemy calls Actinobolium, and tells us is formed toward the following signs; and the cowerse, which he terms Horimeany, and shews us it is formed towards the preceding places.
60. By the direct motion of direction, we direct the angles and all the moderators; but by a converse mouon, the angles cannot be directed.
61. The angles only receive the rays in the world, but not the parallels, nor the rays in the Zodiac. The other significators, by a direct motion, receive the rays and parallels both in the Zodiac and in the world; but by a converse motion, the rays only, and parallels in the world, and by no means in the Zodiac.
62. By a converse direction, the significator; if it-
descends from the Medium Cœli, strikes against the west, and all the rays that are between the significator and the west ; and the rays are to be taken in the world ; for in a converse direction, the rays have no place in the Zodiac, as has been said, but the hostile rays of the malignant that lie between, either cut off, or take away, the years from the number of direction to the west; as on the contrary, the rays of the benign either preserve or add the years according to Ptolemy's method, which we shall treat upon in the Canons.
63. It also happens, that when the significator and promittor are both hurried away together, by the rapt motion of the primum noobile, that they effect parallels in the world-equally powerful with all the other aspects.
64. In a direct direction, the significators advance by their own real way; as the Sun by the ecliptic, the Moon by her circle, upon which successively she alters her latitude, in proportion to her latitudinal motion. The same is to be said of all, when they become significators.
65. Authors are divided, as to measure in direction; for some take the whole degree of the equator, for all and every one of the years; others, the Sun's motion of the natal day : some, the Sun's mean motion; whilst many more vary in their computations. But we, to the first year after the natal, take that part of the equator in which the Sun ascends in a direct sphere, by the motion of the first day following the nativity; to the second year, that which ascends by the second day's motion ; to the third, that which he ascends the third day after
the mativity; and thus of the abber subbompent. ondat : for We would have the directiopal mination. suecenive, and always formed towneds the sueceeding places, and the Sun'a motion each day to be referred io, so the cruuse and rule to every year, at to their effecto, in the saese order and number.
66. But because the primary and priacipal motion of direction is derived from the motion of the Bun on the days following that of the nativity, as has breen said, it consequently happens, that by some secondary rocans, the aspects that are made to the luminaries and angles on those daye, joiadly assist the significatons of the primary directions ; for this reason, we say, that the days whereon these aspects. happen are very powerful in those years, which answer to those dayn, and on which they depend. From those motions, in preference to the rest, appears the true, real, and hitherto unknown, foundation of the cridical or climactrical years; for the Moon, almost every seveath day, is placed in the critical place with reapect to her place in the axtivity; and (which is very important) experience wonderfully proves the truth of it; n may be seen in the examples oxtracted from Argol and Maginus. We call these mations the secondary direction, sa distinguish them from the primary and principal; and we are of opinion, that Ptolemy, speaking of annual places, is to be understood of the places of those motions, and whan of the menstraal, hints at the places of the progression.
67. The equal and uniform progressione which are commonly ,made use Df, are supposed to: be filse; for there appears no reacun oe fopndation to sappert them;
hay; all the professors with one voice affim, they do not correspond with the offects. Wherefore, because we think the motions take their rise frome the Moon's circuit towards the Sun, by which it pre-ordains in power and virtue, the radical humiditywith its co-effects; so in like manner the motion of the direction originates from the Sun, by which it pre-ordains the vital heat; therefore the progressional motions are caused by the Moon in her circuits towards the Sun, and her returns to the same appearance, illundinations, or distance; consequently every one of the circuitk, after the nativity, has a reference and respect to as the cause, of each year of the life of the native, and the Moon's progress, thrqugh each of the signs; to every month.
: 68. In the universal daily motions, the stars are continually agitating things of an inferior and material nature; but they prodace surprising effects, when they arrive at the places of the.moderators: and if they be radical, they are called natural trainsits. But at the places of the directions and progressions, they are called ingreeses; for then, if the constellations of those motions be similat to the constitations of the nativity, or the directions or progressions, they force to action the pre-ordained effects; for in this, and no other mamer, the stars act upon inferior objects; that is, according as they find the next in power.
68. Of the ingresses some are active, others passive ; the active are caused by the stars; which have an active virtue, when they enter the places of the directions and progressions iof the moderators; for then they. act upon the maderators. The passive: are produced by the
aniversal moderatort in the whole woild tridu by the
 upon the places of the difrectiana and progreasions of this stars, whatever they are, which have an active virtue s but the active ingresser, if they be cimilar to she pres ordained effects, cause them to influence; lif dirsimular, they either diminioh or retand, aisproleiny hase it in then last chapter of Book IV. The passive ingresstis ishmida nister nourishment towards the ceoling and preserving the vital heat, and refreshing the radical moisture.
69. In like manner of transfts; some art active, others passive: and hence it is evident how powerful are the accidental aspects of the luminaries and cardinat signis at their setting; and at other times of the natural accidents, arising from those fortunate or unfortunate stars, both of the nativity and of the place of the direction and progression, agreeably to which, as has been said, we are to reason on uncommon phenomena: for from the extension and intension of light, from the colour, diaturnity, apparition, situation, either in 'the world, or among the images of the starry orb, and other passions, are gathered their effects, and the provinces under their influence. New phenomena being found in nativities, experience has already shewn the wonders they have performed, chiefly as to the powers of the understanding, inventions, the performing of business, \&cc. And rennember, reader, that art, or the human understanding, according to its ability and industry, is capable of changing, increasing, diminishing, and perverting, any influxes whatever of the stars; especially if the effects are considered, which the power of man is capable of attain-
ing; and therufore, they who art possensed of a more subtle and acute upderstanding, attain to greater thingat thum thowe of dulter capacities: but they who are entirely negligent, attain nothing. By all that has been said in these Theses, it will not be difficult to understand the questions and explanations of my Culestial Philospplay. And, finally, it is requisite that this doctrine of the stars should be attentively observed, not only in nativities, but aloo in decumbitures and judgments of critical days, and changes in the air, wherein you will find wanderful effeots. For this doctrine is universal, and shews the manner in which the stars act upon these inferiors, whe. ther compound or simple, \&cc.

Use of the Tables.

> PART I.

FOR greater distinction and perspicuity, I have divided the following rules into four parts:-

The first contains the calculation of the places of the stars, in order to know their places under the primum mobile, in lomgitude and latitude, with the situation of each of them in the world, and the distance from the angles and houses, the right and oblique ascension, the horary times, the setni-diurnal and nocturnal arcs, and many things of this kind.

The second consists of methods to compute the directions of the significator to the aspects in the Zodiac, or primum mobile.

The third, the calculations of the directions to the aspects received in the world.
The fourth, the observations and precepts of the progressions, ingresses, transits, \&c.

But, because all the tables confine their numbers to the whole degree, both of latitude and longitude, as often as the given place is in degrees and mirrates, either by Iongitude or fatitude, the proportional part corresponding with those minutes is to be taken with the given place, in both beyond the degree; concerning which, in the first Canon or rule, a method is explained for yourig be-
ginners; and also, in the Canon of the use of the Sexagenary tables, and several of the Canons, that it might not be sought in vain whenever it happens that the proportional part is to be taken. It is, therefore, to be observed, that the method is always the same as in the first and fourteenth Canon; consequently, it is ever, and on all occasions, to be looked to and observed*.

Canon I.
To take the Declination of the Planets, and from the Declination the Longitude, in the Ecliptic.
The table of declinations contains six signs in the first part, and six in the last ; those under the left columns have the degree of longitude descending, but those on the right, ascending: it is divided into twa parts, viz. into north and south latitude, the degrees of which latitudes are seen under their denominations. It is likewise divided by the intermediate scale into north and south declination; that in the former place, i. e. above the scale, is north, and below the scale is the southern. If the given place, whose declination you want to know, has no latitude, seek for that under the column of latitude 0°, which is in the ecliptic; and if it be in the integral parts, as, for example, in $\Omega, 24^{\circ} 0^{\prime}$, under the column of latitude 0°, over against $\Omega 9_{9} 4^{\circ}$; you will have the declination $13^{\circ} 34^{\prime}$: but if the given place be in degrees and minutes, suppose in $24^{\circ} 10^{\prime}$ of Ω, the proportional part belonging to the 10^{\prime} must be taken from the difference, which is between the declina-

[^1]tion of 24° and 25° of Ω; the declination of 24° of Ω is $13^{\circ} 34^{\prime}$. But 25° gives $13^{\circ} 14^{\prime}$ declination: the difference between the two declinations is 20°, wherefore, by the golden rule, I say, if the integral part, i. e. 60^{\prime}, gives 20^{\prime}, what will 10^{\prime} give ? Answer, 3^{\prime}, which is to be taken from the declination $13^{\circ} 34^{\prime}$, which is facing 24° of Ω; because the declination is less (but if it should be increased it ought to be added), and there remains for the declination of $24^{\circ} 10^{\circ}$ of $\Omega, 13^{\circ} 31^{\prime}$. But if the given place has latitude, and is in the integral degrees both for longitude and latitude, at one view you will bave its declination; viz. in the cómmon angle. Suppose, then, the given place 24° of Ω with 2° north, in the common angle, you will bave the declination $15^{\circ} 27^{\prime}$. But if it be according to longtitude in degrees and miniutes, and for latitude in the integral degree, the proportional part is to be taken from the difference of the declination of the greater and lesser degree of longitade, between which is the given minute, under the column of the said latitude.

Let the place be in $24^{\circ} 10^{\prime}$ of Ω, with 2° north, under the colums north, latitude 2° to the longitude $24^{\circ} 0^{\circ}$, the declination is $15^{\circ} 27^{\prime}$; and to the longitude $25^{\circ} 0^{\prime}$, under the same column, the declination is $17^{\circ} 7^{\prime}$; the difference of those declinations is 20 , from which for the $\cdot 10,3$ is to be subtracted, as before. If the given place be by longitude in the integral degree, and latitude in degrees and minutes, the proportional part must be taken from the difference of the declination of the greater and lesser degree of latitude, between which is the given minute, and to the same longitude; as if the given place
be 24° of Ω, with north latitude 20511 , under the lavitude 20 , the declination is $15^{\circ} 27^{\prime}$; under the latitude 3°, the declination is $16^{\circ} 24^{\prime}$, and the difference is 57'; from which, for the 51^{\prime}, will be found by the golden rule to give. 48! to be added, because the declination is imcreased by latitude. Lastly, if the given place be by longitude and latitude in degrees and minutes, as in the nativity of Scbastian, King of Portugel, the Moon's place, according to longitude, as in $24^{\circ} 10^{\prime}$ of Ω, with $2^{\circ} 51^{\prime}$ north, the proportional part must be taken doubly; wherefure, subtracting the 3^{\prime} from $15^{\circ} 27^{\prime}$, there remains $15^{\circ} 24^{\prime}$; and by adding the 48', there remains the Moon's dectination $16^{\circ} 12$. To take the proportional part, you have the logistical logarithms, or sexagenary table: its use is shewn in the fourteenth Canon, though the golden rule may likewise serve; but this method of calculating is to be rightly understood; for in all the tables it. would be too tedious always to repeat it. In the somle which divides the northern declination from the southern, care should be taken as often as it happens to pass through the scale, from one part to the other, either in longitude or latitude, to have the declination conjoined, and there will be a very great difference ; from which, subtracting the proportional part, if it be less than the declination of the former angle which belongs to the integral degrees, either the longitude or latitude is to be taken from the declination of that anglg, and there will remain the declimation of the same denomination; bat.if, on the contrary, the proportional part taken be greater, the former must be taken from the latter, and the remaining declination changes the denomination.

Let the Moon be in $9^{\circ} 10^{\prime}$ of c, with latitude 4° north, 1 'add the 6^{\prime} to the 18^{\prime}; and the difference is 244 ; from which, to the $10^{\prime}, 4^{\prime}$ is due: these, as they are less than 6^{\prime}, I subtract from the $\boldsymbol{\theta}$, and there remains the dectination $\mathbf{2}^{\prime}$ north. Suppose the Moon in $9840{ }^{\prime}$ of \AA, from the difference for the $40^{\prime}, 16^{\prime}$ is due; which, as they are more than ' 6 ', I take ' 6 ' from the 16 ', and there remains the Moon's declination $0^{\circ} 10^{\circ}$ south; ; bat if the Moon in this case should have $4^{\circ} 30^{\circ}$ north, I add 18° to the 38^{\prime}, which are under 4° and 50°; and the difference is 56^{\prime}; from which, for the $30^{\prime}, 28^{\prime}$ are due : from these, as they are more than 10^{\prime}, I subtract the 10°, and there remains the declination $0^{\circ} 18^{\prime}$ north. Again, if they are less, suppose 5^{\prime}, I should take these 5^{\prime} from 10^{\prime}, and the declination is $0^{\circ} 5^{\prime}$ south. The given declination is brought back to the degree in the ecliptic in this manner, however, if it be not greater than 23° 28^{\prime}, for otherwise it would fall out of the ecliptio. . Under the column of latitude $\boldsymbol{0}^{\circ} \boldsymbol{\theta}^{\circ}$, that is, of the declination of the ecliptic, let the given deelination be soughe for, and above the scale if northern, but below if southern : but if it should the found even to ins minutes, the degrees of the sign's, in the ecliptic corresponding with it are those whieh are placed oppesite on both sides; but if the minutes of the given declination are not expressed; the proportionat part is to be taken, instead of the minutes that are wanting to be added or subtracted from the degree in the ectiptic, \&ce. in this manner:-INe the declination be south $7^{\circ} 28^{\prime}$ under the scale; and in the column of latitude 0°, 1 find it opposite to 18° of n, or in 11° of $\cdot x$, therefore it answers the these degreeg It
the nativity of Sebastian, King of Portugal, the declination of 5 is $7^{\circ} 47^{\prime}$, which is not expressed in the table; but I take the next less, $7^{\circ} 28^{\prime}$, then the next greater is $7^{\circ} 51^{\prime}$; the difference of these is 23^{\prime} : the declination of b exceeds the less by 19 . I then ask, if the whole difference of 23^{\prime} give 60° of longitude, how many will 19^{\prime} give ? Answer 50°, which are to be added to the 19° of \propto; so that b 's. declination corresponds with $19^{\circ} 50^{\prime}$ of \pm, or with $10^{\circ} 10^{\prime}$ of \boldsymbol{x} : the same happens if the proportional part be taken differently; for the next greater declination exceeds h 's declination by 4 ', for which the proportional part is 10^{\prime}, which are added to the 10° of \notin, or the 20° of \propto, from the place of the ecliptic, as befure.
Canon II.

Tie Ascensional Difference.

In the upper part of the table of ascensional differences look for the Pole's elevation in the latitude of the country, and in the first column the declination of the given place; which, if it be with the integral degrees, the ascensional difference required is placed in the common angle ; but if the declination be with degrees and minutes, then take the proportional part, as in Canon I. As if the given declination be 12°, at the Pole's elevation 42°, the ascensional difference is placed in the common angle, $11^{\circ} 2^{\prime}$; but if the declination be given $12^{\circ} 25^{\prime}$, the ascensional difference at declination 13°, is 12°; wherefore the difference between this and the former is 53^{\prime}, from which 24^{\prime} is due, i. e. to be taken in their room, 25' to be added, and the ascensional difference becomes $11^{\circ} 26^{\prime}$.-Anolher way : If you lave already by you
the tables of oblique astension of the given place, and the right ascension, subtract the less from the greater, and the remainder is the ascensional difference. In like manner, if you have already the semi-diurnal or nocturnal arc, subtract it from 90°, if it be less ; if greater, subtract 90° therefrom, and the remainder is the ascensional difference.

Canon III.

Semi-Diurnal or Nocturnal Arcs.

The semi-diurnal or nocturnal arcs are thus obtained; the semi-diurnal in degrees and minutes, by adding the ascensional difference to 90 ; when a star has north declination, by subtracting it from 90 , when south. On the contrary, the semi-nocturnal is found by subtracting the ascensional difference from 90°, when a star declines to the north; and by adding it to 90 , when the star declines to the south; for either the remainder or sum will be the semi-nocturnal or diumal arc in degrees and minutes. If the declination above given, viz. $12^{\circ} 25^{\prime}$, be northern, the semi-diurnal arc will become $101^{\circ} 26^{\prime}$, by adding the ascensional difference $11^{\circ} 26^{\prime}$ to 90° : if the declination be south; the semi-nocturnal will be the same; if the declination be north, and subtracted from 90 , there will remain the seminocturnal arc $78^{\circ} 34^{\prime}$; but if it be southern, the semidiumal will be the same. If you would reduce the semi-diurnal or semi-nocturnal arc into hours and minutes (see Canon XI.), you will likewise have the semi-diurnal and semi-nocturnal arc of the places in the ecliptic from the tables of semi-diurnal and nocturnal
arcs. At your Pole's elevation, if the sign of the given degree be in the upper part, look for its degree in the descendant degree placed to the left $;$ but if it be at the lower part, in the ascendant degree,', which is to the right, and in the common angle of meeting, you will have the arc required, whose denomination you will perceive under the very sign, whether diurnal or nocturnal. And remember, if there are minutes, to take the pro* portional parts; but if it be deuominated semi-diurnal, and you want the sami-nocturnal, or the oontrary, subtract the arc found from 12 hours, and the remainder is the other are required. In the nativity of Charles V. the Sun is in $14^{\circ} 30^{\prime}$ of \boldsymbol{x}; at the Pole's elevation 52°, I find the sign x, in the lower part; wherefore, to the 14: ascendant degrees, I take in the common angle the semi-noaturnal arc, $6^{\mathrm{h}} 33^{\prime}$; but because the Sun has above 30 '; I subtract one minute, and there remains the semi-nocturnal arc, $6^{6} 32^{\prime}$: whereas, if, I want the semi-diurnal arc, I take $6^{\mathrm{h}} 32^{\prime}$ from 12^{h}, and there remains $5^{\mathrm{h}} 28^{\prime}$. Of: the latitudinal planats, provided their declination does not exceed $23^{\circ} 28^{\prime}$; the said semi-diurnal on nocturnal arc, in houns and minutes, may be had thus: After reducing their declinaxion to the longitude. of the ecliptio, in the manner explained in Canon I. with this degree of the ecliptic, I enter the table of: semi-diumal aros, and take out the houre and minutes; curresponding thereto, in the manner we have menuoned, \&c. as in the nativity of Sebastian. Saturn hath. declination $7^{\circ} 47^{\prime}$, and is reduced to $190^{\circ} 50^{\prime}$ of on, or $10^{\circ} 10^{\prime}$ of x, whose semi-nacturapal anc at the Pote's. elevation 40°, is $6^{\circ} 27^{\circ}$ 。

Canon IV.

The Horary Times.

These may be taken several ways; finst," the diumal from the partition of the semi-diurnal arc in degrees and minutes taken by six; the nocturnal from the partition of the semi-nocturnal, libewise by six, which six temporal hours the cardipal, eigns of the world are mutually distant: let the semi-diurnal aro be $104^{\circ} 45^{\prime}$, the 104° divided by 6 make 17 , and there remains 2 ; whieh, reduced to minutes, and these added to the other 45, makes 165 ; which, when divided by 6 , the quotient: is 27^{\prime}, and makes the horary times $17^{\circ} .277^{\prime}$ diurnil. Secondly, the horary times of the ; parte of ecliptic are collected in the proper tables; as: to that pote's, deviation 45 - to 1.5ρ of y in the ecliptic, the horaky, times: diurnal are 17°. 51^{\prime}. Thirdly $y_{\text {: }}$ the ami-diumal are taken in hours and minutes; if multiplied by two: and a half, is converted into the diumat horary times; and, in like manner; the semi-nocturnd are into the nocturnal horary times; as the sempindiurnal arc of 15 of γ, at the Pole 45°, is $7^{\mathrm{h}} 9^{\prime}$, which, multiplied by 2 and a half, becomes $17^{\circ} 52^{\prime}$. Fourthly, of the planets having latitude, let their given declination be brought back to the ecliptic in the manner as explained in Canon I , and with that degree of the ecliptic in the table of horary times, they mayy be taken as above-mentioned; bat if the planet has afgreater dectination than $23^{\circ} 28^{\prime}$, the horary times cannot be tahen. any other way, except by the help of the ascenaiomal dif: ference. But if you have the diprnal horary, timessy and
want the nocturnal, or the contrary, subtract your sum from 30, and the rest will be the horary times required: as in the given example; I subtract $17^{\circ} 51^{\prime}$ from 30 , and there remains the horary times nocturmal $12^{\circ} 9^{\prime}$.

Canon V.

Right Ascension.
:This you will take from the proper table; and if the given place be in the ecliptic, so as to have no latitude, look for the right ascension under the column $0^{\circ} 0^{\prime}$, and in the common angle you have it, by taking the proportional part for the minutes of longitude, if there are any, as in Canon I. In the nativity of Charles V, the Sun is in $14^{\circ} 30^{\prime}$ of \mathcal{K}; the right ascension of 14 of x, is $345^{\circ} 16^{\prime}$; for the $30^{\prime}, 28^{\prime}$ are due, to be added, and the Sun's right ascension becomes $345^{\circ} 44^{i}$. If the given place be not in the ecliptic, but has latitude from it, and is in the integral degrees, both according to longitude and latitude in the common angle, you will have the right ascension : but if there are likewise minutes, let the proportional part be taken, as in Canon I.

Canon VI.

Right Distance.

To know the distance by :right ascension of the stars in a right circle, subtract the lesser from the greater, that is, the right ascension of the preceding place from the right ascension of the following, and the remainder is the right distance required. And this caution is to be observed, that as the right ascension is an are of: 2 circle, numbered in degrees of the equator,
which are 360 , commencing at the beginning of the sign \boldsymbol{r}, and terminating with the end of \boldsymbol{x}, when it happens that the right ascension of the preceding place is less than a circle, as in $\not x, \ldots=, \& c$. and the following place greater than the beginning of the circle, as r, $४, \& c$. a whole circle, or 360 , must be added to the right ascension of the following places, and from their sum subtract the right ascension of the preceding place. Let the 18° of m be upon the Medium Coll, whose right ascension is $320^{\circ} 30^{\prime}$, and the following place be 15° of r, whose right ascension is $13^{\circ} 48^{\prime}$; you cannot subtract $320^{\circ} 30^{\prime}$ from $13^{\circ} 48^{\prime}$, unless you add 360°, which makes the sum $373^{\circ} 48^{\prime}$; from which subtracting the $320^{\circ} 30^{\prime}$, there remains $53^{\circ} 18^{\prime}$, the right distance required. And this caution is to be observed in all subtractions of ascensions, whether right or oblique, and whether in degrees and minutes, or hours and minutes.

Canon Vil.

Oblique Ascension and Descension,

Will be had by subtracting the ascensional difference from the right ascension of the star, if its declination be northern; but, if south, by adding the ascensional difference to the right ascension, and the sum, or remainder, is the oblique ascension. Lastly, if it bas no declination, that right ascension becomes oblique ascension. On the contrary, the oblique descension will be found, by adding; if the declination be northern, by subtracting; if south, to or from the right ascension. Example: to $1^{\circ} 23^{\prime}$ of 8 , the declination is 12^{3}; its
ascensional difference at the Pole's elevation 420, as we have mentioned in Canon II, is $11^{\circ} 2^{\prime}$; the right ascension is $29^{\circ} 13^{\prime}$; but as the declination is northern, subtract the ascensional difference $11^{\circ} 2^{\prime}$ from the right ascension, and there remains the oblique ascension 18° 11^{\prime}. Now, $1^{\circ} 23^{\prime}$ of m, has the same declination and ascensional difference, which is to be added to the right ascension $209^{\circ} 13^{\prime}$, because the declination is southern, and the oblique ascension is $220^{\circ} 15^{\prime}$; besides, there are extant many tables of oblique ascensions by which they may be gained; as those of Argoll's, and several others.

Canon VIII.

To reduce the Right Ascension, or Oblique, to the Degree of Longitude in the Ecliptic, or to any other Place of Latitude or Longitude.
Look for the given right ascension of the ecliptic in the body of the table of right ascensions under the column of latitude $0^{\circ} 0^{\prime}$, and you will have the places in the ecliptic, corresponding to it, by taking the proportional part for the minutes, if there be any. But if, ' when the right ascension of a latitudinal planet is given, you are desirous to know to what longitude in the ecliptic it corresponds, look for that right ascension under the column of the given latitude, and in the column of longitude you will have the degree of the ecliptic corresponding to it: as, for example, the right ascension of $157^{\circ} 48^{\prime}$ in the ecliptic answers to 6 of 吸; but if the rigbt ascension $157^{\circ} 48^{\prime}$ be, for example, för the Moon, in latitude 5° southern, it answers to 8 of m贝; but with this caution, because the Moon then mediates the
mid－heaven with 6° of 吹，but has the rays in the Zodiac to the other planets from 8° of $\mathrm{m} /$ ．In like mamer you must reduce the oblique ascemsion to the ecliptic from the table of the oblique ascensions of the Pole＇s eleva－ tion；as the oblique ascension of the ecliptic $168^{\prime} 9^{\prime}$ to the Pole＇s elevation 45° is reduced to 21 of ${ }^{2}$ in the ecliptic；but，if the oblique ascension be of the Moon in south latitude 5° ，I say it is reduced to 19° of 呗 with latitude，as is there posited，but with the same distinc－ tion；for then the Moon co－ascends in the same circle of position with 21° of 吹，but has the rays to the other planets in 19° of ． ．${ }^{\circ}$ ．This revocation is of service，in order to know what longitude and declination the sigui－ ficator encompasses by the direction，and consequently with what planets it contracts the aspect when in the Zodiac，which is，by adding the arc of direction to its right ascension，if it be found in the right circle in the nativity ；or to the oblique ascension，if elsewhere．

Canon IX．

Distances from the Cusps of the Angles or other Houses．

The distance from any cardinal sign or house（that is） from their cusp，will be easily obtained after the ascen－ sion of that house or cardinal sign，and likewise the as－ cension of a atar is giver ；for subtracting the lesser， which is the precediag place，from the greater，which is the following，the remainder will be the distance of the star from that house or cardinal sign ；but if the house or angle be in the descending part of heaven， taking the descensions of the house，and the same of the star，or the ascensions of the opposite places，and sub－
tracting, in like manner, the lesser from the greater, the remainder will be the distance required. The preceding place is that which is in the lesser degrees; the succeeding in the greater: as the beginning of \boldsymbol{r} precedes, the beginning of I follows; and thus in all. The distances of the stars from the cusps of the houses may be taken without the oblique ascensions; but the right ascension is to be known, together with the semidiurnal and nocturnal arcis, or the temporary hours; for after taking their primary distance from the culmimations, the secondary distances are made at the cusps of the houses; and the ninth and eleventh houses are distant from the meridian, by the double horary times, or the third part of the semi-diurnal are; the eighth and twelfth, by double gemination, \&c. Wherefore, the primary and secondary distance of a star from the meridian being given, always subtract the lesser from the greater, and you will have the star's distance from the given house; by primary distance I miean that which the planets have in a nativity; but the secondary, that which they acquire by direction. There are several examples in the nativities which are shewn farther on.

Canon X.

To describe a Figure of the Heavens.

This we are taught by almost all professors, but in a very different manner; therefore be pleased to take here a very concise method. If the italic hour be given, let the astronomical be made, by adding the semi-diurnal arc. In the tables of houses at the Pole's elevation given, let the place of the Sun be looked for, upon the
cusp of the tenth house, and let the time from noon be taken, which is found on the back of it, and added to the astronomical hours found above. Finally, with this sum, when it is found in the same table of houses, directly opposite, will appear the signs and degrees which belong to the six eastern houses, taking the proportional . part, when there is occasion. Of the other six western houses, the cusps are described with the opposite signs, and the same degree as the opposite houses.

Another way.-The italic hour being given, let the gree opposite to the Sun of the given day be sought for in the ascendant, and let the time from noon, which shall be found there, be added to the given hour; when this sum is found, let the division of the houses, directly opposite, be taken, \&cc. From this same sum of the hours, subtract the time from noon found at the degree of the 0 's place on the same day, constituted in the tenth house, and there will remain the astronomical hour; or, in other words, post neeridian, as in the nativity of Charles V. The given italic hour is $10^{4} 11^{\prime}$; which place in the horoscope is 14° of疐, on the back of which the time from noon is $4^{\mathrm{h}} 29^{\prime}$, to which add $10^{\mathrm{A}} 11^{\prime}$, and the sum is $14^{\mathrm{L}} 40^{\circ}$; which, when I find in the tables of houses, I take their divisions, \&cc. Again, I place the Sun in the medium coeli, and there I take $23^{\mathrm{h}} 1^{\prime}$, from which reject $14^{\mathrm{D}} 40^{\prime}$, firstadding the 24^{12} (as we have said in Canon VI), there remain the astronomical hours $15^{\star} 39^{\prime}$ post meridian.

To place the planets in the figure, let the astronomical hour be equated; first, by the table of equation of natural days, then for the difference of meridians, in the
manner they are noted. The places of the planets are very easily calculated to the equated hour, from the Sexagenary table, in this manner:-In the first column on the left hand, to the number 24 , for 24 hours, look in the body of the table for the planet's motion; and, directly under the same column, at the given hour, you will have its motion, to be added to the place of the same, at noon; or to be subtracted, if the planet be retrograde, as in the example of Charles \mathbf{V}. The diurnal motion of the Moon is $14^{\circ} 39^{\prime}$, which, opposite to the 24th number, 1 find, in the body of the table Sexagenary, under the 37 th column; but because there they do not go so far as minutes, I take the proportional part, and I find it corresponds under $86^{\circ} \mathbf{3 7}$: with the 15 th hour, under the -36° I take 9°; and, for the 37 ' from the difference which is there made, I add 9^{\prime}; again, for the 39 of the given hour, I look under 37 , and, at 39 , in the common angle, I take 24^{\prime} to be added, and this makes all the Moon's raotion $9^{\circ} 33^{\prime}$, to be added to its place, calculated for noon; but as the is in $27^{\circ} 12^{\prime}$ of f, its place immerges to the given hour, $15^{\text {b }} 39^{\prime}$ in $6^{\circ} 45^{\prime}$ of bs. As for the other planets, when their motion exceeds 72', whereas in the Sexagenary table at 24, the greater number is 72, make use of half the diurnal motion of the planet, and the product of the given hour must be doubled : as the diurnal motion of q is 75^{\prime}, I use half this nuriber 37 , and 1 find opposite 24 , under the column 93 ; wherefore, opposite 15, under the same column, I take 24', which, doubled, make 48 ; or use the geminated hours, as 48, for 24°. In the body of the table, I find the
motion of 275 , under the cohumn 94; but opposite 31 , for the $15^{\top} 39^{\prime}$, I take 48 or 49, as before. In like manner are the latitudes calculated, by reducing the parts to minutes, and looking on the sides for days, and in the body for the difference of latitudes, Bcc. As the latitude of to the 20 h of February is $3^{\circ} 16^{\prime}$, to the first day of March it is $2^{\circ} 11^{\prime}$, the difference is 65^{\prime} for the 10 days; from which, for the 4 days, are produced 26, to be subtracted: but, because the Sexagenary table to number 10 is not extended above 30, I look for it at the triplicate of 10 , which is 30 , and I find 65 under 130; but, at the triplicate 4, i.e. 12 under 130, I find 26 as above: I look for 10 at the quadriplicate, which is 40 , and I find it either under 97 or 98 ; for in the one it is deficient, in the other it exceads in the minutes 20 seconds; and at the quadriplicate 4, i.e. 16 under cither of the same columans, 1 find 26 as above. The Part of Fortune is placed according to the Moon's distance from the Sun. And you mast observe, what rays the Moon has to the Sun, for the latter ought to have the same, and with the same excess or deficiency as the \oplus to the horoscope. As the Moon is to the Sun, so is \oplus to the horoscope; and as the Sun is to the horoscope, so is the Moon to the Part of Fortune; as in the nativity of Charles V, the Moon applies to the ultimate Sextile of the Sun, but with a deficiency of $7^{\circ} 45^{\prime}$: I subtract the 7045^{\prime} from $5^{\circ} 34^{\prime}$ of m, the ultimate Sextile to the horoscope, and the \oplus is placed in $28^{\circ} 9^{\prime}$ of $\boldsymbol{2}$. But the partitions of the houses may also be made by the right and oblique ascensions to the polar elevations of the
houses; first, you are to bring back the given hour to the degrees of the equator : if the given hour be Italic, add these degrees to the oblique ascension of the Sun's opposite place, and the sum will be the oblique ascension of the horoscope of the figure to be erected : if the given hour be astronomical to the Sun's right ascension, add the degrees to which you have reduced the astronomical hours, and the sum will be the right ascension of the medium coeli : the ascensions of the other houses are made by constantly adding 30° for the ascensions of every one of them; and from the tables of oblique ascensions, to the elevation of the houses, are had the degrees of the Zodiac, to be placed in these houses. Finally, directly under the horoscope, describe the latitude of the planets, the declination, horary times, right ascension, \&cc. Likewise, to every house, draw the Pole's elevation and oblique ascansion, which you may do by adding 30 degrees to the right ascension of the medium cocli; for the eleventh, likewise add 30, and you will have the oblique ascension of the twelfth, and so for the rest. The elevation of the Poles of the houses is shewn in the proper table, and also in the tables of the houses.

Canon XI.

To convert Hours and Minutes of Time into Degrees and Minutes of the Equator; and, vice versa, the Degrees and Minutes of the Equator into Hours and Minutes.
This is too obvious to require any explanation.

Canon XII.

On the Circle of Position, or the Pole's Elevation of any Planet.

Under the circle of position, later authors are to be understood of the nature of that passing through the common sections of the horizon and meridian; and upon such circles they direct their moderators, and constitute the intervals of the houses. But how fritolous and remote from natural truth this opinion is, may be seen in my Celestial Philosophy, where it is largely and plainly demonstrated ; but it is also contrary to the doctrine of the Prince of Mathematicians, Prolemp, who has transmitted to posterity this universal science, founded only on the most sublime principles of Philosophy, which, I think, innumerable examples fully prove. Those who refuse to follow him, doubtless proceed through confused ways, which have no claim to the least commendation whatcver. I desire no other guides but Ptolemy and Reason. I have no idea of circles of position which are directed through the common sections of the horizon and meridian, but those that are described by the proportional distances of the stars towards the angles; and we may, by means of a very easy method, know the Pole's elevation upon the Ptolemaic circte of any star whatever. In the first place, let the quantity of the house be taken; which the star, whose polar elevation is sought for, measures by lustration. This quiantity of the house may be had several ways: (1:) The horary conditionary times of that star, when doubled, prodace the quantity of the
starry house. (2.) The third part of the semi-diurnal arc of the star, is the measure of the house above the earth; of the semi-nocturnal, wader the earth. (3.) The distance of a star from the preceding house, joined with the distance of the same star from the succedent, taking the distance as mentioned in Canon IX; I say, these distances, added together, produce the space or quantity of the house. I then let the difference of the Pole's elevation be taken, which is between the succedent and preceding houses, as before, between which the star is found by the table of the poles of bouses.; then let the distance of the star be taken, either from the succedent or precediag houses, as before mentioned. (4.) By the Golden Rule. Quere, If the whole quantity of the starry house give the polar difference between the succedent and preceding houses, what part of the difference will the distance of the star from either house give? Let the fourth number, which is the product, if the Pole's elevation be augmented by the house from which the distance of the star is taken, be added to the house's elevation; if diminished, subtracted; and the remainder or sum will be the polar elevation of that star, of which many examples follow in the nativity of Francis, the first King of France, Cardinal Salvatius, \&ce. Here we must be cantious, because the polar elevations of the houses are not increased or diminished uniformly; that is, for example, to the latitude of the country 45°, the polar elevation of the eleventh house is increased $18^{\circ} 50^{\circ}$; the twelfth house is augmented 15° nearly, and the horoscope is increased 11°, so that you see they have no
equal increase. When a star is about the mean distance from the centres of the preceding and succeeding houses, if any one desire to have a true polar elevation of that star, he ought to avoid this inequality; as, suppose the star to be in the middle distance from the medium coeli to the eleventh, where, by the golden rule, the pole increases $9^{\circ} 25^{\prime}$ ', which is the half of $18^{\circ} \mathbf{5 0}$, to which the eleventh house is elevated. A star in this case hath, in reality, a polar elevation greater than this half, and the reason is, because the difference of the polar elevation is always diminished from the medium call to the horascape; and, therefore, in the tenth house, the polar elevation has a greater angmentation in the first moiety than in the latter. The dif, ference of the Pole's of the houses are these, 11, 15, and 19: if we divide. 11 into 5 and 6 , but 15 into. 7 and 8 ; lastly, 19 into 9 and 10 , the division will appear very agreeable to reason, viz. into $5,6,7,8,9$, and 10 , which are the differance of the Pole's elevation in the middle of each of the houses; wherefore, to the given star placed in the middle distance from the culmination to the llth, you will have the Pole's elevation 10. But the caution io only to be observed when a star stope about the mean distance from the cusps, where, first taking the proportional parts, by the goldono rule, near one degree, as mentioned above, should afterwards be added or subtracted; but, when it remains about the cusps of the houses, it may be entirely uegdected, as it makes but little difference.

Canon XIII.

The Distances of the Aopects both in the Zodiac and World, and the Degrees in them.
In the Zodiac the Sextile has 60°, the Quintile 720, the Square 90°, the Trine 120°, the Sesquiquadrate 135°, the Biquintile 144°, and the Opposition $180{ }^{\circ}$.

But because every ray is a circle, whose centre is the star projecting the ray, excepting the opposition, doubtless every ray cuts the whole latitude of the Zodiac ; wherefore, whenever it happens that another star passes through that ray's section, whatever latitude the other star may have, it receives the ray, and mutually projects the same from that section to another star; and not only from the point of latitude which this star has there, but this manner of receiving and projecting the rays happens in the daily motion of the stars in the directions, progression, and all the motions of the stars; and indeed from the great difference of latitude of such stars as are mutually aspected, there follows some difference of the ray's longitude, but of a very few minutes, which may be omitted ; however, those who wish for further investigation, may consult Regiomontanus and Maginus.

At the medium coeli, the stars have their Sextile from the cusp of the eighth and twelfth houses.

Quintile,
When their distance from it is four of the five parts of the semi-diurnal arc, or six parts of five of the $*$.

> Quadrate,

From the eastern and western points, that is, from the ascendant and seventh.

TRINE,
From the centre of the second and sixth houses.
Sesquiquadrate,
From the mean distance between the east and the imum cali, and between this and the west.

Biquintile,

When their distance from the imum cosla is two of the five parts of the semi-nocturnal arc, or three of the five parts from east to west below the earth.

Opposition,
From the imum ceeli.
At the horoscope, the stars have the sextile from the cusp of the eleventh and third houses.

Quintile,
When the distance from the east is four of the five parts of the semi-diurnal arc, or nocturnal ; or in other words, when they are distant one part out of five of the above arc from the medium coeli, or imum ceeli, towards the east.

Quadratr,
At the Medium and Imum Cali.
Trine,
From the cusp of the ninth and fifth.

Sesquiquadratr,

From the middle distance between the medium cceliand west, and between the west and imum colli.

Biquintile,

When the distance is two out of five parts from the west above and below the eartb. To the Sun and Moon
existing in the cusp of any bouse, the rest of the planets have their rays in the world in like manner as towards the angles; that is, if they abide in the cusp of the ninth house, they have

The Sextiles,
From the cusp of the eleventh and west.

Quintule,

When the distance from the luminary is beyond the Sextile a fifth part, from a double gemination of the horary times, and diurnal if a star remains above the earth; nocturnal, if below ; for the Quintile has twelve parts more than the $*$, which are the fifth part of it.

Quadrate,

From the cusp of the twelfth and sixth houses.

> Trine,

From the east and cusp of the fifth.

Sesquiquadratr,

When their distance beyond the Trine is one change in the horary times, in like manner conditionary, i. e. nocturnal ; I may say, when their distance beyond the Quadrate is the half of the semi-nocturual arc, because both the Sesquiquadrates to the cusp of the ninth house fall below the earth.

'Biquintile,

When they are distant beyond the Trine twice the fifth part of the nocturnal Sextile, i. e. when taken below the earth, or when their distance from the opposition of the luminary is two of the five parts of the semi-nocturnal arc; and in like manner, in whatever
other place they are found, whether luminaries, or any other star, the rays in the world are taken by a proportional division of the semi-nocturnal and diurnal are.

Parallels in the Zodiac,
Which are commonly called antiscions, are circles equidistant from the equator, and are taken from the equal declination of the stars of what latitude soever, which, if it be of the same name, are called equal in dignty; if one circle be northern, the other southern, the former is said to be of authority, but the latter in subjection.

Parallels in the World,

Are distances equally proportional from one of the cardinal houses in both distances; though, indeed, they appear to have distances equally proportionate to all the cardinals; as the eleventh with the ninth and third; and they are taken by a proportion of the semi-diurnal and nocturnal arcs of the stars.

Canon XIV,

Contains the use of the Sexagenary table, to find the part proportional, and is shèwn by examples in other parts of this work, to which we refer the reader.

Canon XV.

The Use of the Logarithms*.
We have placed the logarithms of absolute numbers, because in that manner of Ptolemean direction, which we

[^2]follow, they are of very great service in exhibiting tho fourth proportional number; therefore the three numbers being given, whether of parts or hours, if they are minutes, let each of them be rectuced to minutes, adding them as they are disposed in their places; then take the logarithms of the 2 d and 3 d number, add them together; from this sum subtract the logarithm of the first, and look for the remainder in the middle of the table; opposite to which, take the number for the fourth required, which divide by 60 , and with the remainder you will have parts or hours with their minutes. For example; let the numbers be given, the first $95^{\circ} 25^{\prime}$, the second $35^{\circ} 45^{\prime}$, the third $100^{\circ} 15^{\prime}$, reduced to minutes are $5725^{\prime}-2145^{\prime}-6615^{\prime}$; the logarithm of the first 3.75778, of the second 3.33143, of the third 3.82053. I add the second and third together, and I make the sum 7.15196, from which I subtract the first, and there remains the logarithm 3.39418 , answering to the number 2478 , which, reduced to degrees, makes $41^{\circ} 18^{\prime}$, the fourth number required. But because the logarithm consists of eight figures, the six first of these are sufficient for this purpose, and it seemed not good to rescind the rest, by reason of other advantages resulting from them, you may only make use of the six first, provided you think proper, for it is of little use or consequence; but if the seventh figure be five or greater, you should add unity to the sixth figure, which will. be your last; and if the seven figures be 4, 3, 2, 1,0 , omit it entirely. In the given example of the first numher 5725 , the logarithm of eight figures is 3.7577755 , I leave out the two last figures 55, and add the unit to the
sixth, which make it 3.75778 . Observe also, that the logarithms are easier collected by taking two figures for every change; thus first collect 37, then 57 , lastly 78.

Canon XVI.

To equate the Arc of Direction.

Add the arc of direction to the right ascension of the natal Sun, look for this sum in the table of right ascensions under the ecliptic, and take the degree and minute of longitude corresponding with that sum : then in the best Ephemeris reckon in how many days and hours the Sun from the day and hour of birth, has arrived at that degree and minute. The number of days indicate as many years ; every two hours over, reckon a month.See examples in the following nativities.

PART II.

To calculate the Directions to the

Aspects in the Zodiac.

I HAVE divided the Canons into four parts, for greater distinction and perspicuity, that I might not always repeat the same thing under any other title than that of Canons, that is, either in the Zodiac, or in Mundo; wherefore, in this Second Part, know, that I treat of the Directions to the Aspects in the Zodiac only; or, in other words, in the primum mobile, and of no other. But what the aspests in the primum mobile are, and what in the world, together with the cause of this true distinction, I have very plainly demonstrated, from natural principles, in my Celestial Philosophy; for the aspects in the primuin mobile, which happen between the stars, are mutually independent of the borizon of the country, by reason of their motions in the same primum mobile; under which they are in the same situation in all countries and cities of the world, with the difference only of time and polar elevation.' The aspeets in the world are made dependent on the horizon of every country, because of the motion of the stars towards the world, and cardinal houses. But, as it may be disputed, whether it is proper to say, that the significator is directed to the promittors, and their rays, or
the ipromitors and rays to the significator, k kwow, there is a double motion of directions, direct and winpersed I say, that in the direct direction the eignificator reminims immoveable in the mundape situation, always under the same Pole's elevation, but advanices under the same primum mobile from its more western parts, to the more castern; the occourses, however, remain immoveable under the primum mobile, but are moved with a rapt and universal motion from the eastern quarter of the world to the more western, or the place of the significatori. Again, I say, that in the converse motion of direction, the significator remains itmmoveable under the primum mobite, but is mooved by an universal rapt motion from the eastern quarter of the word to the more western, rowards the place of the promittors :in the world; but the accourses remain always immoneable in their muagdane situation, or polar elevation. If follows, therefore; that both may have q gameg. but with a diatinction; and, I will say, indifferemaly, les. cording as I should heve oceasion to mention thomn Finally, as experieace in every place ever copvingeq;y, that hosides the reason I hase advanced in the Philongr phy of the Leearens, the aspects of the star to the lymits naries and cardinal houses, which happeni eyery day after the nativity, have 2 very strong influence, vis, from every day to every year, whence, above the reast; are derived the climactrical yeers, at I shal shew after: wards; and it is likely that Ptolemy, in the lant Chap: ter of Book IV, under the name of Annual Plaoes, smans the places of those motions. I thourght propet
to give these, mations the name of Secendary Direc: tions; but the others, which we ane going to mention, to characterize under that of Primary Divections:

Canon XVII:

To direct the Sun, being near the Mid-heaven, to the ,Conjunctions, and all Rays.
The Sun is accounted near the cusp of the house when he is not more than 3° distant. First, take the Sun's right ascension, then that of the aspect, whether it be the conjunction or oppositions - or any afher intermediate ray, by always taking the right ascensions, and omixting the latitude in this case, even in the conjunc-sion and opposition, if, however, the prosittor hath' wot greater latitude than the orb of his' light (for this issherdifference between the zodiacal.and mundaure aspects f : the former being cameed by: a greater proximity to the greater distance of the stars:between each other, and upon their mal win the Zodiac; the greater proxi-' utity happening in the' same partile longituce, thoughtheir distance and difference be secording to latitude, if the':distance of latitude in the conjunction and opposition, as I have said, be not greater than the sphere of ectivity of light of the stars; for if it be greater, the conjunction is not:powerfal, nor the opposition in the Zodiac, ass I bave demonstrated in the Colestial Pbilo-sophy): Lastly, suburact the Sun's right ascension from that of the aspects, and the remainder is the arc of direction. Example: In the nativity of George Aldotrapodinus, the 0° 's right ascension is $215^{\circ} 58$, but the
sight. ascension of. Vemus, taken in the ediptit, ! is $262^{\circ} 8^{\prime}$, from which, subtracting the Sun's right 28 cension; there remains the arc of direction; $46^{\circ} 10^{\circ} .:$.

> Canon XVIII.

To direet the Suns, when found near the Cuap of thes

- Horoscope, or Seventh Houme, to the Canjequetions, and all the Rays. .",
Take the Sun's oblique ascenvion, if in the ascendant;, under the latitude of the country, or the descension, if in the seventh; or the oblique ascension of the oppo:site place; then the ascension or descension of the place of the aspect under the same Pole, leaving out the lationde in this case, provided that, in conjunction and opposition, the latituder of the planet does not exceed its orbs, as before moritioned, and take the Sun's oblique ascension from that of the ray, and the remaindee is the arc of direction required.

Canon XIX.
To direct the Sum, when found above the Earth; far đistant from the Cardinal Horises, to the Conjunction, and all the Rays.
If the Sun remains above the earth, and his distance from the cardinal house is more than 3° from the cusp, first take the Sun's right distance from the meridian; and from the same, the right distance of the aspect which the Sun is to be directed to, which call the primary, the semi-diurnal arc, and that of the aspect; and by the Golden rule say', if the Sun's semi-diurnal arc gives the right distance of the same; what distance
vill the semi-diuraal arc' of the promithor, or ocenrrent: place give: multiply the second and third, and the product divide by the :frst, whieh is the secondary distance of the aspect. Then, if both the primary and secondary distance of the aspect be from the same cardinal house; and in the same hemisphere of Hearen, ascendant or descendant, subtract the lesser from the greater, and the remainder is the arc of direotion; but if one: is in the: ascendant, and the other ip the do spendant, add both distances together, and the sum is the are of diregtion. You may take the semi-diurnal ane, both of the Sun and the aspect, either in hours or minutes, or degrees and ininutes; ors instead of the semi-diurnal arc, you may use the temporal bours.

Example.' In the nativity of Cardinal Fachenetti, I have a mind to direct the Sun to the quintile of Jupinor in: the Zgdiac, , which happens in $19^{\circ} 41^{\prime}: \sim$, the right ascension of the medium coll being $326^{\circ} \mathbf{2 6}$.

> h. m. h. m.

Semi-diur. arc of © 6 O Semi-dium. arc of $19^{\circ} 41^{\prime}$ ソ 630
Right ascapsion . 0 . Right ascension. . . . is. 9
Diş a medium cali 33. 42 Primary distance. . . 5143 .from [medium cali.
Now, by the Golden rule, if the Sun's semi-diurnal arc, viz, 6^{n}, give its distance from the medium cold $33^{\circ} 42^{\prime \prime}$, what will the semi-diurnal are of $r, 19^{\circ} 41^{\prime}$, tiz. $6^{h} 30^{\prime}$ give? Answer, $36^{\circ} 30^{\prime}$, ${ }^{*}$ which is the secondary distance of the aspect's place. But because both the primary and secondary distances are produced in the ascending part of heaven, I subtract, the second-

[^3]ary diastance: from the prinaary, and the remainder is the arc of direction. Thus,

Primary distance at stedison calii it . . . 51° 48
Secondary diatahoce, :. . . . : 3630
Subtract apd arc, $=15 \quad 13$
For the equation, I add the atc of direction to the Sun's right ascersion; and I make the sum $15^{\circ} 21^{\prime}$, whictanswers to $16^{\circ} 40^{\prime} r$, to which the Sum, frome the day and hour of the nativity, arrives in 16 days, and some brours, which are the compass of so many years.

Another way. - To direct the Sun by the obliqde ascension, under his Pole of position, take the Polet \mathbf{y} elevation, in the mariner explained in Camon XII, and the obtique ascension of the Sain, and of the aspect, and subtract the oblique astension of the ore from the other, \&ec. of which more examples will be given; we having laid down a table of the Yole's elevation of the eleventh, twelfth, second, and third houses, for the latitude of the country, to 60° : also, in the tables of the houses, there is placed, above every house, its polar elevation.

Caxion XX.
To direct the Sans, when formd below the Eatth, in the
Space of the Crepuscule, to the Conjurnetionit and: Rayb.
The reason why the Sun, when found in the crepuscular space, should be directed upon the circles paralled. to the herizot, and not upon the horary circles, as when the Sur is above the Earth, has been given in the Theoes, and dembinitrated in the clearest manner in the

Celestal Philposphy; but now attend to . What porthins. to the practice of calculation. If the Sun is found. in. the moming crepuscile, first direet the' Sun to the degree of the aspect, under the latitude of the country, that-is; to the elevation of your pole, though indeed the Sun does not remain there, but below, and in a separate place. You must observe the are of direction, and then take the Sun's distance from the horoscope, : by its oblique ascension, which call the Sun's primary, distance; and observe, that if this distance be greater than the whole guantity of the crepusculine to the pa-. rallel of depression, 18°, the Sun is not in the crepusculines; and, in this case, you are to calculate by the following Canon. But if the Sun is in the, space of the crepuscules, with the Sun's distance; from the horoscope, above taken, enter the table of. crepuscules at your Pole's elevation, placed in your first column; and with the Sun's sign, and degree, according as they are placed, in the beginning or end; and when, in the body of the table, you have found this distance of the Sun from the east on the back of the same opposite to it, you are to observe what degree. of the crepusculine parallels the Sun possesses, viz. in the second column, by taking the part proportionate only to the Sun's degree of longitude, as I shall men-- tion afterwards; and under the same parallel see what the distance of the place or occurrent degree is, by direction; that is, what the Sun's distance is from the horoscope, in the same crepusculine parahlel, after the direction is finished; and this distance I call the se-condary; and if the primary and secondary distances. are equal, the true are is that which you have, calculated
ubcre, Vir: the Sun's arc in the horoscope; but if they are unequal, subtract the lesser from the greater, and the remainder call the ortive difference. Lastly, if the secondary distance be less, and the primary greater, add that remainder, or ortive difference, to the Sun's arc of direction, calculated in the horoscope ; but, if the secondary distance be 'greater, and the primary less, subtract the ortive difference from the arc of direction, and you will have in the remainder the true arc of direction calculated in the crespusc̣uline circle, which is to be equated the usual way, as in Canon XVI. And observe, that in sceking for the Sun's primary distance from the horoscope in the tables of the crepusculiue, it is sufficient to take the part proportional to the degree of the Sun's place, which is found at the degree of the crepusculine, or parallel's depression; opposite to which you will find the distance which you have taken, with the proportional part near it, omitting that primary one of the natural Sun; for it is of no consequence to take the degree and minute of the crepusculine depression; but it is enough if you take the integral degree nearest the Sun's longitude distance, taken with the proportional part. For example; In John Duke Rainutius Farnese, the Sun's distance from the horoscope is $18^{\circ} 56^{\prime}$, to the latitude of the country 44°; opposite to 13° of the depression, under 10° of r; the distance is $18^{\circ} 32^{\prime}$, under 20° of r the distance is $19^{\circ} 1^{\prime}$, the difference is 29^{\prime}, from which, for the 6° (for the Sun is in 16° of r) 17^{\prime} are due, which, when added together; the distance is $18^{\circ} 49^{\prime}$, but the Sun's distance $18^{\circ} 56^{\prime}$; yet.this is nothing to the purpose, as the distance is but
pmall, therefore make use of the former $16^{\circ}-49^{\prime}$, with. out any regard to that of the Sun, $18^{\circ} 56^{\prime}$. To the same depression of the erepusculine 13°, under $0^{\circ} 0^{\prime}$ of 9 , the place of the quartile of Mars, I take the secondaty distance, $24^{\circ} 45^{\prime}$, from which I subtract the Sun's distance obtained after taking the part proportional, which is $18^{\circ} 49^{\prime}$; and I suppose that the Sun in the nativity might have this distance from the horoscope, that I may place it under the crepusculine circle 13° exactly. But if you are desirous to have the crepusculine circle in minutes, take the proportional part; but it would be attended with greater trouble than advantage; for you will find the difference in the ascensions almost imperceptible, and not greater than that which arises from the difference of some minutes of the pole's elevation of the circic of position, in which all professors entirely omit the minutes. Wherefore, when you have occasion to use the ortive difference, do $2 s$ already mentioned, \&cc. of which examples fotlow in Gustavus King of Sweden, Odoardus Cardinal Farnese, Rainutius, of whom we have just now spoken, and John Columna, which are given by Argel. Had I met with more examples of other authors, relating to this point, I would have undertaken to give you a thorough examination. I alledge nothing of my oivn observations, lest they should be rejected as spurious and false; but from these four, and all examples that Argol gives of this nature, I think, that to any one ditigent in searching into the truth of things, my opinion on this subjeot will appear highly satisfactory. But if, again, the Sun possesses the evening twilight, the same
method eatirely is to be observed, except only changing the manner. Let the Sun's direction be to the place of the aspect, by the oblique descension, or the oblique ascension of the opposite places under the Pole of the country; then let the Sun's distance be taken from the west, by the same descensions or opposite ascensions; let this distance be required in the table of twilight, which, if it be greater than the whole quantity of the crepusculine to the inferior parallels, 18°, the Sun is no longer in the crepusculine; and then we must make use of the following Canon. Lastly, let the secondary distance under the same crepusculine circle be taken, namely, of the occurrent place, and let the lesser be subtracted from the greater, and the remainder added to the arc of direction found above, if the secondary distance be greater than the primary ; but let it be subtracted, if less (that is, in a manner contrary from that we spoke of above); and the sum or remainder is the true arc of the direction.

> Canon XXI.

To direct the Sun when found in the Space of the obscure Arcs to the Conjunctions and other Aspects.
When the Sun is under the Earth, and distant from the horizon, either eastern or western, more than the whole Crepuscular Arc, it is then in the obscure arc. First, take țhe. Sun's semi-nocturnal arc, from which subtract the whole crepusculine arc, which you will have at the inferior parallel 18°; and the remainder is the obscure arc, which you must observe in a separate place; then take the semi-nocturnal arc of the place of L
the occourse, from which subtract the whole anc of crepusculine, that is, that which is found there by the Sun ; and this you will have, under the degree of the occurrent place to the inferior parallel, 18°, and there will remain the obscure are of this place of the occourse. Thirdty, take the Sun's right distance from the imun coeli. Lastly, by the rule of proportion, say, if the obscure arc of the Sun gives his distance from the imum ceeli, what distance will the obscure arc of the occurrent place give? and you will know the secondary distance of the place of the occourse, and you must proceed to the end in the same manner as set forth in Canon XIX, as if the obseare arc were semi-diurnal or semi-nocturnal.

Suppose the Sun to be in $29^{\circ} 31^{\prime}$ of 50 , as in the fourth example produced by Argol in his first edition of Critical Days ; if 4 be in $3^{\circ} 21^{\prime}$ of Ω, with 140^{\prime} north latitude, as it is placed in the more correct tables ; in the imum coeli, 24° of f, whose right ascension is $263^{\circ} 28^{\prime}$; but as $24^{\prime} \mathrm{s}$ declination is $0^{\circ} 12^{\prime}$ north, t happens that its parallel of declination falls in $29^{\circ} 30^{\prime}$ of x in the ecliptic, to which the Sun moves by direction.

Of the Part $29^{\circ} 30^{\prime}$ of x.

Semi-noeturnal arc	$\begin{array}{cc} \mathrm{h}_{6} & \mathrm{~m}_{0} \end{array}$
Crepusculine arc	42
The obscure arc	4
Right aseension	93

Primary distance from the imum coeli 965
Now, by the golden rule, if the Sun's obscure arc,$5^{1} 35^{\prime}$, gives its distance from the imam coeli, $38^{\circ} 14^{\prime}$,the obscure arc of the aspect gives its secondary distancefrom the imum coeli $29^{\circ} 26^{\prime}$, which, subtracted from theprimary, as both that and the secondary distance of theaspect or place are from the same cardinal house anddescendant hemisphere, leaves the arc of direction $66^{\circ} 39^{\prime}$.Then for the equation, add this to the Sun's right as-cension, and it makes the aggregate $368^{\circ} 21^{\prime}$; fromwhich, subtracting the integer circle 360 , there remains$8^{\circ} 21^{\prime}$, which answers to 9 of r, at which the Sun,from the hour of the nativity, arrives in 67 days, com-prehending so many years of age, at which time the na-tive shewod himself capable of discharging the highesthonours, and accordingly was raised to them; the raysmeeting in the place of direction, are the quintile of Ve-nus, and the sextile of the Sun, proper. See another ex-ample of Card. Salviatis, explained further on to the 47thyear, wherein is a calculation of the Sun's direction to theparallel of Jupiter's declination. You may likewise per-form these calculations by logistical logarithons. Thesetwo examples serve also for the subsequent Canon, and area convincing proof that I am right in my opinion. See
other examples calculated in Charles V, Francis I, King of France, and others.

Canon XXII.

To direct the Sun, wherever found, to the Parallels.

It was thought proper to call those parallels, which are commonly called antiscions, it being necessary to preserve the latitude of the planets in taking them. And, as I have said, those stars only are alternately in the antiscions which describe the same parallel or parallels, as Ptolemy says; that is, those which have the same doclination, both in number and name, are called primary antiscions; or only in numbers, which are places of anthority, and subjection; wherefore, if you want to direot the Sun to the parallels of a planet, first take their declination, by observing their latitude, then take the degree and minute of the ecliptic answering to the same declination. Now when the \odot, by the motion of direction, arrives at the same declination, or degree, and minute of the ecliptic, it will be said to hare reached the parallel or antiscions of those stars ; take, therefore, the right or oblique ascension of that degree and minute of the ecliptic, the scmi-diurnal or nocturnal arc, the horary times, and every thing else, according as the situation of the Sun requires. See the example in the former Canon.

Canon XXIII,

To direct the Significator, whererer it is found, accomspansied with Latitude, to the Conjunction and Rays.
As the Sun, whilst he is moved in a right direction,
adrances on his real way, which is the ecliptic, even so the other moderators, whose motion is latitudinal, whilst they are moved by direction, advance upon their truie and real way, which is that of their successive latitude; I say, successive latitude, by reason that it is not always the same as in the nativity, or in the beginning of the direction's motion, but is changed according as such prorogators vary the distance from their nodes, as has been observed; then, as the conjunction in the Zodiac happens when the stars are in the same longitude and become alternately nearer, and the opposition in the greater alternate distance, not omitting their latitude, when it happens to be great; consequently the directions of the prorogators moving latitudinally to the conjunctions and rays in the Zodiac, upon their true and real latitudinal ways, should be calculated, omitting the latitude of the occourses, either through the conjunctions or rays. But the ways of directing differ in nothing from the abovementioned, except that, what has been said of the Sun, constituted below the Earth, is omitted in the other prorogators; for, having found the direction's place, according to longitude and latitude, that is, according to the latitude of the significator in the direction's place, is: proportion to the distance there from their nodes, take the right or oblique ascension of that place, the semidiurnal or semi-nocturnal are, the horary thes; right distance, \&cc. atways in the same manner, both above and below the earth; of which mention has been made. See examples in Charles_V, Henry IV, \&c. \&ec.

Canon XXIV.

35 direat tive Significutor with Latitude, wherever it is found, to the Parallels of Declination.
First find the declination of the star, to whose paralTel the significator is said to be carried; then in the body of the table of declination, look up or down according to the order of degrees and signs from the significator's place, changing also the latitude in the same manner as the significator varies in his motion, till you come to the declination of the promittor or star found as above; and when you have obtained it, take the right ascension or oblique ascension of that place according to its latitude and longitude, \&cc. and you will have every thing entirely in the same manner as before explaired. You have examples in Sebastian King of Portugal, Ferdinand Gonzagius, Cardinal Salviata, Zachia, Verospus, Spinelli, and others. See likewise the seven nativities, which, For my own purpose, I lately extracted out of Maginus; in all which, by ah exact calculation, you will find that the true prorogator of life, when chosen as the doctrine of Ptolemy teaches, arrived at such a parallel of declinarion, at the time of death. You will know whether the prorogator may fall on the parallels of declimation of the stars, by observing the following rule : If the prorogator leaves'the tropics, so as to lessen his declination, he with fall on the parallels of those stars, whose declination is less than his ; and if it departs from the equinoctial, on the parallels of greater declination.

Canon XXV.

To direct the Significators to their own proper Rays in the Zodiac.
First mark out the proper ray of the significator longitudinally in the ecliptic, if it be the Sun, or latitudinally if the Moon, preserving that latitude which it hath in the place of the ray, according to its distance there from its nodes; then take the right or oblique ascersion of the aspect, longitudinally and latitudinally ; and work according to the foregoing rule. See an example in Charles V. Meanwhile, observe that the angles are not directed to the planetary rays in the Zodiac ; neither to the parallels, nor the proper rays, for they receive only the rays of the stars taken in the world. These we shall mention in the following Part.

PARTIII.

"

To calculate the Directions to the Aspects in the World.

ASPECTS in the world are proportional distances acquired by motion round the world ; for every star, after leaving the east, when its distance is the third part of its diurnal arc, is in the $*$ to the east, when the half patt is in the quadrate; when two third parts is in the Δ, when the whole diurnal arc is in the 8 , for it is in the west; therefore the first house has the $*$ with the eleventh and third houses, quadrate with the tenth and fourth, Δ with the ninth and fifth. The second house has its $*$ with the twelfth and fourth, its quadrate with the eleventh and fifth, its Δ with the tenth and sixth. The third house hath its $*$ with the first and fifth, its quadrate with the twelfth and sixth, its trine with the eleventh and seventh.

And thus the houses, always in the same manner, through the diurnal and nocturnal arcs, differ between each other. The stars also have their mutual aspects alternately from those houses, with such rays as are taken in the world, whatever may be their latitude or declination. Farther, as those houses have no real existence, and no distinction, or are proper by nature, force, or limits, but from the stars; so that if they had no ex-
istence, and did not move round the world, there could be no place in the heavens for the houses or their partitions, as I have fully demonstrated in the Celestial Philasophy. Now, the houses are not alternately aspected, with respect to one another; but it is the stara that aspect, constitute, and are the measure of the houses; and for this reason they mutually and alternately aspect each other from those houses; and to these and the cardinal sigas they direct their aspects. But in the partition of the houses by the duplicate horary times, ar, according to Ptoletny, by the two temporal bours, ne respect is had to the ecliptic, just as if there was no ecliptic in the heavens; but we respect always the diurnal and nocturnal ares of the stars. And it follows, that even the aspects of the stars to the houses, and vice verea, from the houses, which I thought fit to call mundane, have no respect to the ecliptic, but to the diarnat and nocturnal anc of every single star, or to their motion round the world. All this, if rightly understoad, will render every calculationin this Third Part perfeotly éasy.

Canor XXVI.

Te direct the Cardinal Signs to the Conjunctiane and Oppasition.
If you direct the right cardinal sign, take its right ascension from that of the occurrent star, preserving its lotitude, and the remsinder is the arc of direction required. In like manoer to the opposition, keeping to the contrary latitude. If you direct the cardinal sign of the ascendant, takt its otdique acceosion from that of the occurrent
star, carrying the oblique ascension of both to the latitude of the country, but always preserving the latitude of the occurrent star, the remainder will be the are of direction required. To the 8 use the ascensions of the opposite places. The ascendant may be directed to the stars without the oblique ascension; for if you subtract the semi-diurnal arc from the star's right ascension, and from the remainder take the right ascension of the medium coeli, what remains is the are of direction roquired. Or, if you subtract the star's primary distance, that is, betwixt it and the imum coeli, from its seminocturnal arc, the remainder is the arc of direction. But if the star has not reached the imum coeli, add its primary distance from the imum cali to its semi-nocturnal arc, ${ }^{-}$ and the sum will be the arc of direction.

These calculations are easy, and need no example; and from what will be said afterwards, they will still be easier. To the fixed stars, in like manner, by the ascensions, \&cc. by taking their oblique ascension, with the help of the ascensional difference, if their latitude be extensive.

Canon XXVII.

To direct the Medium Coeli to the Sextile, Quartile, and Trine.

Now, it is plain from what has been said, that the intermediate rays to the angles are taken by dividing the semi-nocturnal or semi-diurnal arc into three equal parts; or, which is the same, by doubling the horary times of the aspecting stars, by which is known the space of the houses, as to longitude, what the measure in degrees and
stay of those stars in their motions round the world is. When this is known, it is very easy to calculate the directions of the angles to the intermediate rays of the stars; for the sextile is the distance of two houses, the square three, the trine four ; and these are called secondary distances. So, if you want the $*$ to the medium coeli, which begins from the eighth house, add two diurnal houses, that is, the stars diurnal horary times twice doubled to the right ascension of the star. If yqu want the other Sextile, which is produced by the 12th house, subtract, in the same manner, the two diurnal houses from the right ascension, and from the sum or remainder take the right ascension of the medium cali, and it will give the arc of direction. But if you seek for the Trine, which originates from the sixth house, subtract two nocturnal houses from the star's right ascension : if you seek for the other Trine, which comes from the second house, add the two nocturnal houses to the star's right ascension, and from the remainder or sum subtract the right ascension of the imum cali, the remainder will be the arc of direction of the medium cali to the Δ and imum coeli to $*$ of the star. Lastly, if you want the arc of direction to the square, direct the star to the horizon, as above mentioned. But if you have already the primary distance of the star from the medium cali, if the star is in the ascending part of heaven, subtract the secondary of the sextile from the primary of the star from the medium coeli, and you will have the are of direction of $*$ to the medium coeli; subtract that star's primary distance from the imum coeli from the sextile's secondary, and you will have the are of direction to the trine of
the madium coli. But if the star is in the descending part of heaven, subtract its primary distance from the medium coeli from that of the sextile's secondary, and you will have the arc of direction to the sextile. Subtract the seoondary of the sextile to the imum cosli from the stars primary distance, and you will have the arc of direction of the trine. But if the star passes from the ascendant to the descendant part of heaven, or on the contrary, add both distances together, and you will have the arc of direction.

Note. The Δ ray to the madium ceeli is the $*$ to the impum cosli, and the $*$ to the medium cali is the Δ to the imum corli. Lastly, the rays to the angles are easily calculated by the oblique ascension of every house; for after taking the star's oblique ascension, under the pote of that house, from which it emite the ray to the modium andi, and taking the oblique ascension of the house from that of the star, there will remain the arc of direction required. But if the star goes to project the ray to the descending part of heaven, use the oblique ascension of the apposite plaee, and this method is of use also in the following Canon, and is, of all, the most axpeditious.

Canon XXVIII.

To ainect the Oblique Cardinal Sign to the Sextile, Quartila, and Trine.
If you require the rays to the horoscope, which ara projectod from supra-werrancous places, divide the semidiumal are of the aspecting star into three equal parts, or into two dinumal honary times, and you will have the apaces of the houses that are above the earth. If you add
two of these to the star's oblique ascension, taken in the horoscope, and from the sum subtract the horoscope's oblique ascension, what remains is the horoscope's are of direction to the sextile of the star, produced from the eleventh house; but if you add four houses, and from the sum subtract the horoscope's oblique ascension, you will have the arc of direction to the trine which is caused by the ninth house.

Another way.-Subtract one house from the star's right ascension, and from the remainder take the right ascension of the medium colli, and there will remain the direction's arc to the.sextile; add one house to the star's right ascension ; from the sum subtract that of the medium cecli, and you will have the direction's are to the trine, that is, to the horoscope.

But if you are desirous to find the rays that are emitted from subterraneous places, divide she star's seminoctumal arc into three equal parts, or its double noctirnal horary times, and you will have the space of the houses that are below the earth ; of these; for the sextide, which proceeds from the third bouse, by subtracting two; and for the trine, which is produced from the fifth, by subtracting four from the star's oblique ascension taken in the horoscope; and if from the remainders you subtract the horoscope's oblique ascension, you will have the arcs of direction to the sextile and trine. You mayy also use the inmen ceeli by the right ascension, as bas been said of the modium cerk. Quadrate rays are pro? duced by the medivom cali and the imann cars; therefore, for these, direct the stars to the meedimen and innom calt, m has been asid in Caroon XXXI. Let there be an ex-
ample for both Canons, under the Pole's elevation 45", the ascendant $13^{\circ} 30^{\prime}$ of rg. . In the medizem cali, let us suppose $12^{\circ} 0^{\prime}$ of m, whose right ascension $219^{\circ} 33^{\prime}$, the horoscope's oblique ascension $309^{\circ} 33^{\prime}$. Let the Sun be in $1^{\circ} 0^{\prime}$ of vs, within the twelfth house, the Sun's right ascension $271^{\circ} 5^{\prime}$, the oblique ascension to the Pole 45°, is $296^{\circ} 51^{\prime}$; the diurnal horary times $10^{\circ} 42^{\prime}$, which, being doubled, constitutes the diurnal house, or the third part of the Sun's semi-diurnal arc $21^{\circ} 24^{\prime}$. If I want to direct the horoscope to the sextile of the Sun, I add to the oblique ascension the Sun's horary times, t wice doubled, which makes $339^{\circ} 39^{\prime}$. From which I subtract the horoscope's oblique ascension, and there remains the arc of direction $30^{\circ} 6^{\prime}$. And observe, that the arc of direction consists of $8^{\circ}{ }^{\circ} 44^{\prime}$ preceding the direction, and likewise of the Sun's duplicate horary times ; that is, of one house, or 21.24. Wherefore, from the bare adding of this one house to the computed direction of the sextile to the medium cali, there arises the aro of direction of the horoscope to $*$ of \odot.

I want to direct the horoscope to the of the Sun : I subtract the right ascension of the medium cali from that of the Sun, and there remains the arc of direction, 51.32 ; or to the sextile's arc of direction 30.6, above calculated. I add the \odot 's duplicate diurnal horary times 21.24 , and the arc of direction is 51.30 . In like manner, if to this I add the duplicate, horary times, I make. the arc of direction to the trine of the horoscope, 72.54Again, if I add to this the geminated horary times, the direction's arc of the medium coeli, to the Sun's sextile, will be 94.18 , and so in all of them. Under the earth,
we must make use of the nocturnal horary times, and the semi-nocturnal are; but the direction both of the cardinal signs and houses to the rays of the sextile, quartile; and trine, are calculated (in a manner much easier than any of the afore-mentioned) by the oblique ascension of those houses from which the stars project the rays, as is before recited, and as may be seen in the former Canou. This Canon needs no other example, nevertheless you will meet with several in the sequel.

Canon XXIX.

To direct the Cardinal Signs to the Rays of the Quintile, Sesqui-quadrate, and Biquintile.
Beside the usual rays of the $*, \square, \Delta$, and 8 , I only suppose the quinile, sesqui-quadrate, and biquintile, to be powicrful, as experience evinces from the symmetrical concerts of sound, from which the very excellent Kepler, in a most exquisite manner of resemblance, collects the rays.of the stars in the heavens. Whatever may be the opinion of others, with regard to the semi-sextile, semi-quadrate, and several others, to which it seems quite absurd to assign any efficacy (with this one exception), I confess, that in the semiquadrate's distance, sounds hegin to arrive at a degree of harmony, but altogether imperfect; to this, therefore, some portion of efficacy may be attributed; and, on this principle, I think that neither the Sun nor Moon becone the prorogators of life, except they be semiquadrate distance from the horoscope, or half of their semi-diurnal are above it. We may easily calculate the
sesqui-quadrate ray to the cardinal signs, for it consists of the quarter of the world, and half of another quarter; or, of the semi-diurnal or nocturnal are; and, also, of half of the same, or another, so that the stars have this ray to the medium coll, and the east, in the mean distance between the west and imum caeh; to the medium cocli and west, in the mean distance from the imum coeli to the east; to the west and imum coeli, in the middle distance between the east and the medium coli, to the imum and east; in the middle distance between the medium coli and the west. For the calculation, divide the semi-diurnal are into two equal parts; or, as occasion requires, the semi-nocturnal arc of the star, and this half part is the secondary distance from both the cardinal signs, as before mentioned.-In the example of the former Canon, the Sun forms the sesquiquadrate to the west, and to the imum cosli : when it is the mean distance between the east and medium cosli, the Sun's semi-diurnal arc is 64.12, the half of which is 32.6 ; wherefore I subtract this secondary distance from the primary, which is betwixt it and the medium coeli, being 51.32, and there remains the arc of direction 19.26. But as this secondary distance, as well from the preeeding as the succedent cardinal house, is the same, the Sun's primary distance from the east is $\mathbf{1 2 . 4 0}$. I subtract this from the secondary, and the remainder is the same arc of direction, 19.26. Likewise, half the same semi-diurnal arc consists of the triplicate horary times; wherefore, if we add the Sun's horary times to its distance from the twelfth house, which was the are of direction of the modium coeli to the Sun's $*$, that
is, $8^{\circ} 44^{\prime}$; the Sun's horary times are $10^{\circ} 42^{\prime}$; the sum is the arc of direction $19^{\circ} 26^{\prime}$. You see, therefore; there are several ways of directing the angles to the aspects of the stars; but to calculate the rays quintile and biquintile with ease and exactness, we must understand the following Pentagonal figure,

wherein the point A may represent any cardinal sign of the world, or any other significator to be directed to the quintile and biquintile; the points F, G, H; are the other three cardinal signs; B is the end of the quintile, \mathbf{C} of the biquintile, \mathbf{D} the point of another quintile, \mathbf{E} of another biquintile, and \mathbf{F} of the opposition; the four linés AG, CF, FH, HA, are the quadrates or \mathbf{N}
quarters of the world, or arcs, which are effected by the stars in those quarters, and are semi-diurnal or seminocturnal, which may be various in quantity, according to the variety of the declination of the stars, and altitude of the pole. If the point A may be said to be the medium coeli, divide the semi-diurnal arc of the aspecting star into five equal parts, four of which constitute the ray quintile, both in the points D and B : also let the semi-nocturnal are be divided into five equal parts; three parts added to the whole semi-diurnal arc, constitute the biquintile rays in the point EC; so that two parts out of five of the semi-nocturnal arc are wanting to the opposition. But if the point A represents the horoscope, four out of five parts of the semi-diurnal arc makes the quintile above the earth, and so many of the semi-nocturnal arc under the earth; and adding the other four to both of them, makes the biquintile. It is to be known, likewise, that the quintile ray, compared to the $*$, is greater than the * by its fifth part; for it consists of twelve degrees more than the $*$, which is the fifth part of the ${ }^{*}$, or 60°; compared to the quadrate, it is less by five parts of the same quadrate, that is, 18°, which are the fifth part of that \square, or 90°; and the biquintile is greater than the Δ, by its fifth part, viz. 24°, which are the fifth part of the trigon or 120°, but is less than the 8 by five parts, that is, 36° of the 8 , viz. 180°, or three parts out of five of the ${ }^{*}$, that is, made at the 8 ; from these it is inferred that there are two ways very easy to calculate the directions of these rays.

The first is, by adding the quintile's distance to the
ascension of the aspecting star, if it precedes the cardinal sign that is directed ; or by subtracting, if it follows; and from the sum or remainder, subtracting the cardinal ascension, for the remainder is the are of direction required.

Let there be an example of the Quintile.
We have said, in the above given example, the' Sun's oblique ascension is $296^{\circ} 51^{\prime}$, that is, to the latitude of the country; the semi-diurnal arc $64^{\circ} 12$, the fifth part of which is $12^{\circ} 50^{\circ}$; which taken from the whole semi-diurnal arc, leaves four of the five parts of that semi-diurnal arc, viz. $51^{\circ} 22^{\prime}$. I add these to the Sun's oblique ascension taken in the horoscope, as it precedes it; and I make the aggregate $348^{\circ} 13^{\prime}$, from which I subtract the horoscope's oblique ascension, and there remains the arc of direction $38^{\circ} 40^{\circ}$, viz. the quintile of Sol to the horoscope. Or I subtract $51^{9} 22^{\prime}$ from the Sun's right ascension, which is $271^{\circ} 5^{\prime}$, by reason it succeeds the mediurm cali, and the remainder is $219^{\circ} 43^{\prime}$; from these subtracting the right ascension of the medium cali, which is $219^{\circ} 33^{\prime}$, leaves the arc of direction of the medium coli to the Sun's quintile $0^{\circ} 10^{\prime}$; or I subtract the quintile's secondary distance, which is $51^{\circ} 22^{\prime}$, from the Sun's primary distance from the medium calf, which is $51^{\circ} 32^{\prime}$, and there remains the same arc of direction $0^{\circ} 10$.

Of the biquintile, care must be taken that if we want to subtract the distance of this ray, which consists of eight parts out of ten of the whole diumal or nocturnal arc, when to those rays we direct either the
medium or imum coski, instead of these five parts, we must take the whole semi-diurnal or nocturnal arc of the aspecting star of the other hemisphere; the other tbree of the same hemisphere in which the star remains ; but of the biquintile, let us reject this method. The easier way, which also serves for all these rays, whenever the significators, as we call them, are found put of the cardinal signs, is this :

When you have found the arc of direction, either to the sextile, quartile, or opposition, by only adding or subtracting the proportional parts, by which the quintile, sesqui-quadrate, and biquintile, are greater or less than the other ray, we shall obtain the arc of direction ; for ${ }_{2}$ if you have the arc of direction to the $*$, and want the same to the quintile, add, if the quintile be subsequent, or subtract if it precedes the fifth part of the sextile ta or from its arc of direction, and the remainder or aggregate is the arc of direction required. But, remember the $*$ consists of the diurnal horary times, four times computed, if the aspecting star be above the earth; of the nocturnal, if below. Or if you have the arc of direction to the quartile, for the quintile add, if it succeed; or subtract, if the quintile precede the fifth part of the quadrate, to or from that quartile's arc of direction.

If you have the arc of direction to the trine, and want that of the sesqui-quadrate, add, if this follows, or subtract, if it precedes, the horary times of the aspecting star, by which the sesqui. quadrate is greater than the trine. When I say horary times, understand diurnal, if the aspecting star be above the earth, and nocturnal if Below:

If you require the direction's aro to the biquintile, and have already the arc of direction to the trine, multiply four times the diurnal horary times of the aspecting star, if it be above the earth; the nocturnal, if under the earth; and, from the product, take two of the five parts, which add, if the biquintile succeeds the trine; but, if it precedes, subtract from the trine's arc of direction, and the remainder or sum is the arc of direction to the biquintile; but if you have the direction's are to the opposition, take two of the five parts of the star's semi-diurnal arc, if it is above the earth; or seminocturnal, if below; and if the biquintile succeeds the opposition, add to the same direction's arc ; but, if it precedes, subtract these two parts, and the remainder, or sum, is the arc of direction to the biquintile. As in the example of the former Canon, the are of direction of the medium cali to the Sun's sextile is $8^{\circ} 44^{\prime}$, the $S \mu n$'s diurnal horary times, as being above, the Earth, are $10^{\circ} 44^{\prime}$; four times computed makes the sextile's quantity $42^{\circ} 48^{\prime}$, whose fifth part is $8^{\circ} 34^{\prime}$; I therefore take $8^{\circ} 34^{\prime}$ from the sextile's arc of direction, for the quintile to the medium coeli, because it precedes the sextile, and there remains the arc of direction to the Sun's quintile $0^{\circ} 10^{\prime}$. The direction of the imum cali to the Sun's sesqui-quadrate (as it follows the trine), is had by adding the Sun's diurnal horary times $10^{\circ} 42^{\prime}$, to the arc of direction of the medium coeli to its $*$, which is the Δ to the imum ceeti, and the arc of direction becomes $19^{\circ}, 26^{\prime}$, as above.

Of the imum cali, to the Sun's biquintile, by adding (as it succecds the Δ), two of the fifth parts of the Sun's
diurnal \#, because it is above the Earth, which, as we have said, is $42^{\circ} 48^{\prime}$, whose fifth part $8^{\circ} 34^{\prime}$, doubled, makes $17^{\circ} 8^{\prime}$; wherefore the arc of direction becomes $25^{\circ} 52^{\prime}$:

Another way.-The arc of direction of the medium cali to the Sun, or of the imum coeli to the Sun's 8 , is $51^{\circ} 32^{\prime}$; from this I subtract (as the biquintile precedes) three parts out of five of the $*$ of the Sun diurnal, that is, $25^{\circ} 40^{\prime}$, and there remains the arc of direction $25^{\circ} 52^{\prime}$, as above.

The direction of the horoscope to the Sun's quintile is thus obtained :

We have already, in the former Canon, calculated the Sun's sextile to the horoscope, which was $\mathbf{3 0}^{\circ} 6^{\prime}$; to this I add (as the quintile succeeds the sextile) the fifth part of the Sun's sextile ray, which is $8^{\circ} 34^{\prime}$, and I make the horoscope's arc of direction to the quintile of the Sun $33^{\circ} 40^{\prime}$.

Another method.-The Sun's semi-diurnal arc, which is the quadrate to the horoscope, is $64^{\circ} 12^{\prime}$ (that is, of the distance, not of direction), its fifth part is $12^{\circ} 50^{\circ}$, which is the Sun's secondary distance from the medium coll, the primary is $51^{\circ} 32^{\prime}$; from which, subtracting that of the secondary, leaves the arc of direction $38^{\circ} 42^{\prime}$ greater than the former by 2 ', by reason of the fractions that are to be met with in the different calculations.

We have said, that the horoscope's direction to the Sun's trine was $72^{\circ} \cdot 5^{\prime}$; to this I add the Sun's horary times, $10^{\circ} 42^{\prime}$, and I make the horoscope's arc of direction, to the Sun's sesqui-quadrate, $83^{\circ} 38^{\prime}$; or, I
add the Sun's semi-diurnal arc, $64^{\circ} 12^{\prime}$, to the are of direction of the imum cali, to the Sur's sesqui-quadrate, which was, as we have said, $19^{\circ} 26^{\prime}$, and it produces the same arc of direction, $83^{\circ} 38^{\prime}$.

And it is the same in all of them; so that by addition and subtraction only, the arc of direction of those rays may be calculated with the greatest exactness. But, if any one would provide himself with a Ptolemaic Planisphere, with the horary circles, crepuscules, the Zodiac's latitude, and all other things requisite, it would be of very great service towards foreseeing the aspects, before the calculation, both of this and the following Canons.

Canon XXX.

To direct any Significator, being placed about the Cusps of the Cardinal Houses, to the 6 and 8.

Understand this, as within 3° beyond, or on this side the cusp, the right ascension of the Prorogator, if he possesses the right circle; or the oblique, if the oblique, is to be taken to the polar elevation of the house in which it remains; which subtract from the right ascension of the occurrent, or the oblique taken to the same pole, preserving the latitude of both, and the remainder is the arc of direction required. In the opposition, the contrary latitude of the occurrent place in preserved; the difference in regard to preserving tho latitude, between this Canon and XVII and XVIII, is, that the δ and 8 are there taken in the Zodiac, but here in the world; those aspects in the same real longi-
tude, but these in the horary circle: as in the example, Canon XVII, the right ascension of 9 , with latitude ${ }_{2}$ is $261^{\circ} 52^{\prime}$, from which, subtracting the right ascension of the Sun, which is $215^{\circ} 58^{\prime}$, there remains the Sun's are of direction to the δ of q in the world $45^{\circ} 54^{\prime}$.

Concerning the Sun constituted below the Earth, the things to be avoided shall be mentioned in a proper Canon, viz. XXXV. The significator, when found distant from the cusp of the house, is directed in the manner explained in Canon XIX, except only that the latitude of both should, as we have remarked, be pred served.

Canon XXXI.

To direct any Significator, when near the Cardinal Houses, to the $*, \square$, or Δ.
If the significator has the same ascension exactly to minutes, as the angle, or the other houses, wherein he is found, then, as it is on the cusp, the directions to the sextile, quartile, and trine, are made like those of the angle, as before explained : but if it is not on the cusp, exact to the minutes, provided its distance be not more than 3° of the equator, add the ascension or descension of the significator to that of the angle, or house, so that the significator may be constituted on the cusp of the angle or house. According to this situation, by adding or subtracting 30° you will constitute the ascensions of the other houses as usual ; and by subtracting the ascensions of the houses (from whence the star aspects the significator) from the ascension of that star, taken under the pole of the same house, you will have the
arc of direction. As, for example, in Cardinal Gymnaseus, the Sun is in the ninth house, not 3° of the equator distant from the cusp, the oblique ascension of the Sun's opposite place under the pole of the third house, which is 18°, is $314^{\circ} 0^{\circ}$. I want to direct the Sun to the sextile of Jupiter, which Jupiter has to the Sun from the cusp of the seventh, wherefore I subtract 60 from the oblique ascension of the third house, constituted in the Sun's opposition, and there remains the horoscope's oblique ascension $254^{\circ} 0^{\prime}$, that is, supposing that the Sun remains on the cusp of the ninth house, though, indeed, it is about 3° distance. Leastly, I subtract this oblique ascension of the horoscope 254° from the oblique ascension of Jupiter's opposite place, taken in the horoscope, which is $296^{\circ} 52^{\prime}$, and there remains the are of direction, $42^{\circ} 52^{\circ}$. For the subsequent square which Jupiter has to the Sun from the sixth house, I add to this arc of direction the duplicate nocturnal horary times of 24 , by reason that the sixth house is below the Earth : for the ΔI add again the duplicate nocturnal horary times of 4 , \&ec. *

Canon XXXII.

To direct amy Significator, when found beyond the Cusp of the Cardinals and Houses, to the $*, 0$, and Δ.
Find the horary times of the significator, or its semidiurnal arc, if it be above the earth; or semi-nocturnal arc, if below, and its distance from the cusp of the preceding or succeeding house, as you please. Find, also, the horary tinues, the semi-diurnal arc, or seminocturnal arc of the promittor, with this proviso:-If
the promittor's ray, to which you direct the significator, projects from places above the earth, take the diurnal horary times, or semi-diurnal arc ; and below the earth, the nocturnal horary times, or the semi-nocturnal are; but that you will know from the houses; for the whole tenth house has all the twelfth and eighth houses for the sextile ; the first and seventh, for a quartile; the second and sixth for the trine; and so of the rest.-Query, By the Golden Rule, if the horary times of the significator give its distance from the house, what will the distarice of the promittor's horary times give ? The fourth number that is produced, is the secondary distance of the promittor from the cusp of either the preceding or succeeding house; after the same manner as you have seen of the significator; and from this house, the ray is emitted by that promittor to the significator; where: fore, if that house precedes the promittor in both distances, primary and secondary, subtract the lesser from the greater. So, also, if it follows in both distances. But, finally, if in the one distance it. precedes, and in the other it follows, so that the promittor, by the motion of the direction, has passed through its cusp, add both distances, and the remainder or sum is the are of direction required. Let the example be in Cardinal Salviatis: I would direct the D to the \square of 4 , which has this ray to the D from the sixth house. The D^{\prime} 's horary times diurnal, are $19^{\circ} 5^{\prime}$; distance from the medium coeli, $10^{\circ} 24^{\prime}$. 4 's horary times nocturnal is $14^{\circ} 32^{\prime}$, and distance from the seventh house $8^{\circ} 59^{\prime}$. Now the oblique ascension of the 8 of 44 is $123^{\circ} 1^{\prime \prime}$; from which subtracting the oblique ascension
of the horoscope, there remains the distance of Jupiter $8^{\circ} 59^{\prime}$. But by the Golden Rule, there arises the secondary distance of 4 from the west $7^{\circ} 55^{\prime}$, which, added to the primary, because 4 in the nativity is above the west, and is placed below when the direction is complete, makes the arc of direction $16^{\circ} 54^{\prime}$. To this direction, if the duplicate horary times nocturnal of 4 be added, as he now lustrates the lower hemisphere, it makes the arc of direction to the Δ of 4 $45^{\circ} 48^{\prime}$; but if you want the D 's direction to the $*$ of h, take the horary times diurnal of \bar{h}, together with its primary distance from the twelfth house, the fourth emerging number is the secondary distance from the twelfth house; from which, subtracting the primary, because the distance from both is from the succedent house, the remainder is the arc of direction required. If you want the D 's direction to the Δ of q, find the horary times nocturnal of 8 , as it is below the Earth; and its distance from the sixth house, by the oblique ascension of the opposite places at the twelfth house. The fourth number that is produced, is the secondary distance of $\&$ from the sixth house; from which subtract the primary, which is less than the secondary, as the distance of both is from the succedent house, and the remainder is the arc of direction required. And observe, that the first number of the Golden Rule is always either the semi-diurnal arc, or the horary times of the significator; the second is the distance of the same from the nearest house.

Canon XXXIII.

To direct any Significator, wherever posited, to the Quintile, Sesqui-quadrate; or Biquintile.
The method is nearly the same as that explained in Canon XXIX, for when any direction is known, wheit be of the sextile, quartile, trine, or opposition, from only adding or subtracting the proportional part, whereby the rays of the quintile, sesqui-quadrate, and biquintile, either exceed or are less than the other rays, is produced the arc of direction. As, in the example of Curdinal Salviatis, the D's are of direction to the Δ of $\boldsymbol{\psi}$ is $45^{\circ} 48^{\prime}$. If we add the nocturnal korary times of $414^{\circ} 32^{\prime}$, we make the $D^{\prime} \mathrm{s}$ arc of direction to the sequi-quadrate of $460^{\circ} 20^{\prime}$. But, if to the same arc of direction of the $\Delta 45^{\circ} 48$, we add two of the five parts of 4 's nocturnal $*$, which consists of his quadruplicate nocturnal horary times, that is, $58^{\circ} 8^{\prime}$, the two-fifth parts of these are $23^{\circ} 16^{\prime}$, we make the D 's are of direction to the biquintile of $\boldsymbol{4} 6 \boldsymbol{\theta}^{\circ} \mathbf{4}^{\prime}$. Bui, first of all, care must be taken, that if the rays are emitted from the superior places above the Earth, the proportional parts of the rays to be added or subtracted, should be taken by the diurnal horary times, or by the semi-diumal are of the aspecting star; but, if from the inferior places, or under the Earth, by the nocturnal, as you have seen in the given example. The second necessary caution is, that, to the adding or subtracting for the ray which is projected from the subterraneous places, we cannot make use of the ray which is emitted from those subterraneous places; or the con-
trary, because their transit is from one quantity of the horary times to another; from one hemisphere to the other; from the semi-diumal to the semi-nocturnal arc, or the contrary; from which a true proportion cannot be had; but it is necessary, that, for the ray which is projected from the subterraneous places, we add or subtract the proportional part to or from the ray which is found above the Earth, and likewise under the Earth; as in the example of Cardinal Salviatis, the direction of the quintile of 4 to the D cannot be taken by subtraction from the direction of the quartile, as the o falls below the Earth, the quintile above. Wherefore, in such cases as these, let the distances of the rays of the $*, \square$, and Δ, be taken in the same hemisphere in which the significator remains, if they fall upon that same hemisphere; but if they fall in the other, in which the opposition of the significator falls, they must be taken in the other, as in the example of Saboiatis, for the quintile of Jupiter to the Moon. I Grst take the quantity of 4 's diurnal *; that is, from the diurnal horary times, which are $15^{\circ} 28^{\prime}$, four times computed, and the ${ }^{*}$ becomes $61^{\circ} 52^{\prime}$; the fifth part of these are $12^{\circ} 22^{\prime}$, and, added to $61^{\circ} 52$, they make the quantity of the ray quintile $74^{\circ} 14^{\prime}$, and are the secondary distance of ψ from the D. The oblique ascension of ψ 's opposition to the pole of the D, is $190^{\circ} 6^{\prime}$; this subtracted from the oblique ascension of the D 's opposition, which is $265^{\circ} 33^{\prime}$, leaves the primary distance of 4 from the D $75^{\circ} 17^{\prime}$, which being greater than that of the ray by $\mathfrak{l}^{\circ} 3^{\prime}$, this quintile ray had preceded, and 4 had this ray:
to the D in the nativity. i: ie example of Cardinal Gymnaseus, the * of 4 . the Sun falls above the Earth, the quintile below; for which reason we cannot add to the *'s arc of direction the quintile's excess above the ray. But I direct the Sun to the quartile of 4 , and from that direction I subtract the fifth part of the nocturnal quadrate or semi - nocturnal arc of ψ, thus:

The Sun's direction to the 0 of 4 is thus obtained: From the Sun's semi-diurnal arc $7^{\mathrm{h}} 18^{\prime}$, is given its distance from the medium cocli $33^{\circ} 31^{\prime}$; wherefore from 4 's semi-nocturnal arc $7^{\mathrm{h}} 33^{\prime}=113^{\circ} 24^{\prime}$, you have his secondary distance from the west $34^{\circ} 40^{\prime}$; the obligue ascension of 4^{\prime} 's opposition is $312^{\circ} 33^{\prime}$; from which, subtracting the oblique ascension of the horoscope, there remains the primary distance of $2 f$ from the west $61^{\circ} 28^{\prime}$; but because 4 is above the west, and posited below, by the direction I add both his distances together, and unake the are of direction of ψ 's a to the Sun $96^{\circ} 8^{\prime}$; the semi-nocturnal are of ψ is $66^{\circ} 36^{\prime}$, whose fifth part is, $13^{\circ} 19^{\prime}$; which I subtract from the quadrate's arc of direction $96^{\circ} 8^{\prime}$, and there remains the Sun's arc of direction to the quintile of $482^{\circ} 49^{\prime}$. There is not any difficulty in the Canon, if due attention be paid to the rays, whether they are projected from places above the Earth, or below, which cases seldom happen.

Canon XXXIV.

To direct the Significators to their own Rays.
The Sun and Moon, only by reason that they possess the virtue both of the significator and promittor, if di-
rected to their own rays, have remarkable effects, but the houses are entirely excluded from their own rays; the arc of direction of each luminary's proper sextile is that which arises from its horary times, four times computed ; of the quintile, with the addition of the fifth part of that sextile; the quartile's are of direction is either the semi-diurnal or nocturnal arc ; and so of the rest. If, however, the significator in these rays passes not from the upper to the lower hemisphere, or the contrary, as we have said, then we must calculate in the manner laid down in Canon XXXII, as if the Sun in the primum mobile was another promittor; and we shall know when it happens that the significator passes to the other hemisphere; by the oblique ascensions from which will appear the significator's distance from the horizon, which distance, if it be less, and the ray greater, that ray falls on the other hemisphere: if the distance be greater, the ray less, it falls on the same. As in Cardinal Gymnascus, the Sun's proper sextile is, indeed, a proof of itself, that it falls above the Earth, that is, above the west, because the Sun is above the cusp of the 9th house; yet, if we inquire by calculation, the Sun's horary times are $18^{\circ} 15^{\prime}$, which, four times computed, makes the $*$ ray 73°; but the Sun's distance from the west is $75^{\circ} 56^{\prime}$, which is greater, and the * ray less; and, therefore, the Sun ${ }^{\text {s }}$ * ray falls upon the same hemisphere, and its are of direction will be from the diurnal horary times, four times computed, 78°; but the Sun's proper quartile falls below the Earth, and is to be calculated as in Canon XXXII, as if the Sun was another promittor. Other
examples follow ; and remember, that if the Sun is below the Earth, he must likewise be directed to the proper rays, in the manner shewn in Canon XXXVI.

> Canon XXXV.

To direct any Significator whatever to the Parallels.
I call a parallel in the world, that distance which two stars have in an equal proportion from the same angle, the one remaining beyond, the other within; as if one possesses the cusp of the 1lth, and the other the 9th, then they are equally distant from the medium cceli, or meridian ; and if one is found in the twelfth, the other in the second, they are equally distant from the ascendant, or horizon. But it is to be observed, that in this aspect it not only happens that an equal proportionate distance is formed from one of the angles, but likewise in some manner from every one of them; as a star in the ninth is equidistant from the medium coeli, as another star in the 11th; and these two stars are at an equal distance from the imum coeli, and from the east and west horizon. This will be evident, from the calculation, and should be taken as a proof of the virtue and efficacy of this aspect, and likewise for the ease of calculation. From hence it is inferred, that the calculation of this aspect may be made several ways, of which the easiest is by the distance from the medium caeli, whether these two stars form a parallel to the meridian or horizon, that is, whether both are found above the Earth, or below it: I mean when the direction is finished; for it matters not where they remain in the nativity: If both are found above, when
they have this parallel, take the significator, and promittor's right distance, which they have in the nativity, from the medium coeli, and this dis- Mundane tance I call the primary. Then say, by the Proportion. Rule of Three, if the horary times; or semi-diurnal arc of the significator, give his distance from the medium coeli, what distance will the promittor's horary times give ? When you have found that, proceed according to Canon XIX. But if they form this aspect, while they are both below the Earth, take the distances from the imum cali in the same manner, and the distances from the horoscope may be taken by the oblique ascension. If one be above the Earth, and the other posited below, or the contrary, take the distance of one from the medium cceli, and the other from the imaum cali, or make use of the opposite place of one. Examples follow.

Hitherto in this Canon, mention has been made of the direction to the parallels in the world, with the supposition that the significators remain immoveable in the horary circle of position. But because, in the nativity, the virtue both of the significator and promittor is impressed in the prinum mobile, and this agreeable to theopinion of all professors, therefore both their virtues are conveyed, by the primum mobile, from east to west; conscquently it may sometimes happen, that the significator and promittor are posited in an equal proportionate distance from the same angle, that is, in a mundane parallel of the same kind, of which, in this Canon, we give the calculation; and how great the active virtue of this application is, will be seen in the examples following : but it
may happen that, by direction, even the significator and promittor, both may be posited above the Earth, or both below; or the one above, the other below, though in the nativity they are different. If both are posited above the Earth, take the semi-diurnal arc, and the significator's primary distance from the, medium coeli, and the semidiurnal arc of the promittor, with his distance, in right ascension from the significator, subtracting the Rapt
Canon lesser from the greater; then add their semi-diurnal arcs together, and say, as that sum is to the semi-diurnal arc of the promittor, so is the promittor's distance from the significator to the promittor's secondary distance from the modium cooli; use this distanoe, as in Canon XIX. You may likewise make use of the promittor's place, as significator, together with its semi-diurnal arc, right distance, 8 cc . called a converse direction. If both are below the Earth, use the semi nocturnal arcs and distances from the imum coeli, in like manner. Lastly, if one be above, and the other below the Earth, take its opposite place, and use the semi-diurnal arc of that above the Earth, and the other's opposite place. Examples in Henry IV, King of France; Cardinals Pius and Gymnascus.

Canon XXXVI.

To direct tha Surn, when below the Earth, to the Appects in the World.

As the situation of the immobility, or position of the Sun, constituted below the Earth, is not the horary circle after the manner of others, but either the crepusculines parallel to the horizon, if the \odot is in the crepus-
culines, of that which is made in the proportional distances from the obscure arc, as has been mentioned befere, then doubtless the San recaives the promittor's aspect in the world, when the promittor is proportionally distant from a Cardinal, or other house, as the Sun': distance is in the afore-mentioned places after the direction is finished, where his distance is different from his primary one in the nativity, as has been remarked; for the Sun changes successively his secondary distance; wherefore, the calculations of the Sun's directions to the aspects in the world, are attended with somewhat more difficalty. If the Sun is in the crepusoules, first calculate the Sun's direction to the promittor's ray ${ }_{2}$ whether it be sextile, quartile, or trive, in the manner of other significators, that is, from the proportional distances from the angles, and other houses, by the horary times, \&cc. as hath been said above, which are of direction may be called a fictitious one. Secondly, you may. know what degree of the Zodiac the Sun at that time hath arrived at, by taking bis polar elevation, in the nsual manner, and in the same place the oblique asconsion; and by adding theretc the false are of direction above taken, for this sum of the oblique ascension, will give the degree of the Zodiac, as which the Sun arrives in its revolution; for it is of very little, or no consequence ${ }_{4}$ in case you do not know its true place in this calculation. Thirdly, with the Sun's primary distance from the horizon, see what crepuscular parallel it possesses, and in the same, take his secendary distance under the degree to which the supposed feigned direction shall come; then sey, fourthly, As the ©'s necturnal
horary times is to his secondery distance from the horizon, so is the promittor's horary times to his secondary distance from the angle or other determinate house, to be applied as usual, and you will have the true arc of direction. Let the example be in Cardinal Odoardus Farnese; I want to direct the © to the Δ of 4 in the world, which he has to the Sun in an equal proportional distance from the cusp of the fifth, as the Sun is distant from the east, the Sun's horary times nocturnal $19^{\circ} 17^{\prime}$; his primary distance from the horoscope $20^{\circ} 57^{\prime}, 4^{\prime}$'s horary times $11^{\circ} 51^{\prime}$, to the pole of the eleventh house 18°, the oblique ascension of 4 's opposition is $242^{\circ} 38^{\prime}$; by subtracting from this the oblique ascension of the eleventh house, there remains 4^{\prime} 's distance from the fifth house, $34^{\circ} 3^{\prime}$. By the Rule of Three, you have 4 's secondary distance $12^{\circ} 59^{\prime}$, which, subtracted from the primary, as both distances. are from the preceding house, leaves the arc of direction $21^{\circ} 4^{\prime}$, which arc is necessary, in order to know the degree which the Sun may arrive, at.

I require the Sun's polar elevation. If its duplicate nocturnal times gives the polar difference hetween the first and second houses 11°, the Sun's primary distance from the horoscope, $20^{\circ} 57^{\prime}$, will give 6° nearly, and there remains the Sun's polar elevation 38°, to which the Sun's oblique ascension is $284^{\circ} 35^{\prime}$. To this I add the are of direction $21^{\circ} 4^{\prime}$, and I make the sum $305^{\circ} 39^{\prime}$, answering in the same table to $15^{\circ} 20^{\prime}$ of ws. In the tables of crepuscules for the pole 44°, I look for the Sun's prinary distance from the horoscope, under 25° of f, and I find the \odot in the crepusculine circle $13^{\circ} 28^{\prime}$;
under $15^{\circ} 0^{\prime}$ of wo, I take the Sun's secondary distance $20^{\circ} 46^{\prime}$, always keeping the proportional part ; wherefore again, by proportion, I say, As the Sun's horary times $19^{\circ} 7^{\prime}$, is to his secondary distance from the horoscope $20^{\circ} 46^{\prime}$, so is Jupiter's horary times, $11^{\circ} 51^{\prime}$ to Ψ^{\prime} 's secondary distance from the fifth, $12^{\circ} 52^{\prime}$, which, being subtracted from the primary, leaves the true arc of direction, $21^{\circ} 11^{\prime}$. To equate this, proceed as directed in Canon XVI, and it gives 18 years, at which time he was made a Cardinal (vide the Geniture). If the Sun is found in the obscure nocturnal place, first calculate the false direction, whether it be to the sextile, quartile, or trine ray, as we said in the first part of this Canon; secondly, find the degree of the ecliptic to which the Sun arrives by this direction; thirdly, let it be required, if the Sun's obscure are gives his primary distance from the 4 th, what secondary distance of the same will the obscure arc of that degree of the ecliptic give, at which the Sun arrives by the aforesaid direction; and when this secondary distance of \odot from the imum coeli is known, if the \odot be in the third or fourth house, use this distance; but if it be in the second or fifth house, subtract the Sun's duplicate nocturnal horary times from this distance, and the remainder will be the Sun's, secondary distance from the third or fifth house ; that is, when the direction is finished : then again say, As the Sun's nocturnal horary times is to his secondary distance from the determinate house, so is the promittor's horary times to its distance from that house from which it projects its proposed ray to the other
house, from which you have taken the Sun's secondary distance, \&ec. : you must finish as nsual. Let the example be in Cardinal Zachia : in this I want to calculate the Sun's direction to the $*$ of , in the world, which I has to the 0 , in a proportional distance from the third house, as the Sun is from the fifth; the Sun's horary times nocturnal are $14^{\circ} 26^{\prime}$, the oblique ascension of the Sun's opposition under the pole 18° of the eleventh house is $189^{\circ} 7^{\prime}$, from which subtract the oblique agcension of the eleventh, which is $175^{\circ} 22^{\prime}$, and there remaink the Sun's distance from the fifth house; $13^{\circ} 45^{\prime}$. Mercury's horary times nocturnal is 16°; his oblique ascension, under the pole of the third bouse, is $354^{\circ} 13^{\prime}$, wherefore there remains his primary distance from the third $58^{\circ} 51^{\prime}$. I therefore say, if the Sun's horary times, $14^{\circ} 26^{\prime}$, give his distance from the fifth house, viz. $13^{\circ} 45^{\prime}$, what distance will $\%$'s horary times $16^{\circ} 0^{\prime}$ give from third? Answer, the secondary distance of $¥$ is $15^{\circ} 15^{\prime}$, which, subtracted from the primary, leaves the false are of direction $43^{\circ} 36^{\prime}$, which is necessary to know the degree of the ecliptic, at which the Sun may arrive in its revolution. The Sun's pole, taken as usual is 25°; the oblique ascension of the same in the place of his opposition is $189^{\circ} 35^{\prime}$; by adding to this the feigned arc of direction, the sum is 23311^{\prime}, an$s w e r i n g$ in the same table to $17^{\circ} 30^{\prime}$ of m, so that the Sun must remain in $17^{\circ} \mathbf{8 0}$ of 8 . Now it remains to know what is the Sun's distance from the innum coeli, or fifth house under $17^{\circ} 30^{\prime}$ of ૪, according to the proportional parts of the Sun's obscure arc, and also of $17^{\circ} 30^{\prime}$
of ช. The semi-nocturnal are of the 0 is $5 \mathrm{~s} 46^{\prime}$, the arc of the whole crepusculine 14 44' $^{\prime}$; the Sun's obscure arc is, by subtraction, $4^{\text {h }} 2^{\prime}$.

	h. m.
The semi-nocturnal arc of $17^{\circ} 30^{\prime}$ of 8 is	50
The arc of the whole crepusculine	4
The obscure arc of $8,17{ }^{\circ} 30^{\circ}$	

The Sun's right ascension is 8°, from which subtract the right ascension of the imum coli, gives the \odot 's primary distance therefrom $42^{\circ} 38^{\prime}$. Now say, if the Sun's obscure are 41 2^{\prime} gives his primary distance from the imam coeli42 ${ }^{\circ} 38^{\prime}$, what will be the distance of the obscure are of $817^{\circ} 30^{\prime}$, which is $2^{2} 46^{\prime}$? And there arises the secondary distance $29^{\circ} 15^{\prime}$; from which I subtract the 0^{\prime} s duplicate horary times $28^{\circ} 52^{\prime}$, for the fourth house, and there remains the σ^{\prime} s distance from the fifth $0^{\circ} 23$. Lastly, I demand, if the $\odot^{\prime} s$ horary times $14^{\circ} 26^{\prime}$ give his distance from the 5 th, $0^{\circ} 23^{\prime}$, what will the horary times of $\emptyset, 16^{\circ} 0^{\prime}$, give ? Answer, χ^{\prime} 's secondary distance from the third, $0^{\circ} 26^{\prime}$; which being subtracted from the primary distance of the same, $58^{\circ} 51^{\prime}$, there remains the true arc of direction $58^{\circ} 25^{\prime}$: more examples you will see afterwards in their places. To the other rays, quintile, sesqui-quadrate, and biquintile, after you have calculated the false are of direction to the sextile, quartile, or trine, add or subtract the proportional parts, as we have said above, then see what degree the Sun has arrived at, and in that his secon-
dary distance from the angles and houses; and what distance he hath, the promittor always should be at the same distance. See also, what I have said elsewhere in an example given for illustration. To this Canon pertains the mode of directing the Sun to the proper rays in the world, for his place is to be taken under the primum mobile, as if it was another promittor different from the Sun, always remaining immoveable under the same polar elevation; wherefore let all be done as has been said. The Sun's virtue is impressed on the primum mobile, under the determinate degree of the ecliptic, and in mundo to a determinate polar elevation, and in either place their virtue continues immoveable; but that which is impressed in the primum mobile, is moved round the world with the same primum mobile, and is separated from the mundane impression; and this remaining immoveable, under its polar elevation, is moved to the more eastern parts under the primum mobile, and so arrives at the rays of the other virtuc impressed under the primum mobile; this, in a direct motion, is the same as the promittor; in a converse, as a significator; on the contrary, the other, \&ce.; the reasons of which distinction you may see in the Celestial Philosophy.

Canon XXXVII.

To direct amy Significator whatever, in a converse Motion, to all the Aspects made in the World.
If you have rightly understood all the Canons in this third part, this, likewise, before you will be found very easy; for it contains nothing more than what we
have said in this third part, with this difference only, that in a contrary manner, not the promittor, but thie significator, remaining immoveable under the primum mobile, is carried to the place of position of the promittor, or to their rays, which continue immoveable in a mundane situation; therefore the rules given, concerning the significator, are to be understood of the promittor; and, on the contrary, those given relative to the promittor, are to be understood of the significator; for which reason, there is an alteration in the order of numbers of the Golden Rule; so that, in the first place, the horary times of the promittor are to be taken; and, in the second, its distance from the angles or houses; in the third, the horary times of the significator; mod the fourth number will be the secondary distance of that significator, which is to be compared with the primary distance of the same from the cardinals or houses, in the manner before explained, relating to the promittor in Canon XIX. There are more examples afterwards, together with their effects. The angles are not directed in a converse motion, for they have none to the preceding places.

Canon XXXVIII.

To direct the Significator to the West, with the Addition and Subtraction of the Parts which is formed from the interjacent Rays or Stars; according to the Precepts of Ptolemy.
By the oblique descensions or the ascensions of the opposite places to the horizon of the country, direct the
significator to the west, not omitting his latitude, if it has any ; meanwhile, you must consider what stars or mundane rays are intercepted between the significator and the west, which you will know from the direction of the stars or rays to the west; for those that arrived first, that is, by a less arc of direction than that of the significator to the west, are interposited; but those that follow by a greater arc of direction are not interjacent, and you must observe their arc of direction, whether of the stars or rays to the west. Then of every one of the planets, which either lie between or interpose the rays, take the conditionary arc, the horary times to the hemisphere, wherein the stars, and not the rays, may be; for it is thus, the nocturnal from the night, and diurnal from the day, as Ptolemy informs us. Lastly, say, by the Golden Rule, if the whole conditionary arc of a star give its horary times, what will a star or rays arc of direction to the west give? Multiply the second and third, and divide by the first; add the result, if treating of the fortunate; but if of the unfortunate, subtract it from the significator's arc of direction to the west, and it will give the arc of direction, augmented or diminished, according to Ptolemy, which is be equated in the usual manner. Süppose the example be in Cardinal Deminic Gymnascus, the Sun's arc of direction to the west is $75^{\circ} \mathbf{5 6} ; \cdot 4$ is interjacent, whose semi-diurnal arc is $113^{\circ} 24^{\prime}$; horary times $18^{\circ} 53$!, his arc of direction to the west is $61^{\circ} 28^{\prime}$. I then require if the whole diurnal arc of $2,226^{\circ} 48^{\prime}$, give his horary times $18^{\circ} 53^{\prime}$,

How many will the arc of direction $61^{\circ}: 28^{\circ}$ give ? The answer is $5^{\circ} 7^{\prime} . \dagger$ Venus interposes the Sextile; the' right ascension of q is $160^{\circ} 46^{\prime}$; which, subtracted fromthe right ascension of the medium call, makes the distance of \circ from thence $0^{\circ} 19^{\prime}$; which, subtracted from the duplicate horary times of $\% 33^{\circ} 14^{\prime}$, there remains the arc of direction of $\&$ to the $*$ of the west $32^{\circ} 55^{\circ}$. If, therefore, the whole diurnal arc of 8 , which is $199^{\circ} 36^{\prime}$, gives the horaty times $16^{\circ} 37^{\prime}$, how many will the are of direction $32^{\circ} 55^{\prime}$ give ? and I receive for answer, $\mathbf{2}^{\circ} \mathbf{4 5}^{\prime}$. Venus likewise interposes the quintile. I compute the four horary times of ' ϕ, and they make $66^{\circ} 28^{\prime}$, the fifth part of which is $13^{\circ} \cdot 28^{\prime}$; I subtract this from the *'s arc of direetion, and there remains the are of direction of the quintile of $\&$ to the west $19^{\circ} 27^{\prime}$, from which, in the fourth place, are bad $1^{\circ} 38^{\prime}$, all which make $9^{\circ} 24^{\prime}$ of the fortunate to be added; so that the Sun's arc of direction to the west is augmented to $85^{\circ} 20^{\prime}$. Mars interposes the \square; whose arc of direction, by the right ascensions of the medium coeli, is $7^{\circ} 57^{\prime} ;$ if; therefore, the whole diarnal arc of Mars, which is $189^{\circ} 48^{\prime}$, gives his horary times $15^{\circ} 15^{\prime}$, the direction's arc $7 \circ 57^{\prime}$ will give $0^{\circ} 40^{\prime}$. Saturn interposes the ses-qui-quadrate ; his distance from the imum coeli is $18^{\circ} 13^{\prime}$, which I subtract from his duplicate : horary times, which are $35^{\circ} 24^{\prime}$, and there remains his distance from the third house, $17^{\circ} 11^{\prime}$; to this I add his horary times;

[^4]
108

and I make the atc of direction of the sesqui-quadrate of $\overline{\mathrm{h}}$ to the west $34^{\circ} 53^{\prime}$, If, therefore, the whole nocturnal arc of b 212°. 14^{\prime}, gives his horary times $17^{\circ} 42^{\prime}$, the are of direction $34^{\circ} 53^{\prime}$ will give $2^{\circ} .54_{2}$ which, added to ' 's s $0^{\circ} 40^{\prime}$, make $3^{\circ} 34^{\prime}$ to be subtracted from the Sun's arc of direction, $85^{\circ} 20^{\prime}$, and there rempins the true arc of direction $81^{\circ} 46^{\prime}$, calculated according to Ptolemy's method, which shews the years the native has lived, as you may see afterwards in its proper place. That you may not look upon what we have said as a dream, and therefore to be rejected, see the example of Urbañ VIIII. In the Celestial Philosophy, page 277, you may likewise do the same in the example of Leonora Ursina, Duchess of Sfortia. But how largely and differently authors have spoken of this direction of the significator to the west, putting various construc, tions on the words of Ptolemy, is known to every one, See Cardan in his Commentaries, Maginus in his Primium Mobile, and the Use of Legal, Astrolagy in Physic, c. viii, where he delivers the sentiments of Naibod, Argoll cen? sures wholly this dactrine of Ptolemy's, of directing the moderators of Life to the west, as vain and useless. - But Lesay, it is worthy of remark, and altogether canforms able to triuth; because, then the rays and intermediate atart of the malign only lessen the are of direction to :the west, and do not deatroy life $;$ when, by a right direc: tion, the moderator of life does not remain at the mame time with the malignant planet; for should this happen, they kill, without any manner of doubt, as in Salviatis, and several other examples.

PART IV.

ot

Secondary Directions, Progressions, Ingresses, and Transits.

HAVING already calculated and obtained the number of years of the primany directions of the significators to their promituors; and likewise taken the lords of the Terms, all which Ptolemy, in the last: clapter of the furth book, calls the General Arbiciers of Times ; for this reason, because they prevedain the general times of their effects, which, asits motion is slow, and its perceverance. long, discovers its effects after a very long time; that is, after monthe and yedrs. In order that iwe may know, in this extent of time, on what particular month and day the effects appear, Ptolemy proposes these motions for observation, wherein, whet the majority of the cause agree cogethet, then, doubtless, the effect is accomptished, or nost clearly manifests itself; whenqe.we ought to coniclude; that though, with Tur greatertcare axd exact calculation, wo have obtained the true time, not only to the year, 'bla also month and day: of ihe primary direction, we carinot argue fiom thence; that the effect has bappened on that vety day, and therefore it: mattera' not;' though the primary direction has been even excéeded, or not quife exactly
accounted to a few minutes, as notwithstanding the parcicular times of their effects, may depend upon other motions of the causes now proposed; for which reason the times of these subsequent motions of the causes demand our greatest attention ; and we must not insist upon the first places which present themselves, but inquire further, till we find where proof may be had, viz. by the method we are now going to speak of.

Canon XXXIX.

OF SECONDARY DIRECTFON.
Under this name, I understand the: motion of the celestial causes which are made on the days succeeding the nativity, according as they are marked in the Ephemeris; for the aspects to the luminaries and ant gles, which happen on those days, have their effects from every day to every year; so that the first day may be referred to the first year, as a measure to the mensurate; the second to the second, \&cc. for which reason we must observe, when the luminaries are posited in any aspect of the stars ; for if with the fortunes, they conduce to bappiness and good health; if with the unfortunate, and from an hostile ray or parallel of derclination, they portend misery and distress in those years which depend on those days these aspects happen on. But, without doubt, these effects are remarkar ble, if at that time there are primary directions of the same kind and nature; and, moreover, from such motions originate the climactical; or, more properly, critical years ; for, on the days the D is posited in the d, 0 , or 8, ta and with the place of the nativity, she
makes the years which depend on those days qunoxious to dangers and infirmities. But, if at that time any. unfortunate primary direction of the vital proragator is powerful, life may be said to be in danger, and, particularly, if in the secondary direction, the Moon is afflicted by the malignant planets. But, if the Sun is so too, the danger is still greater. Lastly, if the primary direction is unfortunate, when the ingress and transit agree, death is inevitable. See the examples in the Exposition of the Nativities.

> Canon XL. of progressions.

That progressions, or, if we should say, equal processes, taken as usual, according to the general opinion and custom hitherto received, are fictious, impossible, and contrary to nature, has been sufficiently proved in my Celestial Philosophy. The method which you are to take as natural, we now explain and prove in every one of the future examples. Know, therefore, that progressions are derived from embolismical lunations succeeding the nativity, every one of which are formed in the space of twenty-nine days nearly, in which time the Moon separates from her δ, with the Sun forming the \square and 8 , and returns to a and o again, in which circuit she passes over almost thirteen signs, and the Sun one sign.
Progressions, if we may give our judgment, originate from these motions of the luminaries; for the first luna. tion succeeding the pativity, or the D 's circuit, bounds the progression of the first year of the native; the se-.
cond, the progression of the second year; the third, of the third, \&cc. in such a manner, however, that the first part of the D's circuit may measure or bound the first part of the year; the middle, the middle; the last; the last, \&cc.

To calculate the progressions, and know with ease where they will arrive at; so many embolismical lunations succeeding the nativity, must be computed, as there are years which have elapsed of the age of the native, by always placing the Moon in that appearance and distance from the Sun she is at in the nativity. Lastly, for every month to the Moon's place, there must be added $32^{\circ} 30^{\prime}$, which are the twelfih part of one lunation; but if you desire to obtain a ready calculation of the progressions for several years, take notice that the D does not finish the twelve lunations in one whole year, but in eleven days less; having; therefore, the Moon's distance from the Sun in the nativity, look for this eleventh day before the end' of the first year after the nativity ; and when you have found it, then the progression of twelve years are completed; in like manner, twenty-two days before the end of the second year after the nativity, the progression of twentyfour years are completed, \&c. Thence proceed from every lunation to every year of the native's age, and from every one of the signs with $32^{\circ} 30^{\prime}$ of the D 's motion to every month; and whenever the luminaries are well affected, as well in the progressions as towards the places of the favourable planets of the nativity, they induce to happiness; and on the contrary, \&c. See examples in every one of the nativities following.

Canon Xli.

OF INGRESSES.
Of these we have said some are active, some passive. Active ingresses are the familiarities of active stars, acquired by an universal daily motion, with the places of the primary and secondary directions and processes of. the significators. Passive are the familiarities of the universal prorogators in the whole world with the active stars of the secondary directions and processes. Under the name of active stars; we mean whatever hath the quality of acting, and are usually posited in the promittor's place, as $h, 4, \delta, \%, 8$; and the \odot and D also, when they assume the nature of any of the afore-mentioned; and such ingresses, whether of the benign to the places of the motions of the significators, or of any of the significators to the places of the motions of the benign; that is, both active and passive are good, but of the malign, in the same manner, are hurtful, as will be observed in the following examplès.

Canon XLII.

> OF TR\&NSITS.

Some of these, also, are active, some passive; the active are the familiarities of active stars acquired by an universal daily motion with the prorogators of the nativity; that is, with their immoveable places. Passive Transits are the familiarities of any of the significators in the world with the active stars of the nativity; that is, with their immoveable places, according to their immobility, of which we have frequently mentioned;
so that in this, ingresses differ from transits; that ingresses respect the places of the moveable motions; but transits, the fixed places of the nativity: But the most of all to be observed, are the lunations in the daily motions, whether it be δ, \square, or 8 of the D, with the \odot upon the obnoxious places; for when the sulject of the direction is on the progress to happiness, if the lunations are good, by reason of the aspects of fortunate stars, they greatly conduce to the procuring of happiness in their effects; but if, on the contrary, we are speaking of the directions and process to the unfortunate planets, and those lunations are unfortunate, on account of the hostile rays there of the malignant stars, the native must be supposed to be in very great danger ; and, doubtless, there is great reason to fear it, from the unhappy event of the things signified. Hence it is evident, that promotions to dignity very frequently happen in lunations wherein the luminaries are surrounded by the benefics. On the confrary, tribulations, diseases, murders, \&c. in lunations wherein the luminaries are besieged by the unfavourable plancts : and this is found never to fail.

And this is the true doctrine of Ptolemy, and the whale of this most noble science.

But let us begin our observations on the examples which we have subjoined to verify things, and likewise to elucidate the Canons.

THIRTY

Kemarkable jatioities,

TO, PROVE THE
TRUTH OF THINGS BY EXAMPLE,

AND ILLUSTBATE THE
$\boldsymbol{N I} \mathbb{E} \mathbb{T} \mathbb{H} \bigcirc \mathbb{D}$
Computation b_{c} the Canons,

TO THE READER.

There is nothing by which man ever arrived at a more perfect knowledge of the secrets of nature, than by the immediate effects of things, that is, by the experience which the understanding discovers to us; for from these, it is evident, that they who first directed their studies to philosophy, have opened a way to discover secrets replete with wonder.

And, indeed, reason, for its excellence, is better than example; as is the immortal soul, whose work it is, than that of corporeal sense : yet, in a consequential order, this has the precedence, and is, as it were, the door and way to that understanding, to which there is not the least access, unless transmitted through the senses. Further,
whatever, by the light of reason, the mind of man may either comprehend or invent, if experience does not make it plain, is justly and deservedly condemned and rejected as false. Of the power of the Stars, and their manner of acting upon those inferior elementary and compound bodies, beginning from the first causes, properties, passions, motions, and other active qualities, being guided by reason in all and each of them, from the axioms of the most eminent men in physic and mathematics, I have sufficiently treated in my Celestial Philosophy; and from thence, by way of theory, I have transferred hither a few theses the most concise. But, as there are some who refuse to follow reason and the most enlightened authors for their guides, I was unwilling to make any distinction between. this part of philosophy and experience; that they who will listen to reason and the understanding, might, by the help of the senses, and, to use the expression, with their hands, attain to and comprehend the method I have taken; for which reason, it
seemed good to me, in this place, to subjoin thirty Nativities of the most famous men, truly worthy of admiration ; and, that no one might condemn them, either as false or selected, in preference to any casually taken, to suit my purpose, I have extracted them from the most approved authors, and such only, wherein not the horoscope, which may, with a small variation of time, be very easily adapted to the aspects of the stars, but the luminaries become the moderators of life; which, as they always continue in the same place in the Zodiac, notwithstanding the times of the nativities are remote, I thought proper to dispose these with the calculations of the aspects and directions, in the most convenient order.

Now, therefore, my very courteous reader, if you look for any power in, or true and natural knowledge from, the stars, in any of these examples, when, from the natural effects contained in them, you find any calculations for directions more agreeable to time and nature, be so kind as to publish:
them, and point out my errors; and, by so doing, you will oblige me greatly, as, in every thing, I-desire nothing but plain and simple truth; but if, after all, you cannot find any, confess, ingenuously, that my opinion concerning this Celestial Science is right, my mode of calculation true, and the method universal ; and hesitate no longer in confirming it to be so. But, in these examples, it is to be observed :-

1. That the luminaries preside over subjected things, not only by that one motion of direction, which is made in the Zodiac according to the succession of the signs, agreeable to the method usually followed by all professors, but by both, viz. the right and converse.
2. That the same familiarities, by the same method of calculating, may be found in more of the like examples, when alledged as proofs, is the greatest evidence of the trith of things; for it might be argued, that they happened to agree only in one example.
3. That my directions are conformable to the nature of things; as, for example, I do not take the dignities from the horoscope, but from the Sun and medium cocli, according to Ptolemy and others.
4. I have not taken remarkable effects from the fixed stars, as many do (and, truly, without foundation), but from the erratics ; though the fixed stars do specify and afford some little assistance to the power of the erratics.
5. In all these examples, the measure I have found for the are of direction corresponds with the years of the age.
6. I have not varied the time of the nativities to make the directions agree with my calculations ; but if, in any example, I have made a little alteration, it is very small, and scarce makes any difference in the arc of direction of the luminaries, whether direct or converse, except only in the mundane parallels. However, from this
small alteration it may be inferred, that either on that account the time is redaced to the true one, or, at least, that the directions of the parallels in the world were not far distant, and might, notwithstanding, have been of very good use, though there were no change of time in the nativity; for every direction causes an alteration in bodies; brat the full effect plainly. appears, by means of the powerful directions which arrive first, and the subsequent assist more or less, according to the proximity of the application, or their strength and power are greater or less : but no credit is to be given to the time of those nativities, in which authors have adopted the horoscope for the giver of life, where either of the luminaries ought to have been taken; for we may reasonably conclude, that, when the said authors have not found their directions of that Iuminary to which, undoubtedly, belonged the power; of life, to agree with the effects, they have made a considerable alteration in the given time of the nativity, in order that they might
bring down the:horoscope' to any aspect of the planets." I can affirm what I have said to. be true, for in my youth I saw several na4 tivities, which were afterwards published by the authors, wherein was a visible alteration in the time, and the reason why:was, that they might answer the above end.
7. In these examples you will plainly see; that I have always taken the moderator of life by the rules of Ptolemy; as in the day, first the Sun, if he is found in an aphetical place, then the Moon, exc; but in the night, first the Moon, \&c.
8. You are to observe, that if either of the Iuminaries, being the sigmificator of life, is found in a nativity, with an Hostile ray in . the zodiac, by the application of any malignant planet strong in power, the same is weak, for its virtues are but small; as a prorogator in the zodiac, kut stronger through the other motionsiand aspets, for then the moderation in whe zodide seems to be, in a manher, separated; anid in'the same
manner ought we to reason in the other motions; for if, lastly; according to all the motions, and every species of aspect, the significator of life is aspected by the rays of the unfortunate planets, the native, according to : Ptolemy, will not survive, especially if the fortunate afford no assistance, \&c. yet each direction must always be consulted and calculated, agreeably to the two kinds of familiarities:
9. You may know that those nativities are stronger, when either of the luminaries become the significator of life, by reason of the duplicate motion of the prorogation, which does not happen when the honoscope of the country is the giver of life, for it only performs in a right motion, and nat converse.
10. You-are not to observe what is generally alledged by professors, respecting the satellites of the luminaries for dignities; viz. that the satellites ane those planets which are found within 30° on either side towards
the luminaries; but that a satellite is any kind of aspect of the stars to the luminaries of what kind soever; which if it be made by application, its power extends inwardly over the whole orb of light of the aspecting planet, and, the more so, as the proximity is greater, but by separation it is not so. This doctrine may be seen in several chapters of Ptolemy ; for, an aspecting star influences the significator, and disposes him to produce effects co-natural to him, iby a subsequent direction. But a star of no aspect does not predispose the significator, and produces very little or no effect of its nature luy a subsequent direction ; this is the true doctrime of the stars.
11. That in these examples, as to the time of death, I have observed the most powerful directions of them all, and afterwards I give a reason why the antecedents that are past are not anaretical; from which it is evident, that the directions, wherepf. I now give the calculations, were the true aparetic causes.
12. There is no truth in what is commonly alledged by some; viz. that as I invented the mundase aspects, it is no wonder if any aspect may agree with the times of the effects in those examples; as well the familiarities in mundo among the stars as to the angles; but I afterwards 'rejected the aspects in the zodiac, and also the antiscions to the angles. I do not direct the significators to the cusps of the houses, nor to the $\&, 8$, or to the fixed stars, as having of themselves a power to kill. I do not direct the
 nificators, which is the practice of several professors. Maginus has described the rays in the equator; others, besides the rays, which the ingenious Kepler thought to be efficacious, add the semi-sextile'and sesquiquadrate. : Wherefore, if jou carefully observe, you will doubtless perceive I have produced less aspects than other authors.
13. If you are desirous to see of what importance the secondary directions are, to discern the particular times of effects, and
also the progressions, I have calculated the; ingresses and transits, both active and pasi; sive ; but the equal processes, according ta, the usual and general way, how idle and, empty in effect they are, I will leave to yourself to con\$ider, as I would not spend time to no purpose to calculate them.
14. The revolution, as taught by same, I have not seen, though in reality they may; possess some virtue, bat only according to the constitution of the stars to the places of the prorogators of the nativity, and their places of direction, but na farther, as Ptole, my was of opinion, and briefly , expresses himself in his Chapter of Life.. "Those " who are afflicted, both in the places' and "conclusions of the years, by the revolution " of the stars infecting the princtipal, places, " have reason to expect certain death ;"; therefore, let any one, if he pleases, observe the return of the years, but at the same time, let him not place so great a value on them, as some authors usually do; who, from the constitution of the stars, judge of
the Sun's return in the same manner as of the nativity; so that they are not afraid to dissent from the same, nor even from the directions.
15. And note, that when I speak of dignities and promotions, I am to be understood in a natural way, as I have made mention of in the Celestial Philosophy, and in such a manner, that men may endeavour to render themselves capable and worthy of mental accomplishments, as well as of the other virtues, and not by any means that those who are at liberty to act as they please should be compelled to, and, as it were, pushed upon, advancement: for I am wholly of opinion, that every man is the author of his own fortune, next, however, to the divine decree, according to that of the prophet,

> "In manibus tuis sortes mea."
> "My lot is in thine hand."

Lastly, if, in the calculations of the directions, you find any difference of minutes

to the reader: 129

from the time of the effects (this, however, I am certain, will always be very small), remember, first, that the places of the stars are not perfectly known to us; and then in the producing of effects, several motions of the stars concur to prevent a true calculation; as the secondary directions, the process, iugress, transit, lunation, 8rc. which may cause the effect either to precede or follow the true calculation.
?

THIRTY 3Remarkable 刍atíitites:

I SHALL begin, by drawing my examples from the most principal families in Europe; and in them, by. way of conciseness, only regard important accidents.

EXAMPLE I.

zatifudes.				declimations.		
b	20	0^{\prime}	S.	15°		N.
24	0	50	S.	9	ST	S.
8	0	53	N.	19	52	N.
\bigcirc	0	0		6	8	S.
9	1	3	S.	2	18	S.
¢	3	0	N.	1	51	S.
D	- . 2	4	S.	25	24	S.

HE lived fifty-eight years and seven months, nearly ; and died on the 21st of September, 1558, at which time the D, who is moderator of life, came, by right direction, to her own \square in the Zodiac, arc 55°, and also to her own \square in Mundo, arc $55^{\circ} 33^{\prime}$, and to the 8 of h, by converse direction, arc $52^{\circ} 58^{\prime}$

The Moon's oblique ascension to her pole 52°, is $314^{\circ} 52^{\prime}$. In $r 6^{\circ} 45^{\prime}$; the Moon's latitude is $4^{\circ} 32^{\prime}$ S .; the oblique ascension of that place by longitude and latitude is $\mathbf{9 0}^{\circ} 52^{\prime}$; from which subtract the Moon's oblique ascension, adding, first, the integer circle 360°, and there remains the arc of direction of the D to her own \square in the Zodiac 55°.
The D to her own 0 in the world (by which direction both the prorogatory virtues of life are injured, viz. that in the primum mobile, and that which is impressed in the world; for this is directed by a direct motion, and that by a converse) is thus wrought:-The D's semi-nocturnal are is $127^{\circ} 27^{\prime}$, her distance from the horoscope is $4^{\circ} 52^{\prime}$, D^{\prime} s semi-diurnal arc is $52^{\circ} 33^{\prime}$, from which, for the fourth number, arises the Moon's secondary distance from the medium coeli $2^{\circ} 0^{\prime}$: This
subtracted from the primary, which is $57^{\circ} 35^{\prime}$, there remains the arc of direction $55^{\circ} 33^{\prime}$.

To the 8 of 5 , by converse motion, the distance of b from the imum cali is $5^{\circ} 48^{\prime}$, for his right ascension is 45043 ; the pole's elevation of the fifth and eleventh is 24°, the semi-nocturnal arc of b is $69^{\circ} 37^{\prime}$, the third part thereof $23^{\circ} 13^{\prime}$, which gives the pole's elevation of 5 nearly 6°; to this pole the oblique ascension of the opposite place of 5 is $227^{\circ} 21^{\prime}$, and the D 's oblique ascension there is $280^{\circ} 19^{\prime}$; from which subtracting that of the opposition of h, leaves the are of direction $52^{\circ} 58^{\prime}$. For the equation, to take the years, I add this arc $52^{\circ} 58^{\prime}$ to the \odot^{\prime} 's right ascension, which is $345^{\circ} 44^{\prime}$, and I make the sum $38^{\circ} 42^{\prime}$, answering to $11^{\circ} 10^{\prime}$ of 8 , at which the sun, from the day and hour of the nativity, arrives in 58 days, which denotes so many years; but it must be observed, that the converse directions did not wait for the other two by a right motion, as by it the \boldsymbol{D} in the nativity, applied to the a of the infortuntes in the world, and to the sesqui-quadrate of δ in the zodiac; sic that the significator of life appeared stronger and more fortunate by a converse motion : for though the D was favoured by the $*$ of ψ in the zodiac, the infortunes. prevailed, as being more numerous and in the angles.

In the 41 st year of his age, when, after 2 series of successes, Forture turned her back upon him; be suffered a very great loss of his fleet and army, by a tempest near the coast of Africa: the D arrived at the paraliel of δ in the world, whilst both, by a converse motion of the primum mobile, were in rapt motion
mound the world, for they happened to be posited in equally proportional distances from the horosoope. The D's semi-diurnal arc is $52^{\circ} 33^{\prime}$, the semi-diurnal arc of 8^{\prime} 's 8 is $62^{\circ} 27^{\prime}$, and their sum is $115^{\circ} 0^{\prime}$; therefore, as the sum of the semi-diurnal arcs $115^{\circ} \boldsymbol{0}^{\sigma}$ is to the δ 's semi-diurnal are $52^{\circ} 33^{\prime}$, so is the difference between δ 's 8 and the D in right ascension $45^{\circ} 25^{\prime}$ (for the right ascension of o' s 8 is $232^{\circ} 3^{\prime}$, and the right ascension of the $D 277^{\circ} 28^{\prime}$), to the 's secondary distance from the medium cali $20^{\circ} 45^{\prime}$, which, subtracted from the primary, which is $57^{\circ} 28^{\prime}$, leaves the arc of direction $96^{\circ} 49^{\prime}$, which, being equated in the usual way, gives 41 years.
In his 19th year, when he was chosen emperor, the D had arrived at the cusp of the twelfth, and $\%$ at the second; therefore the medium coeli was directed to the * of the D and Δ of 9 , and they were both in parallel by rapt motion : the D also came to the of $\%$ in $20-$ diac, near $26^{\circ} \mathrm{k} \mathrm{\rho}$, and to the quintile in the world by converse motion. But the most important was, the © to parallel of $\boldsymbol{4}$ in the zodiac, near 25° of \boldsymbol{r}, where he acquires the same declination as 4 ; the 0 's crepuscular arc is $1^{h} 58^{\prime}$, his semi-nocturnal arc $6^{\mathrm{b}} 32^{\prime}$, from which subtract the crepusculine arc, and his:obscure are is 4^{1} 34^{\prime}. The crepusculine are of $\boldsymbol{q} 25^{\circ}$ is $2^{\boldsymbol{4}} 18^{\prime}$, its. seminocturnal are is $5^{\mathrm{b}} 9^{\prime}$, and the obscure arc is $2^{\mathrm{h}} 51^{\prime}$. The \bigcirc 's distance from the imum coeli is $54^{\circ} 16$ '; wherefore, as the 0^{\prime} s obscure arc $4^{\text {b }} 34^{\prime}$ is to his distance $54^{\circ} 16^{\prime}$, so is the obscure arc of 25 . $\boldsymbol{r} 2^{\prime \prime} 31^{\prime}$ to its secondary distance $\mathbf{8 2}{ }^{\circ}$ 22 ; from which, subtracting the primary distance of q 25°, there remains the are of direction $17^{\circ} 31^{\prime}$, which
being equated, gives 19 years. For 58 years and 7 months nearly, I thus calculate the secondary directions. To the day and hour of the nativity I add 58: days for the same number of years, and 14 hours for, the 7 months, and I come to the 22d day of April of the same year 1500 , with $5^{\text {b }} 39^{\prime}$ P. M., and in the secondary directions the planets are in the following position :

Dog Long	- θ	ζ.	4	δ	9	8	D	8
	\checkmark	\checkmark	x	11	II	8	3	II
	11.96	-94.41	-09.28	29.19	8.	45	4.0	9.8
Lat.		S. 1.46	1.9.	N. 0.38		-88	S. 3.0	

When the D was in the 4 th degree of x, lat. 5° South, by which she had the declination $14^{\circ} 44^{\prime}$; the same with \hbar; as well there as in the nativity; and lustivs on the day of death ${ }^{3}$ wherein δ. was in the 4th degree of 汉, in 8 , (that is partie) to this place of the D. The 0 , in the secondary direction, on the 22 d day of April, was in 12° of γ, in the parallel of b ' s dectination there both from the nativity and at death. The θ, on the day of death, from the 8 , entered the place of the direction of the D 's a in the zodiac; and, two days before he died, there happeued to be a lunation of the δ 's \square with the O in those obnoxious places. On the day of his death, the Moon was in the last degree of yp, with South latitude, whereby she was posifed in the same parallel of declination ow was in, on the 22d day of Aprit, of the secondary direction; therefore, there was a mu-
tual permutation of aspect between the Moon and Mars, viz. an active and passive ingress to these motions on the day of death; and is an admirable proof of the calculation being exactly true. The places of the planets, on the day he died, which was the 21st of September 1558, are as follow :

$\begin{gathered} \text { Deg. } \\ \text { of } \\ \text { Lon. } \end{gathered}$	\bigcirc	D	万	4	8	9	\Varangle	88
	\bumpeq	To	ช	\%	项	Ω	2	\boldsymbol{r}
	7.31	29.29	24.31	2. 4	4.28	29.25	17.23	19.20
Lat.		$\stackrel{\text { S. }}{4.55}$	$\underset{2.34}{\mathrm{~S}_{2}}$	S.	N, 0.21	0.0	N.	

The manner I look for the process for the same year is thus: For full 48 years, 48 embolismic lunations are finished, in four years following the nativity, yet less than that by 44 days, that is, 11×4, for we have said in its Canon, that the Moon finisheth 12 embolismic lunations in 11 days less than a whole year ; wherefore, from the 23d February, 1504, subtracting 44 days, we go back to the 10th January, when the Moon, from the 22d degree of m, is posited in the same distance from the Sun which she hath in the nativity, viz. of 68°; and then the process is finished for full 48 years; then, for the other ten years, passing over the other 10 embolismic lunations, I come to the 31st of October of the same year, 1504, when the Moon was in 10 degrees of r, and the Sun in 18 degrees of m. That we may preserve their distance from each other at the nativity for the six remaining months, and 27 days, i. e. to the day
of his death, I add to this place of the Moon six signs and 15 degrees for the six months, and $29^{\circ} 30^{\circ}$ for the 27 days, and I come to $24^{\circ} 30^{\prime}$ of r, wherein the Moon is posited on the 18 th of November. In the progressions, the planets are thus posited:

$\left\lvert\, \begin{gathered} \text { Deg. } \\ \text { of } \\ \text { Lon. } \end{gathered}\right.$	\bigcirc	D	ち	4	8	9	\Varangle	8
	1	\boldsymbol{r}	Ω	Ω	1	1	1	*
	6.3	\$4.90	3.96	16.15	14.15	13.40	29.44	10.39
Lat.		N.	N. 0.11	N. 0.40	S.	N. 0.9	S.	

The Sun was in six degrees of f, which 8 entered by a quadrate ray, on the day of death : the Moon had passed the place of her direction in the zodiac; but when she was arrived at 25 degrecs of r, she struck upon, by ingress, (on the day of death) the parallel of 8 ?s declination, and entered on the fatal day from the \square; from the 24th degree of vf , this place of her progression; the Moon also applied in the progression to the 0 of $弓$. The most noble satellite in this Nativity is to the Moon the conditionary luminary, from the $*$ of 2 , and from the quintile of $\$$. To the medium coeli, from 4 and the Sun the Δ, from q the biquintile. To the Θ, from ψ and \succcurlyeq by presence, from h and $\%$ the Sextile.

It is presumed that the following incidents of the life of this extraordinary man will not be unacceptable to the intelligent reader, as they may serve to illustrate the effects of Celestial Influx, by comparing the effects with the cause which produced them. At
the age of 14, he had the goveroment of the Netherlands given him; at 16 he was crowned King of Spain; at 19 he was elected Empe_ ror, and crowned the following year at Air la Chapelle. He had great wars with Francis the First King of France; whotn he took prisoner at the battle of Pavie; in the year 1525, and sent hirp to Madrid; he likewise seized Rome, and besieged the Pope in his castle there, and annexed the Dutchy of Milan to his house for ever. In 1592; at a diet then held at Ratisborn, the Protestant confessiou of faith was exhibited, and publicly read before hins; some years after which he entered -into wars' with the-Protestants, apd wok John Frederick, Elector of Saxony, prisoner in 1545 ; aud thereupon transferred the Electoral dignity from him to Maurice, Duke of Soxony. Healso caused Philipr Landgrave of Hesse, to be putinto custody; but, in the end, concluded the Peace of Passaw, in the year 1552 ; three years after which, he abdicated the government, and retired to a cloister, in St. Justus's monastery in Spain, where he died in 1558. He married Isabel, the daughter of Emanuel, King of Portugal, by whom he had issue, one son and two daughters; besides whom he had one natural daughter, naumed 'Margaret, by Mademoisolla do Plumbes, which daughter was mart jed to Alaxander de Modicis, Duke of Urbiu; and, after his decease, to Octavia Faruesbe, Duke of Parna. He had also a natural son by Mademoisclle de Blombery, viz. the renowned Don Jubn of Austria.

EXAMPLE II.

Latitudes.

DECLINATIORS.
$\begin{array}{lll}90 & 49 & \mathrm{~S} .\end{array}$
1419 N.
922 S
102 S .

THIS King, in a stout engagement with a large body of the enemy; at the river Po; in Italy, suffered a very great overthrow, his general and valiant armics being all slain, and he himself wounded and taken prisoner by the soldiers of the Emperor Charles V. This was inthe year 1525, on the 24th of February, when he was 30 years and five months old ; at which time the Sun, who is the significator of glory, liberty, and power, came, by a right direction, to the mundane parallel of \hbar, and also to the parallel declination of δ; and, by a converse motion, was posited as near as possible to the Moon's 8 , and mundane parallel of \hbar.
To the parallel of the declination of Mars, the calculation is as follows; and it corresponds with the time of the direction, when the Sun arrives at 6° of m, where he obtains the declination $13^{\circ} 34^{\prime}$, and the declination of Mars $14^{\circ} 12^{\prime}$, for this reason, either because the true place of Mars is wanting a few minutes, which made the declination of Mars lesser ; of, as the lutminaries $_{2}$ by reason of the magnitude of their bodies, begin to touch at a parallel of their decilination, befote; they arrive at it by the centre of their bodies; or, lastly, that they have already reached the times of the other directions: be it as it will, the Sun was conjoined, as near as could be, to the declination of δ; it might be, likewise, that the secondary directions and powerful ingresses may have made the effect appear a litile before the exact application of the primary direction,
Of the Sun.
The semi-nocturnal are is 5 : 57
Crepusculine arc 1.50
Obscure are 47.
Right! ascension $178^{\circ} .46^{\prime}$
Distance fromithe imump cali 58
Of the 6 th degree of \boldsymbol{m}.
The semi-nocturnal ars is $7^{\text {h }} \cdot 2^{4}$
Crepusculine are $1 .: 50$
Obscure arc 5.12
Right ascension $213^{\circ}: 40$
Pumary distance from the inmm colli: 55 62
wherefore, as O 's obscure are $4^{b} \quad 7^{\prime}$
is to his dist. from the 4th $20^{\circ} 58^{\prime}$
so is the obscare arc of 勗 6°. $5^{\text {h }} \cdot 12^{\prime}$
to its seçondary distance. $26^{\circ} 29^{\prime}$:
which being subtracted from the primary, leaves the aroof direction $29^{\circ} \mathbf{2 3}$ p
The Sun's direction torthe parallel of h in Murdo, by dipect motion is thus calculated.
As the O^{\prime} s semi-nocturnal are, $5^{\text {b }} 57$ ', is to its dise tance from the wnm celi, $26^{\circ} 29^{\prime}$ (which the Sun requinea after the direction is' finished, at which time, as we have-said, he lustrates the sixth degree of Scorpio), so is h 's semi-diurnal are, $5^{h} 16^{\prime}$, to his secondaty dis. tance from the mediuss ccali $23^{\circ} 47^{\prime}$, which added to the primaryf (because \boldsymbol{F} pesses from the ascendant part of heaven to the descendant), which is $4^{\circ} 56^{\prime}$, give: the are of direction $28^{\circ}: 43^{\prime}$; to equate which I add to it the \odot 's
right ascension, and it makes $207^{\circ} 29^{\prime}=29^{\circ} 30^{\prime} a$, to which the \odot, from the day and hour of nativity, arrives in 31 days, answering to so many years.

The next is the \odot to the paraliel of B in Mundo, converse direction.

Thus wrought, as h^{\prime} 's semi-diurnal arc, $5^{\text {h }} 16^{\prime}$, is to his distance from the medium catl $4^{\circ} 56^{\prime}$, so is the $\mathrm{O}^{\prime} \mathrm{s}$ semi-nocturnal arc $5^{\text {h }} 57$ to the 0^{\prime} s secondary distance from the 4 th, $5^{\circ} 35^{\prime}$, which, added to the primary $20^{\circ} .58^{\prime}$, makes the arc of direction $26^{\circ} 33^{\prime}$, so that this direction had preceded two years and some months ' before.

It is easy to calculate the \odot 's converse direction to the 8 of the D, whereby he applied also to the δ of $\%$: the D 's declination is $10^{\circ} 2^{\prime}$, answering to $x 4^{\circ} \cdot \mathrm{m}$ the ecliptic, whose horary times, $13^{\circ} 7^{\prime}$, doubled, are $26^{\circ} 14^{\prime}$, the D 's right ascension is $328^{\circ} 50^{\prime}$, which subtracted from the right ascension of the medium cali, leaves the D 's distance $8^{\circ}-58^{\prime}$: the polar elevation of the 9 th house is 21°; therefore, As the double horary times of $D, 26^{\circ} 14^{\prime \prime}$; is to the polar elevation of the 9 th house $21^{\circ} \boldsymbol{O}^{\circ}$, so is the D^{\prime} 's distance from medium ceceli $8^{\circ} 58^{\prime}$ to the D 's pole $7^{\circ} 0^{\prime}$, under which the oblique ascension of the D 's 8 is $147^{\circ} 36^{\prime}$, that of the $\odot 178^{\circ} 42$, from whieh subtracting that of the D, leaves the are of direction $31^{\circ} 6^{\prime}$, so that the \odot and \Rightarrow were as nearly opposite as possible.

I look for the secondary directions thus: To the day and hour of the nativity I add 30 days and 10 hours, for the 30 years and 5 months, and I come to the 12th of October, with $20^{\mathrm{h}} 26^{\prime}$ P. M. when the 0 was in \approx
29°, in exact parallel of 5 's declination, who'was in ${ }^{*} 7^{\circ}$, with latitude $2^{\circ} 10^{\prime}$ South, of had arrived at ar 11°, to wit, the opposition of the medium coeli of the nativity, and the D in $\boldsymbol{r} 8$ degrees. On the 22d of February, 1525, there happened a remarkable new D, in $\boldsymbol{x} 13^{\circ}$, in which the three superiors, by an exact calculation, had the same declination, and, for this reason, were in parallel, and the luminaries applied to their declination nearly. These aspects of the stars usually are the causes of very grievous wars, and this new d was celebrated upon b of his nativity, and then ξ applied to the 8 of the \odot of the nativity, and place of the D 's direction. This new Moon likewise happened in the 8 of δ in the progressions, and, by the ingress of δ from $\triangle 22^{\circ}$, had its morning station nearly above the place of the secondary direction of the \odot, and in the D 's declination.

On the 24th of February, the D was found in the same 9° of r, in its secondary direction, under the parallel of δ; in the same place the D also was in the parallel of 4 , but could be of no service, as not being conjoined to the places as well of the radix as the directions : yet she delivered from a more grievous calamity, which, from the constitution of the nativity, was denoted to be extremely unfortunate; for the D, the conditionary luminary, was in the parallel declination of h, and in his mundane parallel; but, what is worse, is b being in the centre of the supreme cardinal house, or medium cali, and the D cadent in the ninth, from which h was very strongly elevated above it, and, moreover, as the unfortunate directions were, as has
been observed, at that time powerfuf, 4 afforded but omall assistance.
He died in the year 1547, in the month of April, from the D, s ' dircetion, the significator of life, to the 8 of \nsubseteq, followed by the paralled declination of h, for $¥$ was of the natare of \hbar, on account of the parallel of declination, and by reason of the sign \bumpeq, and had something of γ; because of the sextile. The oblique ascension of y to the pole of the $D 7^{\circ}$, is $198^{\circ} 4^{\prime}$, from which, subtracting the D 's oblique ascension there taken, $147^{\circ} 36^{\prime}$, there remains the arc of direction $50^{\circ} 28^{\prime}$, which, for the equation, I add to the \odot^{\prime} s right ascension, and I make the sum $229^{\circ} 14^{\prime}=21^{\circ} 20^{\circ}$ of m, at which the \odot, from the day and hbur of the nativity, arrives in 52 days 16 hours, which denotes 52 years 8 months. By converse direction, the D had descended to the \odot 's. \square :

$$
\text { As the } \odot^{\prime} \text { s semi-nocturnal arc } \cdot \text {. . } 5^{\mathrm{h}} 57^{\prime}
$$

is to the \odot^{\prime} 's dist. from the imum call .. $20^{\circ} 58$
so is the D^{\prime} 's semi-nocturnal are $5^{\mathrm{h}} 15$
to the D^{\prime} 's secondary dist. from the west $18^{\circ} \cdot 30$
The oblique ascension of the D 's opposition in the horoscope is $137^{\circ} 30^{\prime}$, from which; subtracting the horoscope's oblique ascension, there remains the D's primary distance from the west $69^{\circ} 42^{\prime}$; the secondary subtracted from this, leaves the arc of direction $51^{\circ} 12^{\prime}$, greater by 44^{\prime} than that taken above, which makes but litele difference.

You will ask, why the of of 5 with the D was not the cause of his death. I answer, because there the D was in a contrary latitude, and happened in the terms
of a benefic : also the 8 of δ to the D, by a converse direction, did not kill*, as the applied to the parallel of $\boldsymbol{\psi}$ in the world by the same converse motion. But this nativity, with respect to life, certainly was not very strong, by reason of the unfortunate state of the D, the significator of life.

The causes of the antipathy between these two princes were the ascendants in signs and places opposite to degrees and minutes; b of Francis upon the \odot of Charles; δ of Charles in a to the D of Francis; the D of Charles in the sesqui-quadrate of δ of Francis; b in the opposite cardinals; of angular in the one, carlent in the other, alternately, in the \square, \&cc.

Frajicis the First was crowned King of France in 1515, and, in the same ycar, lost the Duchy of Milan, but overthrew the Swiss at the hattle of Marignan. He was taken prisoner by the Emperór Charles the Fifth, at the battle of Pavia, in the year 1525, and, being set at liberty, began the war again, but was wholly beaten out of Italy. Francis had likewise wars with Henry the Eighth, King of England, who took Boulogne from him in 1544. He was married twice ; his first wife was Claudia, daughter of his predecessor Lewis the Twelfth; and, his second, Eleanor, daughter of Philip the First, King of Spain, by whom he had issue one son and two danghters, viz Henry the Second, who succeeded him in the throne of France; Magdalen, who was afterwards married to James the' Fifth, King of Scotlund; and Margaret, married to Charlea, Dake of Alencon; and, after kis dealh, to Henry the Secund, King of Nawarre.

[^5]
EXAMPLE III.

HE died on the 31 st of March, 1621 , aged 42 years 11 months. He was, for the first time, in 1614; seized with a flow of humours from the head, which lasted without any intermission, together with a weak state of health.

The horoscope, significator of life, in the 43d year of his age arrived at the a of $\$$ by our method, whereof the calculation is as follows:

- The right ascension of the medium cosli is $253^{\circ} 0^{\prime}$, the right ascension of $5295^{\circ} 23^{\prime}$; from which there remains the arc of direction of the medium coeli to 5 $42^{\circ} 14^{\prime}$, from which place \hbar projects the a to the horoscope.

For the equation, I add this, arc of direction to the 0 's right ascension $32^{\circ} 9$, and I make the sum $74^{\circ}: 23^{\prime}$, answering to $15^{\circ} 40^{\prime}$ of In , which the \odot from the day of the nativity arrives at in 43 days, which denote so many years of life. For the secondary directions, I add 42 days for so many years, 22 hours for 11 months, and 28^{\prime} for 7 days; therefore, the secondary directions are made on the 27th of May, 1578, with $13^{\mathrm{b}} 15^{\prime}$, P. M.

$\begin{aligned} & \text { Deq. } \\ & \text { of } \\ & \text { Lou. } \end{aligned}$	\bigcirc	3	ל	2	8	7	¢	8
	II	3	5	\wedge	\cdots	II	11	\cdots
	15.40	12.0	22.50	1.50	15.0	21.0	28.0	28.37
Lat.		S.	$\begin{gathered} \mathrm{N} . \\ 0.14 \end{gathered}$					

The \odot is found in the parallel of the declination of h, and in the \square of δ and \square of the \geqslant in δ with δ, by long. and lat. And to the hour, P. M. $13^{\mathrm{h}} 15^{\prime}$, the 27th of May, is posited in the horoscope or $5^{\circ} 45^{\prime}$, and in the medium cesli 3° of $\mathfrak{r g}$. The pragressions for 43 years happen on October the 5 th, 1581, whilst the D had 21° is ; but we must subtract 24°, in order that the D may be posited in $\left\{27^{\circ}\right.$; the rest as follow :

$\left\|\begin{array}{c} \text { Deg. } \\ \text { of } \\ \text { Lon } \end{array}\right\|$	\bigcirc	$)$	b	4	8	9	8	8
	\sim	1	m	\%f	2	m	\uparrow	$u p$
	20.0	27.19	29.19	10.90	28.15	10,0	3.40	23.42

The O was conjoined to δ, the D to the \square of the former had arrived at the \square of k of the nativity, and the latter to its parallel. On the day of death, the stars were posited thus :

Deg. Lon.	0)	b	4	\%	7	8	0
	\boldsymbol{r}	¢	$\boldsymbol{\varepsilon}$	8	m	x	\boldsymbol{r}	1
	10.58	19.9	0.42	21.16	22.6	13.9	18.53	10.53

The \odot, on the day he died, was posited upon $¥$ of the nativity, for \downarrow was malefic by reason of the sign and mundase parallet of δ; D opposite to h of the nativity, and secondary direction; b in the $口$ (of the secondary direction) of the horoscope, that is, from
the imumern cali; for in the mediven cenli are, as we have said, vo 3°; and, when the horoscope is signifietator of life, such rays, when directed to it, are very powerful. Lastly, there is a remarkable new Moon in or 30 before his death, and, afterwards, the quadrant of the 0 being upon the secondary direction of the horoscope, and the $)$ in ins \square, and with \odot with the ray \square of b to the horoscope; but it was expected that the D. would arrive at the 8 of k , of the nativity and secondary direction. An eclipse of the D. preceded the year 1620 , in 24° of f; the D remaining between the 8 of δ and k in the medium cali; the sign t respects Spain and the men, the medium coeli royal dignities; all this is agreeable to the sentiments of Ptoد lemy; and, also, another eclipse of the \odot in 14° of II, that is, in the \square of the king's ascendant; and, kastly, in the revolution, the 0 was with δ and the D in their a and parallel of declination, and b in the a of the ascendant of the nativity.

In the year 1614, on the 2 d of June, in the 36th year of his age, be was taken ill of a violent flow of humours from the head, at which time the D arrived at the sesqui-quadrate of δ in the zodiac near 8 , and parallel of the declination of \ddagger, and, by converse motion, the D to the \square of $叉$, when she was separated from the sesqui-quadrate of δ; the quintile of 8 fallowed, which is injured by the \square of h, the ascendant to the of of $\%$.

As any one will find, if he pleases to calculate these directions.

By secondary directions, on the 36 days succeeding the nativity, the 0 was conjomed to $\%$, and entered the paralled of the declination of h, with 8 of the D, followed by the \square of δ to both, in which parallel the 0 contmued almost without interruption, but was not the significator of life.

A disorder in the head is chiefly denoted from the parallel of the D 's declination with h in the nativity and mundane parallel with \wp, who is also found in the mundane parallel of δ.

This king canue to the crown of Spain in 1598, at the age of 20 years; and, in 1610, he expelled 900,000 Moors, and Jews out of Spain. Ile was married to Margaret, daughter of Charles, Archduke of $\Lambda u s t r i a$, by whom he had eight children, three of which died infantb.

EXAMPLE IV.

IN the year 1610, on the 14th of May, $4^{\mathrm{h}} 48^{\prime} \mathrm{P}$. M. he received a wound of which he died. In 1594, on the 15 th of December, he was slightly wounded in the face.

Argol describes this nativity in his works on the Critical Days: He places in the medium cecli $3^{\circ} 21^{\prime} \Omega$, but in the horoscope $27^{\circ} 20^{\prime}$ of Δ, although, according to the latitude of the country, which he explains in the figure, page 48, there should be placed in the horoscope $26^{\circ} 9^{\prime} \approx$. He likewise places the $D 21^{\circ} 14^{\prime}$ of \boldsymbol{r}; but, according to the common Ephemeris and Tables of moveable seconds, the D is posited in $25^{\circ} 35^{\prime}$ of r, in which place she is a very powerful significator of life, and which is manifestly proved by an agreement of the time of death with the D 's direction to the \square of b in the zodiac, near $11^{\circ} 1^{r}$ of \square, when the D has $3^{\circ}{ }^{\circ} 1^{\prime}$ south latitude.

The oblique ascension of the D 's opposite place to the pole 48°, is $211^{\circ} 25^{\prime}$, which, subtracted from the oblique ascension of the horoscope, there remains the I Fs distance from the west $4^{\circ} 15^{\prime}$. The nocturnal hosary times of the D are $14^{\circ} 2^{\prime}$, the elevation of the pole of the sixth house is 37°; the difference, therefore, of the pole of the sixth and seventh houses is 11°; I say, if the duplicate nocturnat horary times of the $D 28^{\circ}$, gives the polar difference of the houses 1°, what will the D 's distance from the west $4^{\circ} 15^{\prime \prime}$ give? Facit 2°, which, being subtracted from the pole of the seventh house, there remains the D 's pole 46°, under which the oblique ascension of the D 's $\&$ is $210^{\circ} 59^{\prime}$,
and the oblique ascension of $f 11^{\circ} 1^{\prime}$, in morth latitude $3^{\circ} 21^{\prime}$, is $270^{\circ} 97^{\prime}$, from which, subtracting the former, keaves the are of direction $59^{\circ} 38^{\prime}$, which, being equated, points out 56 years and 6 months nearly.

By converte directish the and 3 , by the tapt motion of the primumn nobite, happeried to be posited in equal proporitional distancos from the intum cacil, called a rapt parallel, calcutated thus:

The D^{\prime} 's semi-nocturnal are is $844^{\mathrm{b}} 6^{\prime}$ or $5^{\mathrm{h}} 37^{\prime}$
Saturn's semi-necturnal arc 641
The . D 's right ascension $25^{\circ} 33$
Her distance from the imum coeli . . . 7953
Satatn's right ascetasion 34314
Distance in right ascension from the D . 4219
Then, as the sum of the semi-noct. atcs . 12 18
is to the D's semi-nocturnal are . . . 537
so is the distance in right ascension -. $42^{\circ} 19$
to the D 's secondary dist. from the 4th. . 1919
which, being subtracted from the primary, leaves the are of direction $60^{\circ} 34^{\prime}$, one degree subsequent to the other direction.

Argol tells us, King fienry escaped, with danger, By a wound he received in his under lip, which struck out some of his teeth, in the year 1594, on the 15th of Deceinber, when he was exactly 41 years of age; at which tithe the J , in a right motion, arrived at the a of 5 in the wortd, whieh is thus wrought:

to the secondary distance of in from the 4 ih $5^{\circ} 3$
which, added to his primary, $=37^{\circ} 34^{\prime}$, makes the ane of direction $42^{\circ} 37^{\prime}$, which being equated, as usual, gives 40 years; therefore, the true direction had preceded some time before.

There was likewise, a little before that, the $\dot{D}=$ to the rapt parallel of δ, being equi-distant from the imwn coeli. The D 's semi-nocturnal are is $5^{4} 37$ ', the seminocturnal arc of o $7^{\text {b }} 50^{\prime}$, their sum $13^{\text {b }} 27^{\prime}$, the right ascension of o $287^{\circ} 5^{\prime}$, his distance in right ascension from the $D 98^{\circ} 28^{\prime}$; hence you have her secondary distance $41^{\circ} 7^{\prime}$, which, subtracted from her primary, which is $79^{\circ} 53^{\prime}$, leaves the arc of direction $39^{\circ} 46^{\prime}$.

These directions of b and δ to the D were not mortal, as she continued, by right direction, within the rays of 4 , and in his terins, and, also, in a parallel of the declination of 8 . On the 15 th of December, 1594, δ. was in $23^{\circ} m$, in 8 of the D 's place of direction, and the D in 4° of m , with latitude south 5°; nearly in the parallel of $\delta^{\prime} \mathrm{s}$ radical place.

The secondary directions to the 56th year, together with the 4 months and 20 days, fall on February 8, 1554, almost in the meridian.-The places of the planets were as follow :

$\begin{aligned} & \text { Deg. } \\ & \text { of } \\ & \text { Lon. } \end{aligned}$	\bigcirc)	h	4	8	9	\%	8
	2	8	3	\bumpeq	*	2m	\pm	¢ 0^{5}
	29.44	18.14	17.19	1.55	1.16	4.47	16.26	18.36
Lat.			S.	N.	S. 2.	N.	N 1.7	

Where the σ was conjoined to t by longitude and fatitude, about the beginning of the sign \mathcal{x}, o was also there, and not far from ' h, who surrounded the 0 's place on the day he received the wound, and which place the \odot entered by a or ray, 'in which he was afflicted by b in an angle; and the D, on the 8th of February, was in 18^{α} of γ, in latitude $4^{\circ} 20^{\prime}$ south, by which she gained the declination $14^{\circ} 20$; 反r had this same dechination, and likewise was in \square to this same place of the D, on the day he got the wound; at which time the ${ }^{2}$ was in 7° of $\approx \approx$, in 0 of $\%$ which received the nature of is from the parallel of declination; and; also, h 's a in the world.

Places of the Progressions of the Planets, the 7th of July, 1558.

$\left\|\begin{array}{c} \text { Deg } \\ \text { of } \\ \text { Lon. } \end{array}\right\|$	\bigcirc	D	ל	4	δ	9	\searrow	8
	${ }_{5}$	\boldsymbol{r}	¢	2010	\%	I	Ω	r
	24.0	11.34	22.51	8.33	16.19	10.11	15B0	23.21

The progressions to the end of the 56th year, depend on the 24th of June, $\mathbf{W 5 8}$, when the D was posited in 6° of m; for the 4 months and 24 days, we advance five signs and 6°, and come to the 7 th of July; the σ was then separated from δ, denoting a conspiracy to bave preceded; b was in 23° of \Varangle; the \bigcirc entered this place exactly on the day he was wounded, δ in 17° of $\boldsymbol{\pi s}$, whose declination the D had on the same day.

But it wam six days hefare: the fappourfull Moom, the Q being 17° of y, and the $D^{\circ} 17^{\circ}$ of $m_{\text {, }}$ which applied to \square of b, and the A, having 4° latitude, wan in exact parallel of the declipation of $\boldsymbol{6}$ and 8 . You see, therefore, that the many agreementa with tha placea of the secondary directions and progressions from the day he received the wound, together with the pre. ceding lunation, are agreeable to what Ptolemy gays in the last chapter of Book IV ; from which we ara liken wise taught, always to observe thase lunations wherem the luminariap are afflicted by inimical rays i and, particularly, if the places in which those rays are unforn tunate, either by ingress or transit, and afflict the proorogators of the nativity, or, rather, if their aspects with them be hostile, as we shall find in the following examples.

Henry the Fourth was called the Great King of Erance and Navarre. in his 15th year he was head of the Protestants in France. At 19 he was frivited to the French Court at Paris, to be present at the maspacre of the Protestants, and in the same year, upon the death of his mother, be took upon himself the titla of King of Novarre. He thrice extorted peace from the King's party; and, by the qattla of Courtrag in 15 el (Henry HI. being then living),
 gad, the Guisiap Flection, againat the Protestants.. Heary wap growned King of Frapce in 1594, and was assassinated in Paris by Francis Ravillac, on May 4th, 1010. He was married twice, but divorced his first wife and martied Mary de Medicis, daughter of Prancis the Great Duke of Tuscany, by whom he had four chikdren, sino pans ad tumbughtera

EXAMPLEV.

	itudes.	
3	- 1°	43 S
4	. 1	$4{ }^{4} \mathrm{~N}$
8	0	4 S.
Q	0	0
9	1	10 N.
¢	1	48 N.
$)$	8	51 N

Deceinations.
70 48 8
1042 S

1619 F.

IN the year 1578, on the 4th of August, he was mortally wounded in the war in Africa, aged 24 years, 6 months, and 11 days.

This nativity has a very near resemblance to that of Francis I, King of France; in both, the D is posited in the ninth house, declining from an 8 of δ, which remains in the third. In Sebastian, the D has the declination of δ, which constitution denotes journies for the cause of war. In both, the D is injured by the aspects of the malefics. In Francis, by the declination of h; in Sebastian, by that of δ; in both h is in the sign \mathcal{H}, angular in the mundane parallel of the D, above which he is elevated. In Francis, from the medium cocli; in Sebastian, from the imum cali; in both, the D is the sonditionary luminary; which being so unhappily affected, denoted calamities in journies; in both 4 is unfortunate, succeeding the rays of ξ to the medium coll; in Francis cadent in the sign \boldsymbol{v}^{\prime}; in Sebastian $\boldsymbol{R R}^{2}$; where to the good things by him signified, he added sorrows; in both, $\%$ assumes the nature of the enemies ; for in Francis, he is in the parallel of declination of h, and $*$ of δ; in Sebastian, in the mundane parallel of h, which is elevated above it from the fourth house; in the other from the medium coeli; which constitution infers the fixed obstinacy of his mind and tendency to perform things that are difficult, nay, even impossible.

Argol, in this nativity, omitting the D, to whom the right of hyleg belongs, directed (when the numbers of his calculation did not agree), the ascendant to the a
of k, which ray contains signs of the smallest ascensions, as are $h \rho$, and and \mathcal{H}; the place also of the direction is in the terms of q, and the autiscion of q succedent, according to common opinion, and doubtless they were strong and sufficient grounds for this opinion; but as.we have fully demonstrated in the Celestial Philosophy, the rays of the stars taken to the angles in the zodiac, are altogether as nothing; and in this nativity the D beconsesa very powerful rignificator of life; who, at the time of this King's accident, came by direction to 21° of 吸, with latitude $4^{\circ} 23^{\prime}$ north, where it was afflicted by the parallel declination of $7^{\circ} 47^{\prime}$, which is thus calculated.

The D 's declination $16^{\circ} 12^{\prime}$, answers to $\Omega 15^{\circ} .40^{\prime}$, whose horary times, $17^{\circ} 22^{\prime}$, doubled, are $34^{\circ} 44^{\prime}$; the polar elevation of the ninth house is 16°, the D 's right ascension $147^{\circ} 29^{\prime}$; from hence arises her distance from the medium coeli $11^{\circ} 26^{\prime}$, and her polar elevation 5°; under which the oblique ascension of the D ' s is $328^{\circ} 56^{\prime}$; the oblique ascension of $\not x 21^{\circ}$, with latitude $4^{\circ} 23^{\prime}$ South, is $354^{\circ} 9^{\prime}$, from which subtracting the former, leaves the are of direction $25^{\circ} 13^{\prime}$, which being equated, as usual, produces 25 years.

By converse motion, the D. was separated from the * of $\boldsymbol{4}$, and applied to the sesqui-quadrate of \boldsymbol{k}; but the hyleg, by a converse motion, was weak, owing to the 8 of $\not \subset$ and δ, to which the D, by a converse motion, applied nearly.

When 4 arrived at the medium coeli, he undertook he friendly office of restoring Prince Muly to his father's kingdoms.

But you will ask, why the 8 of b to the D did not destroy life ? I answer, from several, causes : the King, at that time, was preserved; first, the D in the 8 had gained much latitude, whereby she was far distant from the diametrical point ; second, the direction happened in the terms of q; third, the mundane Δ of the same was succedent; fourth, after the mumdane parallel of 4 had preceded by a right motion, he applied by a converse motion'; but in ${ }^{2} 21^{\circ}$, none of the friendly. rays assisted, but there is the beginning of the terms of t . All these remarks are taken from Ptolemy, in the Chapter of Life.

The Secondary Directions are made on the 13th of February, 1554, at 2 Hours 26 Minules, P. M.

	©)	b	4	δ	\%	$¢^{\circ}$	8
Deg.	\times	0_{0}	\cdots	\approx	\cdots	-	\%	5
L.on.	4.50	21.20	18.0	1.26	5.10	11.1	13.50	18.20

The Progxessions on the 14th of January, 1556.

Deg. of Lon.	\bigcirc	D	ל	4	8	9	8	8
	20	\cdots	r	IT	\pm	m	If	II
	3.55	27.13	8.7	29.26	27.34	10.14	8.47	11.16

The following was the Position of the Planets on the unfortunate Day.

	©		5	4	3	7	\searrow	8
Dag.	31	m	4	\bigcirc	r	吹	Ω	*
Lon.	92.7	7.95	18.12	10.:8	20.0	14.45	10.24	\$5.0

For the secondary directions I add to the hour of the nativity 24 days, 12 hours, 40 minutes; and I come to the 13th of February, 1554, $\mathbf{2}^{h} 26{ }^{\prime}$, P. M. in whieh the o was conjoined in longitude and latitude with of, exactly in 5° of x, without the least assistance of the friendly rays; but the \geqslant was, on the day of his accident, in the 8 of the \odot, applying to the pardilel of the declination of ξ of these motions; the \rangle, on the same 13th of February, was in 21° of Φ, to which, on the unhappy day, $力$ from the 8 , and of in the a, were mischievously disposed; therefore, frona the active and passive ingress, the continued unhappily situated, and was also on the unfortunate day, with the declination of b of the nativity, and of his direction; and hath the same almost with that of \boldsymbol{f}, from 26° of r, with latitude 4° south. The progressions for 24 years are finished on the 29th of December, 1555, when the D is there posited in 2° of Ω; for the other six months 1 add six signs and a half, and I come to the 13th of January, 1556, when the D was found in 17° of Mm , that is, when the δ with the σ has passed 15°, as the 8 of the \odot had passed so many in the nativity, and the D is posited in 28° of \mathbf{m}; on the 14th of January, the D
was in partile δ with δ, and both in the 8 of the D of the nativity, to whose 8 the \odot applied on the fatal day. The \odot, in the progressions, was between the $*$, and quintile, together with the parallel of declination of ψ, who, during the war, favoured by his Δ this place of the ©. There had also preceded in the progressions a 6 with the \odot and 9 ; and 2 , by transit from a Δ, aspected the © of the nativity ; bence it is evident, that the affairs of the King, together with his army, were successful, as he with his troops had seized upon the kingdoms of others; but the stars threatened life, which when extinguished, every thing fell equally with it.
The four following nativities, as they have the © in the crepusculums, the significator of life, and the calculations of the directions belonging to the same Canons, I was unwilling to separate, but have explained them, one after another: as they bear testimony to the truth of my opinions concerning the crepuscules, it was likewise my desire to have them all ready at hand, for every one who wishes to have a proof of it.

EXAMPLE VI.

Latitudes

ON the 16 th of October, $1632,3^{h} 17^{\prime}$, P. M. be was mortally wounded in an engagement, aged 37 years 10 months.
In this nativity, to the given matutine hours, $7^{28} \mathbf{2 8 ' ,}^{\prime \prime}$ there ought to be placed $20^{\circ} 30^{\prime}$ of \triangle in the medium cocli, and not $15^{\circ} 42^{\prime}$ of \approx, aecording to the Argoline position ; others assert, that the true hours are $7^{\text {b }} 42^{\text {r }}$; however it be, it matters not, as we do not direct the horoscope, but the a, who, at the time of this king's death, was directed, by a right motion, to the is of 4 , the 0 of f, and the 8 of b in the zodiac, within the term: of δ; Lut the presence of ψ could be of no service as beingralone, the enemies numerous; then the \mathcal{O}, by converse motion, was directed to the δ of δ and 0 of $\bar{\xi}$, followed by the parallel of h_{f} in the world, where indeed there io a concurrense of the of $\boldsymbol{4}$; but, as I have said, being alone against several, he could not influence, and even when he was the giver of true vapour, he changed it to rashness, because afflicted by the enamies, as Ptolemy tells us in his chapter on the Nature of the Mind.

The calculation of the right direction. The or ob lique ascension in the horoscope is $313^{\circ} 15^{\prime}$, from which subtracting the horoscope's oblique ascention, there remains the ρ 's primary distance from the horoscope $20^{\circ} 48^{\prime}$, the oblique asceusion of 25°. m the place of the rays of b and z is $850^{\circ} 21^{\prime}$; from which subtracting the 0 's oblique ascension, there remains the arc of direction, $37^{\circ} 36^{\prime}$, calculated in the horoscope; but as the ρ is in the morning crepuscule, I enter the table of
crepuacules ∞ the pole 69°, with 280 $\&$, and the 0 's distance $28^{\circ} 4^{\prime}$, which is his primary; and I find the - remaining in the cropusculine airtle of depression \boldsymbol{x}°, opposite to this crepusculine circle nuder $\approx 2,25^{\circ}$; afier taking the proportional part, I obtain $16^{\circ} 33^{\prime}$, which I call the socondary distance, and mbtract it from the primary; there then semains the ortive diference, $4^{\circ} 15^{\prime}$, but as the secondary diatance is lean than the primariy, the difference therefore must he added to the arc of direction, taken in the boroscope, asd the trua arc of diraction is then $11^{9} 21^{\prime}$; this arc I add to the Q 's righe ascension, which is $266^{\circ} 59^{\prime}$, and the sum is 3080^{20}, answering to $5^{\circ} 56^{\prime}$ of $=$, which the ∞, from the day of the uativity, arrives in 38 days, which devotes so many years. The calculation of the Q'a converse direction to δ is thus: The 11th hense is elevated 31°, its ohlique ascension is $282^{\circ} 27^{\prime}$; to the same pole the oblique secession of 4 is $244^{\circ} 33^{\prime}$; the distance therefore of $8^{\text {from }}$ the 11 th house is $12^{\circ} 6^{\prime \prime}$: the 32 Ah house is elevated 49^{3}, its oblique ascension is $262 \mathbf{2 月 ~}^{9}$; the oblique ascension of i to the pole of the k Ah , is $255^{\circ} 51^{\mathrm{n}}$; therefore the distance of of from the Eith house is 6096^{\prime}; those distances of t, added together, make $18^{\circ} 42^{\prime}$, the space of the house of of above the earth: the difference of the polar elevation of the lith and 12 th bouses is 18°, from which arises the polar elevation of 843° neinly; the oblique asomician of s to this pole 43°, is $251^{\circ} 16^{\prime}$; the 0^{\prime} 's oblique aseemsion there is $290^{\circ} 59^{\circ}$; from which there remains the are of direction $39^{\circ} 36^{\prime}$, tese than the precerting by

19'45'; so that from the 6 with 's the 0 began to be separated.
'The direction of the 0 to the \square of n in mundo, by converse motion is calculated as follows: the ob-: lique ascension of the ' 8 of b is $351^{\circ} 16^{\prime}$, to the pole : 59^{1} (that is, in the horoscope) ; the right ascension of b, is $327^{\circ} 11^{\prime}$, which, subtracted from the former, ; leives'the ascensional difference of $b 24^{\circ} 5^{\prime}$, and the semi diurnal arc of ${ }^{\prime} h$ becomes $114^{\circ} 5^{\prime}$: the distance of h. from : the West is $58^{\circ} 49^{\prime}$, the 0^{\prime} 's declination is $23^{\circ} 30^{\prime}$, ascensional difference ' $46^{\circ} 23^{\prime}$, semi-diurnal arc $48^{\circ} \mathbf{3 7}$; and the \odot^{\prime} s right ascension is $266^{\circ} .59^{\prime}$, from which his primary distance from: the medium cali -is $64^{\circ} 32^{\prime}$. I now require, if the semi-diurnal are of hu $114^{\circ} 5^{\prime}$, gives his distance from the West $58^{\circ} .49^{\prime}$, what distance from the medium cali will the 0 's semi-diurnal arc $43^{\circ}: 37^{\prime}$ give ? and by the logarithms the O^{\prime} 's secondary distance from the medium coeli is $22^{\circ} 29^{\prime}$, which. subtracted from the primary; leaves the arc of direction $42^{\circ} 3^{\prime}$ of the \odot to of h . But if we add this secondary distance of the $\odot 22^{\circ} 29^{\prime}$ in. his primary from the horoscope, we make the \odot 's arc of direction to the mundane parallel of b $43^{\circ} 17^{\prime}$; therefore the directions followed very near one after the other. But as I declare: myself sincerely, ingennous, and desire nothing but the bare truth of every thing, observe, gentle Reader, that I have inserted this example in my .Celestial Philosophy; page 252; and have there remarked, that from Tycho's calculation, one degree is to be added to the \odot 's place-; for as Argol has placed a matatine hour, that is, from
midnight, in the middle of this figure, I thought it belonged to the night following the 19th day, for, among several reasons, midnight is the end of the preceding, and the beginning of the following day ; but if $7^{\mathrm{b}} 28^{\prime}$ be from midnight, it certainly preceded the 19 days; and I afterwards found, from the D 's place, that that matutine hour belonged to the night preceding the 19th day, therefore the ©'s place seems to have been rightly calculated.

For the secondary directions, I add to the hour of the nativity 37 days 20 hours, for so many years and 10 months, and $\cdot I$ come to the 25 th of January 1595, with the hour from meridian $17^{\mathrm{h}} 42^{\prime}$: the \odot was in $=6^{\circ}$, and the D in $\Omega 6^{\circ}$, who by a sesqui-quadrate ray and parallel of declination assumed the nature of δ, with whom she had these aspects while remaining in partile 8 of the \odot, and infected the \odot also with the same evil qualities; the \odot too was in parallel of δ in the radix, and likewise at setting \bar{b} and δ entered a parallel exactly to this place of the \odot; and at the time of the accident entered the exact parallel of of by these motions on the 25th of January. The progressions for full 38 years were made on the 13th of January 1598, whilst the D was in $\boldsymbol{r} 16^{\circ}$; but there is a deficiency of two months and four days, for the \odot at his death was in $\approx 23^{\circ}$, but in the nativity $\neq 27^{\circ}$, wherefore, from this place of the D in $\boldsymbol{r} 16^{\circ}$, I subtract 65° fir the two months and four degrees, to denote so many days, so that the D is posited in $=7^{\circ}$, that is, on the 8th of January 1598 , when the \odot was in wo 18° upon \S of the
nativity; and it is to be observed, that in the natis vity takes upon him an inimical nature, because not oonjoined with the benefies, but, on the contraty, in the house of ह ; the in) the exaltation of $\%$, $*$, and also mundane paralled of 8 ; and applied to the parallel of δ in the nativity, and also set with 5 and δ on the day of the accident, of in the progressions from 28° of it was found in 8 to the 0 of the nativity. On the 13th of October, 1632, three days before the accident, there was celebrated a new D in 20° of Λ, in 0 of $\dot{8}$ of the nativity, and a of the 0 's progression.

But it appears that contributed not a little to the actident which befel the King, who is reported to have gone, merely out of curiosity, to reconnoitre the enemy, and was by them wounded mortally.

Secondary Directions.

$\begin{gathered} \text { Dep. } \\ \text { of } \\ \text { Lon. } \end{gathered}$	©)	5	4	8	8	8	Ω
	H	Ω	Ω	\cdots	1	*	Y	8
	6.0	6.0	22.40	1.55	21.29	16.50	13.10	6.37

Progressions.

$\begin{gathered} \text { Def. } \\ \text { of } \\ \text { Lon. } \end{gathered}$	0	11	b	4	8	9	¢	8
	4	m	\triangle	II	II	先	15	\cdots
	18.0	7.0	4.28	6.40	28.9	28.88	8.0	9.30

Places of the Stors at the Time of the Accident.

$\begin{gathered} \text { Deg. } \\ \text { of } \\ \text { Lon. } \end{gathered}$	\bigcirc	\rangle	ζ	4	¢	9	8	8
	\ldots	4	I	8	$\underline{1}$	m	\triangle	r
	23.35	0.15	27.11	24. 29	25,48	0.31	23.46.	27.5

Gastavus Adolphus was erowned Iing of Oweden in the year 1017. In 1013 be made pacee with the Danes; and, with the Rassians, the year be was crownen. He had wars with the Poles, and redoced all Liffland in 1625. In 1690, be rande an expedition isto Germany, and was strin at the batche of Lutzen. Gustavan married Maty Eleanor, deaghter of Johi Sigismund, Elector of Brandenburg, and left issue only one daugliter, the Princess Chriscinm, who, under the regency of ber mother, cavied on the war in Gernegy

A a

EXAMPLE. VII.

HE was elected Cardinal in March 1591, being 17 years and 3 months old: a catarrh put an end to his life on the 21st of February, 1626, in the 52d year, 2 months and 7 days of his age.

Argol directs the ascendant to the attiscion of $b ;$ whereas theosignificator of life belongs entirely to the 0 , which he omits, because the numbers of his calculation do not agree. . And as my method is perfectly right, insomuch, that not only in these examples, wherein the \mathcal{O} is in the crepuscules; but also in others, wherein the 0^{-}is found in the obscure space, my calculations agiee wonderfally with the times. Doubtless, these examples of deceased persons ought to be received 3 and that no one may look upon this new opinion concerning the crepuscules as ridiculous, and not to be depended upon, there are sepcral people who can vouch for its truth.

The 0 then, in the 53d year, arrived at the a of h in the zodiac ; the Q 's oblique ascension in the horoscope is $289^{\circ} 32^{\prime}$; the oblique ascension of the quadrate of h is $344^{\circ} 50^{\prime}$; from which, subtracting the former, leaves the aro-of direction $55^{\circ} 18^{\prime}$, calculated in the horoscope; I subtract the horoscope's oblique ascension from the oblique ascension of the \odot, and there remains the 0 's primary distance from the horoscope 20057, which I look for in the Tables of the Crepuscules to the pole's elevation 440, but, as I do not find it, I take the nearest, which is $20^{\circ} 144^{\prime}$, to the crepusculine circle of depression 13°; to the solar degree 25° of i; and, to the same cirole, under $2^{\circ} \times$, I take the
secondary distance $18^{\circ} 20^{\prime}$; I subtract this from the primary found in the Tables, which is $\mathbf{2 0 0} 1 \mathbf{4}^{\prime}$ (for it is of little or no coneequence, as we bave said in its Canon, if we do not take the exact distance of the $\left(\begin{array}{c} \\ 20^{\circ} \\ 57^{\prime}\end{array}\right.$, and there remains the ortive difference $1^{\circ} 54^{\prime}$; bast as the secondary distance is less than the primary, I add the ortive difference to the arc of direction $55^{\circ} 18^{\prime}$, and I make the true arc of direction $57^{\circ} 12^{\prime}$.

By converse motion, whilst the (1) and $\%$ were carried away by the rapt motion of the primaus mobila, they happened to be poxited in the mundane parallel alternately, that is, in an equal proportional distapce from the medium codi ; the 0^{\prime} 's semi-diurnal are is $4^{4} 21^{\prime}$; the semi-diurnal arc of δ is $5^{b} \mathbf{3 8}$ (for the declination of δ is $5^{\circ} 26^{\prime}$, answering to 14° of Δ in the ecliptic). I add these semi-diurnal arcs together, and I make the sume $9^{\mathbf{4}}{ }^{50}$ ', which I put in the first place; in the second, the semi-diurnal arc of $\boldsymbol{\delta}^{81} 38^{\text {² }}$; in the third, the right distance which is between δ and the \odot, the right ascension of δ^{8} is $195^{\circ} 27^{\prime}$, but, of the $Q, 264^{\circ} 48^{\prime}$; therefore, there remains their alternate right distance $69^{\circ} 21^{\prime}$; and, in the fourth place is produced the secondary distance of of from the modium cexli $39^{\circ} 8^{\prime}$, which I add to the primary, because f is in the ascendeat part of herven, and when the direation is finished is in the descendant, and the anc of direction is 56° (for the primary distance of 8 from the medirum coeli is $16^{\circ} 59^{\prime}$). For the equation, I add this arc to the Q^{\prime} 's riaht ascension, which is $264^{\circ} 48^{\prime}$, and the sum is $380^{\circ} 48^{\prime}$, answering to $18^{\circ} 20^{\prime}$, at which the Q from the day and hour of the mativity ar-

PRIENM MOBLEE.

rives in 52 days and 2 hours. The right direction to the a of b was succedent; if, however, the place of B be true, which was succeeded by a a of D in the zodiac, which, in the nativity, was in the 8 to b, and the disease in its proper and natural signification was denoted to be mortal from the violence of the catarrh, which was so great, that it caused a suffodation. For the secondary directions, I add to the hoors of the nativity 52 days, 4 hours, 30 minutes; for the 52 years, 2 monthe and a quarter, and I come to the 28th of January, 1574, a little before noon; the 0 ' applied there to the exact parallel of δ; also, the ρ was conjoined to $\% \mathrm{Kk}$, who, being in 8.50 south latitude, was in the same parallel of declination with ξ_{2}, and $s 0$, by reason of the signs and aspects, assumed the nature of k . But it deserves admiration, to find, that on the day he took to his bed, the 0 was found in 6 with $\%$, and nearly in the same degrees of that aign, both being in the parallel of δ, in which parallel ontered the \odot 's place of these motions; and, on the day preceding the sickness, these happened a full D also near to these places; the D, by her motion, was in $\% 1^{\circ}$, with $8^{\circ} 58^{\prime}$ south latitude, whereby she had the declination of $18^{\circ} 14^{\prime}$; this declination b entered at his sickness and death; on the day his disorder began, the D was in 吹 $^{\circ}$; in 2 o of k by these motions. You see, therefore, a mutual commutation of the active and passive ingresses. Lastly, on the day he died, the 0 arrived at $\because \boldsymbol{S}^{\circ}$ by primary direction, under $2 a$ of k of the nativity, and 8 to 7° in 8 ; whence both in the quadrate and parallel he maligned the ©'s place of
these motions of the secondary direction; but, when communicates any kind of aspect to the significator of life, if endued with the nature of the malefics, he assists towards a defluxion of humours, and, more particularly, if he participates with h.

Hear what Ptolemy says in the Chapter of Diseases incident to the Body: " But (says he) is a hetp to " the inveteracy of disorders, as he increases the frigi"dity of b, when reconciled to him, and with a more "constant motion stimulates the phlegm and heap "c of humours, in particular, about the breast, belly, " and throat, \&cc."

The progressions for 48 years are finished on the 24th of October, 1577, when the D remains in $\boldsymbol{r} 21^{\circ}$, for its distance there from the 8 of the 0 is 20°, as in the nativity, for 52 years are finished on the 20 th of February, 1578, whilst she was in $\Omega 22^{\circ}$; for the two remaining months the D goes over 65°, and is posited in $a 27^{\circ}$. Lastly, for the other 7 days she goes 8°, and is posited in 5° of m; the \odot was then in $\nless 17^{\circ}$, to which, from the opposition, h entered at the time of his sickness and death; and 8 in the parallel, and nearly in the 8 , entered the D 's place of the progression $m 5^{\circ}$.

In his 18th year, when the native was created a Cardinal, the \odot, by right direction, had arrived at a Δ of 4 in the world, which we have calculated in Canon XXXVI, to which we refer you; the medium cali likewise came to the Δ of $\%$; for the oblique ascension of the second house, which is elevated 33°, is $298^{\circ} 35^{\prime}$; the oblique ascension of \boldsymbol{q} in the same place is $318^{\circ} 3$,
from which，subtracting the former，leaves the arc of direction $19^{\circ} 28^{\prime}$ ；so that this preceded，and that suc－ ceeded．

Secondary Directions to the Time of his Death， January 28， 1574.

$\begin{gathered} \text { Deg. } \\ \text { of } \\ \text { con. } \end{gathered}$	\bigcirc	3	ζ	4	δ	8	8	8
	m	8	f	8	m	\boldsymbol{r}	\＃1	7
	18.48	1.0	7.14	27.12	11.55	2.57	19.10 R．	22.21

Progression on the 25th of February， 1556.

$\begin{aligned} & \text { Deg. } \\ & \text { of } \\ & \text { on. } \end{aligned}$	©	）	b	4	δ	9	8	8
	$3 \times$	m	5	\approx	38	2	\boldsymbol{r}	\boldsymbol{r}
	17.0	5.0	21.10	9.50	10.36	27.14	6.14	3.30

On the Day of the Sickness，12th of February，1626，the．
Stars were posited thus．：

$\left\|\begin{array}{c} \text { Deg. } \\ \text { of } \\ \text { Lon. } \end{array}\right\|$	\bigcirc	D	万	4	${ }^{\circ}$	9	8	Ω
	2	＂沉	吹	m	8	2	2mintin	吹
	24.1	7.37	13.48 R.	1.0	11．38	2.59	22.29 R．	5.20

EXAMPLE VIII.

HE died the 5th of March; 1622, of a dropsy, aged 52 years and 11 months. The \odot is, doubtless, the significator of life in this nativity ; but Argol not finding, in his numbers, any direction of the \odot for 53 years, directs the ascendant to a Δ of h, which is in signs of the longest ascension, and the place of the direction is the beginning of the terms of 4 , so that this direction thas not the least deadly appearance. According to our method the \odot arrives by right direction to a of of in the sodiac ; the Θ 's oblique ascension in the horoscope is $8^{\circ} 28^{\prime}$, from which, subtracting the horoscope's oblique ascension, there remains the \odot 's distance from the horoscope, $18^{\circ} 43^{\prime}$; the oblique ascension of us 0.0 is $65^{\circ} 10^{\prime}$, from which, subtracting the 0^{\prime} 's oblique ascension, leaves the are of direction calculated in the horoscope $56^{\circ} 42^{\prime}$. In the Table of Crepuscules 1 look for this distance of the $\odot 18^{\circ} 43^{\prime \prime}$, under the pole's clevation 44°, to the degree of the \odot in $r 16^{\circ}$, and I take the proportional part between the distance $18^{\circ} 32^{\prime}$, which is to $\Phi 10^{\circ}$ to the crepusculine circle 13°, and the distance $190^{\prime \prime}$ which is to $20^{\circ} \mathrm{T}$, i. e. for θ°, for the \odot is in $r 10^{\circ}$; and the difference is 20^{\prime}, from which, for the $6^{\circ}, 17^{\prime}$ are due to be added to $18^{\circ} 32^{\prime}$, and I make $18^{\circ} 49^{\prime}$. But the 6^{\prime} 's distance is $18^{\circ} 43^{\prime}$; this I rejeet, and take $18^{\circ} 49^{\prime}$, for it matters not, as we have said in the Canons. To the same crepusculine eircle 13° under $\sigma 0.0$, I take the $24^{\circ} 45^{\prime}$, which are the secondary distance, and greater than the primary by 5056 , which are therefore to be subtracted from the aro of direction above found, and there remains the true B b
arc of direction $50^{\circ} 46^{\prime}$, which, for the equation, I add to the $\odot^{\prime} s$ right ascension $14^{\circ} 31^{\prime}$, and I make the sum $65^{\circ} 17^{\prime}$ answering to $\left[17^{\circ}\right.$, which the \odot from the hour of the nativity reaches in 53 days, which nicasures so many years. At the same time, the \odot, by a converse motion, came to the sesqui-quadrate of b in mundo. The oblique ascension of the opposite place of h is $6^{\circ} 19^{\prime}$, from which, subtracting the horoscope's oblique ascension, there remains the distance of b from the west $16^{\circ} 34^{\prime}$; but, as the horary times of b are 15°, it is evident that h was posited about the middle of the seventh house, distant from the middle $1^{\circ} 34^{\prime}$; therefore, the \odot, as he has ncarly the same horary times as h, is posited in his sesqui-quadrate before he arrives at the cusp of the twelfth house $1^{\circ} 34^{\prime}$; the $\odot^{\prime} s$ horary times 16°, doubled, make 32°, to which I add the \odot^{\prime} 's distance from the east $18^{\circ} 43^{\prime}$, and I make the sum $50^{\circ} 43^{\prime}$, from which, subtracting $1^{\circ} 34^{\prime}$, there remains the arc of direction $49^{\circ} 9^{\prime}$, so that this direction had preceded a year, in case the place of h be true. But there happened also to be a sesqui-quadrate of f_{b} to the D in mundo, by a converse motion. There had likewise preceded a parallel of $\boldsymbol{\psi}$ to the \odot in the world, whilst both were moved together by the motion of the primum mobile; but, as 4 is unfortunate, and the $>$ in the sixth house in the sesqui-quadrate of the \odot, the significator of life, they denoted a dropsy, and, according to Ptolemy, a bad state of the lungs. I take the secondary directions to the 52 d year complete, together with the 11 months, from the 18 th of May, 1569; with the meridional hours $14^{\mathrm{b}} 24^{\prime}$; the D was in 9512°, who
was separated from the 8 of 4 ．On the day he died， which was the 5 th of March，b was found upon the place of the D ；and，again，on the same day，the D entered a \square of h of these motions；the \odot arrived at ${ }^{\prime}$ II 7° ：there was a full D before he died，that is，on the 26th of February，1622，the \odot being in 8° of x ， and the D in $प^{\circ} 8^{\circ}$ ，in a to the place of the σ°＇s se－ condary direction；and，at the full \rangle ，the luminaries were in the parallel of $\delta:$ on the day he died，b en－ tered the parallel of in 7° ，the place of the \odot^{\prime} s se－ condary direction．

The progressions are made on the 6th of July，1573； the \odot was in $\mathscr{z} 23^{\circ}$ ．On the day he died，δ entered， from the \square ，this place of the \odot ；the D in \square of σ near $A 11^{\circ}$ ，to which h ，on the day of his death，was in 0 ．

The secondary directions were as follow：

	0	1	万	4	${ }^{*}$	9	8	8
	1	¢	\simeq	\checkmark	8	¢	8	攻
	7.0	12.0	3.27	10.21	11.32	22.21	15.26	23.10

The places of the progressions are these：

$\begin{aligned} & \text { Deg. } \\ & \text { of } \\ & \text { Lon. } \end{aligned}$	\bigcirc	D	万	4	8	9	¢	8
	8	\sim	m	\checkmark	${ }_{6}$	¢	\％	\square_{8}
	23.0	11.0	20.10	29.33	11.15	20.3	4.0	3.16

On the day he died, the planets were in the follonixg places:

Observe the anfortunate disposition of $\mathbf{4 4}$ in all these places to signify a dropsy.

EXAMPLE IX.

IATITEDES.				dechinationg		
5	- . $2^{\circ} \mathrm{T}$	7	S.	7^{0}	14'	S.
27	. . 050	50	N.	16	34	N.
8	-. 04	41	S.	9	30	S.
0	- . 0	0				
7	- . 1	2	N			
\%	- 15	55	S.	7	18	N.
)	- . 3	53	S.			

HE died the 14th of April, 1637, of an apoplectic st. In June, 1826, he was much troubled with violent pains in the head.

In this nativity, Argot directs the ascendant to the 0 of 4 for the time of his death, as if it happened that 4 was an anareta; whereas the significator of life is entively proper to the Θ, who is in the angle of the east, and the benefics can by no means be anaretas. Indeed, it is true, if they are unfavourably mixed together with the destroyers of life, they can distinguish the kind, nature, and cause of death. But, from their nature, the benefics use their power rather to save than destroy, even from the ray \square and 8 , as we find it in Piolemy, in the Chapter of Life; the \odot, therefore, the significator of life, arrives at a \square of $\boldsymbol{\sigma}$ in the zodiac in 25 years, and, by converse motion, was elevated above the horizon to the mundane parallel of $\mathbf{8}$; the θ^{\prime} 's oblique ascension is $\mathbf{1 8}{ }^{\circ} 52^{\prime}$, from which, subtracting the horoscope's oblique ascension, there remains the 0 's primary distance from the east 12033^{\prime}; the oblique ascension of the \square of δ is $44^{\circ} 37^{\prime}$, from which, subtracting the \odot^{\prime} s oblique ascension, leaves the
arc of direction $25^{\circ} 45^{\prime}$, calculated in the horoscope. In the Table of Crepuscules, for latitude $\mathbf{4 2}^{\circ}$, I look for the \odot^{\prime} 's distance, and, in the crepusculine circle 9° to 0° of $४, I$ find $12^{\circ} 54^{\prime}$; to 10° of $४, I$ find $13^{\circ} 21^{\prime}$; the difference is 27^{\prime}. I take the proportional part for 2° and one-third, and I make the primary distance 13°; then, in the same crepusculine circle 9°, under II 7°, by taking the proportional part, \&cc., I obtain the secondary distance $14^{\circ} 45^{\prime}$; the ortive difference is $1^{\circ} 45^{\prime}$. But as the secondary distance is greater than the primary, the difference, therefore, must be subtracted from the arc of direction $25^{\circ} 45^{\prime}$; therefore the true arc of direction is 24°, which, for the equation, added to the ${ }^{\prime}$'s right ascension $30^{\circ} 7^{\prime}$, makes the sum $54^{\circ} 7^{\prime}$, answering to $826^{\circ} 26^{\prime}$, to which the \odot, from the day and hour of the nativity, arrives in 25 days, which signifies so many years of age. The 0 is, by a converse motion, posited in a mundane parallel of $ళ$, whose declination is $7^{\circ} 17^{\prime}$, answering to $18^{\circ} 30^{\prime}$ of the ecliptic; its horary times nocturnal are $13^{\circ} 54^{\prime}$; its distance from the east $9^{\circ} 20^{\circ}$; and its oblique ascension in the horoscope is $15^{\circ} 39^{\prime}$. The diurnal horary times of the \odot (for he is posited above the earth) are $16^{\circ} 53^{\prime}$, wherefrom, in the fourth place, is produced the \odot 's secondary distance $11^{\circ} 20^{\prime}$, which, added to the primary, makes the arc of direction $23^{\circ} 53^{\prime}$.

But it is very evident, that \S possesses an anaretic power; even from the nature of the effect, which is apoplexy; for \wp is in exact parallel of \hbar 's declination, applying to the declination of δ; he is likewise in the mundane parallel of b; and, as he has his \square to the

- 7, denotes a very grievous disorder in the head, especially when found in the centre of the horoscope, and western angle. The \odot was likewise joined, by a converse motion, to h, whose declination is reduced to \boldsymbol{x} $11^{\circ} 40^{\circ}$ in the ecliptic, and the diurnal horary times become $13^{\circ} 55^{\prime}$, which, doubled, is $27^{\circ} 50^{\prime}$; the pole of the twelfth house is 31°, the oblique ascension of h in the horoscope is $352^{\circ} 34^{\prime}$, and there remains his distance from the east $13^{\circ} 45^{\prime}$; from which, in the fourth place, are produced 5°, to be subtracted from the pole of the country, and there remains the polar elevation of $b 37^{\circ}$, under which his oblique ascension is $351^{\circ} 28^{\prime}$: the \bigcirc^{\prime} s oblique ascension there is $20^{\circ} 41^{\prime}$, from which, subtracting the former, leaves the arc of direction $29^{\circ} 13^{\prime}$, so that the \odot was ouly 4° distant from b; therefore, from these four examples of the \odot, constituted in the crepuscules, it is sufficiently and plainly proved how well the calculations by the crepusculine circles agree. But I proposed this method by reasoning upon, and also observing, the accidents in these examples, as I never could persuade myself to neglect the true significator of life. It it usual, with some, to answer this method of proceeding, by saying, that there is no occasion to be so rigorously exact in the judgment of nativities, and that a malign influence to the horoscope may kill, if it has not the primary signification of life. But, from such reasoning, the order and method which Ptolemy lays down for the election of a prorogator are quite absurd; unless.life be at the disposal of a sole primary significator only, and a very powerful rea-
son convinces us it is so. For either one prorogator only, that is, if more powerful with respect to the rest, denotes life; or else one, with others competent, as colkeagues; but this last cannot be admitted, as it would create a confusion which could not be cleared up, and Piolemy never taught it should be so. They say, that life primarily regards the principal prorogator; and, secondly, the ascendant; so that, in the occourses to the malefics, it may kill; bat it is quite the reverse, for if a prorogator, who, from its powerful and dignified place, is entitled to the signification of life, can, by his influencing power, support that life, no other of inferior virtue can pat an end to it. Again, they say, the reason why those nativities are stronger, wherein several concur, to signify life, is because the significators of life being numerous, there is a proportional increase of strength to prolong life. But it is quite otherwise, for, from several significators, the aspeets of the destroyers are multiplied by the different and numerous directions; therefore, any person having several significators of life, would be lower in station and shorter lived; in truth, they direct the horoscope to the malefics, purely that it may kill; though the luminaries at that time happily signify life, and are strong, owing to the aspects of the fapourable planets with which they continue in direction ; one, therefore, only signifies life, elected, according to Ptolemy's method, \&re. But let us look for the other motions in the nativity now before us.

The secondary directions are made May 16, 1612, at 16 hours nearly, when the was in $\$ 24^{\circ}$ in of of
δ, ψ in the \square of δ 's radical place, and that of the deadly direction. At his illness, the D was posited in - to this place; and, on the day he died, was found there with the \square of $\%$ in of of these motions, for δ was in $\because 25^{\circ}$, and D in $f 25^{\circ}$ on the day of death, and in $\because 26^{\circ}$. On the 9 th of April, which preceded his death, there was celebrated a full \bullet, the \odot being in $\boldsymbol{r} 20^{\circ}$, upon $¥$ of the nativity, and the D opposite: and, at his death, the © exactly transited this place of $\underset{\sim}{\text {, }}$, maligned by the \square of k , who, in his transit, was found to remain upon the D; and in the 0 of \S 's radical place.
The progressions to the end of the 25 th year, are made on the 29th of April, 1614, the D being in 0°; but 7° must be subtracted, for his death happened 7 days before the σ 's return to the natal place, and the D was posited in 23° of bo upon her proper place of the nativity, in the \quad of $¥$, where h was found at death; the D, at his illness, entered the 8 of δ of the progressions, where it was in 29° of \mathcal{f}, and, at his death, she was posited in its a, and $¥$ was found exactly in the same place on the day he died $;$ the \odot, on the same day, was posited in the \square of the D of the progressions, and parallel of o's radical place ; and it is truly admirable to see how well these agree. You are to observe, likewise, that the ingresses and transits, both active and passive, agree; aspecting the lunations in the places, which are the cause of the effect, according to the true sense of Ptolemy.

Secondary Direction Places of the Stars．

$\begin{gathered} \text { Deg. } \\ \text { of } \\ \text { Lon. } \end{gathered}$	\bigcirc	D	b	4	${ }^{\circ}$	9	¢	8
	8	\ldots	\cdots	Ω	＊	$\boldsymbol{\square}$	II	II
	26.0	24.0	16.52	17.50	25.17	2.39	10.1	1.48

The Progressions of the Stars are those：

Deg． of Lon．	\bigcirc	D	万	4	8	9	8	8
	\succ	$\%^{\circ}$	r	\bumpeq	3	\checkmark	8	8
	8.20	25.0	7.50	19.36	28.57	24.19	28.52	24.6

Places of the Planets，at the Time of Death，on the $14 t / 2$ of April，1637， $3^{\text {b }}$ Night．

$\left\lvert\, \begin{gathered} \text { Deg } \\ \text { of } \\ \text { Ion. } \end{gathered}\right.$	\bigcirc	1）	万	4	8	9	¢	8
	\boldsymbol{r}	7	\％	吹	8	r	\times	\mathfrak{p}
	24.48	27.0	25.7	7.20	14.91	1.34	27.0	29.0

EXAMPLE X.

HE died in the month of October, 1626, aged 39 years and 6 months: as the D is in the centre of the horoscope, she is the significator of life, which, in the 39th year and a half, had arrived, by right direction, to a parallel of the declination of the \odot and b; and, as a question sometimes arises, to know at what place the significator arrives by direction.in the zodiac, of this I will now shew an example: In the first place, I thus find the arc of direction adequate to the 39 years and a half; the \odot in $39^{d} 12^{\mathrm{h}}$, arrives at II 14°, whose right ascension is $72^{\circ} 38^{\prime}$; the \odot^{\prime} s right ascension is $33^{\circ} 42^{\prime}$, which, subtracted from the former, leaves the arc of direction for the given years $38^{\circ} 56^{\prime}$; the D 's oblique ascension to the pole 44°, is $290^{\circ} .48^{\prime}$, to which 'I add the are of direction $38^{\circ} 56^{\prime}$, and I make the sum $329^{\circ} 44^{\prime}$, at which the D arrives in the said year. I find this in the table of oblique ascensions about $m 16^{\circ}$, with $3^{\circ} 50^{\prime}$ north latitude, that is, the same the D has in that place; but the declination of this place, according to longitude and latitude, is $12^{\circ} 50^{\prime}$; the Q^{\prime} 's declination is $13^{\circ} 34^{\prime} ; ~ b ' s$ declination is $11^{\circ} 34^{\prime}$; therefore the D, in that place, obtained a mean declination between the \odot and ξ. But, as the \odot was conjoined to $\bar{\xi}$, and in the mundane parallel of δ, he was endowed with their deadly qualities; from which 4 being alone, in his $*$, could not relieve him. By a converse direction the D applied to a mundane parallel with the \odot and k, whilst all were carried away by the motion of the prinum mobile. But if $\simeq 26^{\circ} \mathbf{4 5}$ ' are 'posited in the medium cocli, this ray, by a true calculation,
exactly agrees，for the D^{\prime}＇s semi－diurnal arc is $4^{4} 4^{\prime}$＇； semi－diurnal arc of the 0^{\prime}＇s opposition is $5^{\mathbf{b}} 6^{\prime}$ ；which， added together，make the sum $9^{\text {b }} 50^{\prime}$ ；the D^{\prime}＇s right ascension is $271^{\circ} 58^{\prime}$ ；her primary distance from the medium cali（ $26^{\circ} 45^{\prime}$ of \bumpeq being posited there，whose right ascension is $204^{\circ} 48$ ）is $67^{\circ} 10^{\prime}$ ；the right as－ cension of the $\odot^{\prime} \mathrm{s} 8$ is $213^{\circ} 42^{\prime}$ ；and the right dist－ ance between the D and 8 of the \odot ，becomes $58^{\circ} 16^{\prime}$ ； therefore，if that sum， $9^{\text {h }} 50^{\prime}$ ，gives the D＇s semi－ diumal arc $4^{\mathrm{n}} 44^{\prime}$ ，the right difference $58^{\circ} 16^{\prime}$ ，will give $28^{\circ} 3^{\prime}$ ，which；subtracted from the D＇s primary dist－ ance from the medium ．cocli，leaves the arc of direction $39^{\circ} 7^{\prime}$ ：she likewise applied to the mundane parallel of δ ；and lastly，to the 8 of \ddagger ，which direction may easily be calculated．

For the secondary direction，I add to the hours of the nativity 39 days 12 hours，for the same number of years and 6 months，and I come to the 5 th of June，1587， nearly in the meridian，in which the places of the planets were as under：

$\left\|\begin{array}{c} \text { Deg. } \\ \text { of } \\ \mathrm{an} \end{array}\right\|$	\bigcirc	D	ち	4	δ°	9	¢	8
	II	［	\checkmark	σ	吸	\boldsymbol{r}	II	二
	13.43	14.24	10.45	16.38	24.25	28.55	10R40	4.31
Lat．		S． 4.20	2． 9	S． 5	$\begin{gathered} \text { N. } \\ \text { 1. } 5 \end{gathered}$	$\underset{2.10}{S .}$	$\underset{2.24}{\mathrm{~S}}$	

The D under the \odot＇s rays and the \odot with $\S \mathbb{R}$ in the parallel of 4 ＇s declination；but $\boldsymbol{\psi}$ was adverse to the sign of the luminaries ：in October，1624，in which
the native died, there was a full - in $\bumpeq 12^{\circ}$, with $\&$ retrograde in δ with δ and parallel of \hbar, and the secondary direction in the parallel of δ, and to the nativity in the parallel of q and δ.
The progressions are made on the 6th of July, 1590, or on the following day, because the day is not known when the native died, yet the planets were nearly as follow :

$\begin{gathered} \text { Deg. } \\ \text { of } \end{gathered}$Lon.	\bigcirc	D	万	4	\%	9	8	8
	¢8	吹	II	\simeq	¢	8	Ω	Ω
	14.33	17.42	21.33	9.33	13.28	29.56	8.37	4.46
Lat.		$\begin{aligned} & \text { N. } \\ & \mathbf{3 . 2 5} \end{aligned}$	$\underset{1.36}{\mathrm{~S}}$	N. 1.32	$\begin{gathered} \text { N. } \\ 0 . \mathrm{s} \end{gathered}$	$\begin{gathered} \mathrm{N} . \\ \mathbf{3 . 1 1} \end{gathered}$	N. 1.22	

The \odot was with δ, the D in the \square of b; in the month he died, 5 was upon this place of the D, and δ in the \square of the D 's place, and the lunations in an hostile ray to this place of δ, and also of the \odot.

EXAMPLE XI.

latitudes.

HE died in the month of February 1621, being 30 years and 9 months old.

In this geniture, as explained by Argol, the directions are computed in this manner. Argol says the pole's elevation is 43°, the 0^{\prime} s ascension $64^{\circ} 34^{\prime}$, the ascension of b^{\prime} ' $\delta 94^{\circ} 42^{\prime}$, and by subtraction the arc of direction $30^{\circ} 8^{\prime}$; then the horoscope's ascension 244°; the ascension of $反$'s $8274^{\circ} 42^{\prime}$, and by subtraction the arc of direction $30^{\circ} 42^{\prime}$: but I confess I am ignorant how it can happen, that the same arc of direction should fall to the same promittor of two significators, who, according to the ascensions, are 3° of the equator distant from each other, for the oblique ascension of the \odot 's 8 is $246^{\circ} 58^{\prime}$, from which subtracting the oblique ascension of the horoscope (as given by Argol) there remains the 0^{\prime} 's distance from the 7th house $2^{\circ} 58^{\prime}$. If the \odot remained upon the cusp of the 7 th house, the arc of direction of the \odot and the horizon would certainly be the same ; but as his distance is 3°, there is no reason why, at the same time, the direction of the \odot to \boldsymbol{h} 's δ and the horoscope to his 8 should both arrive together.

And as to the \odot^{\prime} s ascension $64^{\circ} 34^{\prime}$, it is uncertain in what manner that was taken; for ζ 's ascension $94^{\circ} 42^{\prime}$ is the descension, for the ascension of his 8 place is $274^{\circ} 42^{\prime}$, from which take 180°, there remains the descension of $\mathrm{b} 94^{\circ} 42^{\prime}$. But the oblique ascension of the 0^{\prime} 's 8 is $246^{\circ} 58^{\prime}$, from which subtract 180°, and it gives his descension $66^{\circ} 58^{\prime}$; therefore the calculations of Argol are unintelligible.

In this nativity there should ascend $m 15043^{\prime}$; and the \odot becomes altogether a powerful significator of life, and was first directed to the δ of δ, but as the Δ of 4 followed about the beginning of 4 's terms, the native was preserved ; then he came to the δ of h , whose latitụde was $1^{\circ} 39^{\prime}$-south, and passed through, by 2 latitudinal distance, according to the doctrine of Ptolemy, " When the moderator and occourse have not the same latitude."

The place of the direction was likewise in the terms of ρ, and the \odot at that time was in \square of 4 in mundo from the medium coeli, aH which profited the more, as the in the nativity was conjoined to ρ in her house, and within the terms and mundane Δ of \boldsymbol{u}; therefore he escaped the \odot, also to the δ of \hbar, yet, I think, not without a great detriment to his health, and that: f having descended below the horizon, and in an equal proportional distance which the \odot hath from the 7 th house, the \odot entered into its mundane parallel at the time of his death, being found within the orbs of s in the zodiac.

Also, the \odot, \cdot by converse motion, came to the parallet of h in murnda, having passed by $\%$, who was found under the same parallel of the enemies, and the D in the of δ, whereby a complaint in the head was pre-noted, without doubt the more grievous, as the D in the nativity was in the mundane a of 0 . The calculation of the \odot to the mundane parallel of of direct direction :
As the scmi-diurnal arc of the © $7^{\mathrm{b}} 12^{\text {² }}$
To his distance from the 7th house . . . $7^{\circ} 34$
D d

So is the semi-nocturnal arc of of $4^{4} 34^{\prime}$

To his secondary dist. from the 7th house . $4^{0} 41$
The oblique ascension of 8 's 8 . . . 26534
Whence his prim. dist. from the 7th house is 269
which being added to his secondary distance is $30^{\circ} 50^{\prime}$ for the arc of direction, and being equated as usual, produces 31 years, almost.

By converse motion the \odot came to the parallel of b in mundo, thus calculated:

As the semi-diurnal arc of 5 $7^{5} 24^{\prime}$
To his distance from the 7 th house . . . $34^{\circ} 55$
So is the semi-nocturnal arc of the © . . $4^{\text {b }} 48$
To hís secondary distance $22^{\circ} 39$
The oblique ascension of the \odot 's 8 is . . 24658
Whence his primary dist. from the West is 733
which, as he is above the earth, and posited below, must be added to the secondary, and makes the are of direction $30^{\circ} 12^{\prime}$. From this example we are taught carefully to observe the places of the occourses, for, if the fortunes assist, they preserve, and more particularly in their terms, as it happened in the preceding directions.

For the secondary directions, I add to the hour and day of the nativity 30 days for so many years, and 18 hours for 9 months, and I come to the 12 th of June, 1590, nearly, in the metidian, in which the places of the planets are these:

PRIMCM MOBILE.
195

$\left\lvert\, \begin{gathered} \text { Deg. } \\ \text { of } \\ \text { Con. } \end{gathered}\right.$	\bigcirc	D	万	4	*	7	\Varangle	8
	II	\bumpeq	H	\bumpeq	H	¢	II	Ω
	20.40	16.45	18.12	8.10	2645	16.57	24.18	6.6
Lat.		N. 4.36	$\underset{~}{1.35}$	N.	N. 0.5	S. ${ }_{\text {S }}$.	N.	

Where you see the \odot is between b and $\delta ;$ conjoined to δ, and both unassisted by any of the benefics. In February, 1621, the lunations happened in the meridian angles of the nativity, in the ©'s a with the parallel of 8 . The progressions for full 30 years, depend on the 14th of October, 1592 : For the 9 months I add 9 or 10 signs) and come to the 4 th or 3 th of November; for we are not certain of the day he died : this is certain, that on the 4th of the said month there happened a now D in $11^{\circ} \mathrm{m}$. To the middle of February, 1621, of was found in $11^{\circ} \mathrm{m}$.

EXAMPLE•XII.

i̇atitúdes.				declinations		
\hbar	. 20	13^{\prime}	N.	9°	56	N,
4	1	55	N.	13	45	S.
8	- 0	13	S.	8	43	S.
\bigcirc	- 0	0		3	28	N.
앙	. 1	0	S.	4	21	N.
¢	- 2	34	S.	6	9	S.
	. . 5	0	S.	15	0	N.

HE was made a Cardinal in 1626, on the 19th of January, aged 68 years and 10 months; and died on. the 30th of August, 1637.
For which effect, Argol directs the horoscope to the \square of the \odot; whercas, the one is not aphrta, nor the other anareta; for the \odot is conjoined to ρ, and in her declination, to which the D applies by a fortunate Δ ray, she also makes application to the \square and declination of ψ, being constituted in his terms; so that to the \odot she transmits none but fortunate qualities. We, therefore, in imitation of Ptolemy, make the D hyleg, who is past her frst dichotome, in her increase, approaching nearest to the fulness of light, constituted in the ninth house, and between benefic rays.

She, in 70 years and 5 months, which the native; lived, arrived at the parallel declination of δ, that of i $_{2}$ succeeding near 18° of \bumpeq, without the assistance of the. benefics. I first look for the are of direction, which is due for 70 years and 5 months: the \odot_{i} in 70 days and 10 hours from the birth, comes to $I I 17^{\circ}$, whose right ascension is $75^{\circ} 52^{\prime}$; from which subtract the Θ^{\prime} 's right: asceusion, S°, and there remains $67^{\circ} 52^{\prime}$, the are of direction. The D^{\prime} 's declination, 15°, answers to $19^{\circ} 35^{\circ}$ of Ω in the ecliptic, whose horary times are $17^{\circ} 30^{\prime}$, her right ascension is $122^{\circ} 40^{\circ}$; this, subtracted from the right ascension of the medium coeli, gives her distance from the 10 th, $22^{\circ} 42^{\prime}$; the pole of the ninth house is 18°, which produces the D^{\prime} s pole. 12°, under which the oblique ascension of her 8 is $305^{\circ} .57^{\prime}$, to which I add the arc of direction $67^{\circ} 52^{\prime}$, and the sum
is $13^{\circ} 49^{\prime}$, which in the same table of oblique ascension is near 18° of r, with latitude $1^{\circ} 28^{\prime}$ north, which the D obtains there; so that she passed $\approx 18^{\circ}$, with $1^{\circ} 28^{\prime}$ south latitude, the declination of which place is $8^{\circ} 26^{\prime}$; but the declination of \boldsymbol{f}^{\prime} is $8^{\circ} \mathbf{4 3 ^ { \prime }}$; but the luminaries, as I have mentioned in another place, do not wait for a true and intimate declination, by reason of the magnitude of their bodies.
By converse motion the D came to the mundane \square of δ, and 5 thus computed, the declination of δ is 8043^{\prime}, answering to $7^{\circ} 40^{\prime} x$ in the ecliptic, whose nocturnal horary times are $16^{\circ} 25^{\prime}$; the right ascension of δ is $339^{\circ} 56^{\prime}$; his distance from the imum cali $14^{\circ} 34^{\prime}$; the D 's declination 15°, answers to $19^{\circ} 35^{\prime} \Omega$, whose horary times are $17^{\circ} 30^{\prime}$, which gives her secondary distance from the 7 th house $15^{\circ} 34^{\prime}$; the ablique ascension of the D 's 8 under the pole of the horoscope is $317^{\circ} 38^{\prime}$, from which subtracting the oblique ascension of the horoscope, there remains the D 's primary distance from the seventh house $82^{\circ} 16^{\prime}$; from which subtracting the secondary $15^{\circ} 34^{\prime}$, leaves the arc of direction $66^{\circ} 42^{\prime}$, near 1° less than that above taken ; the D had also, about two years before, arrived at the \square of \wp by converse motion; bat as she, in the nativity, was very fortunate and strong, these directions waited for the approach of the direct directions.

This example also teaches us, what the sentiments of Ptolemy were concerning a violent death : when in a peremptory place both the enemies meet together, it is to be understood, that in the nativity the violence is sometimes first pre-ordained from the unfortunate posi-
tion of the aphreta; at other times quite the contrary. But because the direct direction happened to be in the terms of $\%$, the sickness was attended with a delirium and lethargy, so that you may perceive this to have been the true cause of the native's death.

It may be asked, why did not the multiplicity of evil 2spects, as the δ of \hbar, the 8 of δ, and their preceding parellels, kill? I answer, because the D was in a different and distant latitude from that of the malefics, and had the declination of $;$ and the \odot; and was supported by the $*$ of 4 , both in the zodiac and in the world, in the terms of q; the D was likewise fortunate, and strong to resist. Lastly, there was the parallel of \ddagger, who is of the nature of 4 , on account of the sign and mundane Δ of ψ and parallel of q; so that ψ was entirely propitious. For which reason, he was the author of the dignities in the native, as we have calculated in Canon 36, and shall hereafter add; for neither the \odot nor medium coli had any aspect with 4 in the 59th year, nor with of, who being combust, could not effect any thing, except only predispose the \odot, by being present with her. The secondary directions to the time of death are thus calculated. For the 70 years I add 70 days; and for the 5 months 10 hours, to the day and hour of the na. tivity; and I come to the 28th of May, 1567, with $19^{\text {b }} 13^{\prime}$, P. M. at which time these were the places of the planets:-

	0	D	ζ	4	8	9	8	
Dep．	4	20	吹	2	४	$\boldsymbol{6}$		
Lon．	16.30	26.0	8.54	98R5	S． 0	9． 0	1R25；	
Lat．		N． 4.32	2， 4	N． 1.50	S．	N．${ }_{\text {1．} 6}$	1．64．	

The D thad the same declination as h ，and both malefic in the nativity，the D had likewise，by direction， the same declination ；this place of the \mathbf{D}＇s 8 ，\S en－ tered on the day he died，and δ ，too，not far distant； the \odot in $\mathbf{I f} 17^{\circ}$ ，which k entered from a parallel decli－ nation on the day he died；and on the contrary，thie \odot ， on the day he died，entered the place of b of these motions．

The Places of the Plawets on the day of his death，the 30th of August， 1637.

$\begin{gathered} \text { Deg. } \\ \text { of } \\ \text { Lon. } \end{gathered}$	\bigcirc	D	ל	4	8	9	8	8
	欧	bo	vo	\simeq	Ω	叫	Ω	ทค
	7.3	10．44	19.23	7.16	16.33	20.42	28.39	24.30

On the 19th of August there was celebrated a new D in $\Omega \cdot 27^{\circ}$ ，when she was in 3° south latitude， nearly，whereby she obtained the declination of the malefics，and near the 8 of the \supset＇s place of the se－ condary direction．We look for the progressions to the day of death，as follows：For 60 ycars I come to the

20th of March，1572，but I go 55 days back，viz．to the 24th of January，when the D is＇in $n 8^{\circ}$ ；afterwards I advance 10 embolismical lunations，and come to the 14th of November，by positing the in $\times 27^{\circ}$ ．For the 5 months the D goes over 5 signs and 12° ，so that she is posited in 口 $^{\circ} 9^{\circ}$ upon the malefics of the nativity．

Planets Places in the Progrestions．

$\left\lvert\, \begin{gathered} \text { Dep. } \\ \text { of } \\ \text { Lon. } \end{gathered}\right.$	\bigcirc	\rangle	万	4	8	9	\downarrow	8
	1	的	m	\boldsymbol{r}	\％	2	m	8
	15.0	9.0	21.14.	21.10	1.0	28.50	27.0	15.0

Mars was，therefore，in 8 to the \mathbb{D} of the nativity； h on the day he died was in the parallel of the 0 ＇s pro－ gression；and on the 13th day，which was that of his sickness，there was a of the with the \odot ；the latter continued in $\Omega 21^{\circ}$ ，in the a of k＇s progression from 821° ；and δ was found upon the D of the nativity， and 5 in the a of the place of the D＇s right direction． In 59 years the 0 came to the $*$ of not only in the world，according to the calculations in Canon XXXVI， but also to his $*$ in the zodiac．

$$
\text { Of the } \odot .
$$

Right ascension ．．．．．．．． $8^{\circ} \mathbf{0}^{\prime}$
Distance from the imum coeli ．．．． 4238
Semi－nocturnal arc ．．．．．．． $5^{n} 47$
Crepusculine arc subtracted ．．．．． 144
Remains the obscure arc ．．．．．． 4 i
Fe

$$
\text { Of } 821^{\circ} \text {. }
$$

Right ascension $48^{\circ} 33^{\prime}$
Distance ab inuom cocli 83 . 11
Semi-nocturnal arc $4^{12} 47$
Crepisculine arc 27
Remains obscure arc 240
Hence the secondary distance is $28^{\circ} 4^{\prime}$, which subiracted from the primary, leaves the arc of direction $55^{\circ} 7^{\prime}$. The secondary directions to 58 years, 9 months, and 20 days, are made on the 17th of May, 1567, with hours P. M. 4 $4^{\text {b }} 33^{\prime}$, in which the planets were as under :

The O is in exact biquintile of 4 and Δ of the D. On the 18th and 19th of January, 1626, the luminaries were in an alternate Δ ray to these places, and 2π was in the same sign and degree, viz. \& 29°, with the biquintile to the place of the 0 's secondary direction. On the 12th of January, 1626, there was a full © , the \bigcirc in $\mathfrak{6} 22^{\circ}$, the D in $\boldsymbol{\sigma}^{\circ} 22^{\circ}$, in favourable rays to \% and the place of the 0 's direction, and $*$ of 4 of the progressions, and the σ in the quintile of 4 's radical
place. The progressions are made on the 19th of December, 1571, in the following position:

$\left\lvert\, \begin{gathered} \text { Deg. } \\ \text { of } \\ \text { Lon. } \end{gathered}\right.$	\bigcirc	D	5	4	8	9	8	8
	Ws	\cdots	m	x	\sim	\%	1	Ω
	8.0	23.0	13.14	18.10	3.80	9.0	20.0	3.0

The O was joined with R, and between the quintile and $*$ of 4 , in the parallel of ; on the 19th of January, 1626, $\&$ was upon this place of the $\odot, 4$ was separated from the $*$ and applied to the quintile of the©'s place of the progressions, which things are well worth observing.

EXAMPLE XIII.

WHEN he was 52 years and 10 months old, he was created a Cardinal, on the 9 th of June, 1604. His: death happened on the 12 th of March, 1639, aged 87 years, 7 months, and 20 days.

Argol directs the horoscope to the ; but the moderator of life altogether pertains to the \odot, who, according to our calculation, came to a paralled of b 's declination near 13°, with some minutes, of the sign m : the 0 does not reach the cusp of the 9 th house, but his distance therefrom is 2° : the polar elevation of the 9th house is 180°, therefore the 9 's polar elevation will be mear 170, to which the oblique ascension of the 0 's 8 is. $313^{\circ} 37^{\prime}$; the oblique ascension 13° of 8 is $35^{\circ} 35^{\prime}$, from which subtracting that of the 0 , leaves the are of direction $81^{\circ} 58^{\prime}$, which, for the equation, add to the \odot 's right ascension, which is $127^{\circ} 34^{\prime}$, and the sum is $209^{\circ} 32^{\prime}$, answering to $1^{\circ} .40^{\circ}$ of m, to which the 0 , from the day of birth, arrives in 88 days, so that the 0 bad not yet exactly teached the declination of b; but 2s, by reason of the magaitude of his body, he did not, by his centre, gain that. declination, yet a part of his body entered it.

By converse direction, the 0 was in a mundane parallel with b under the earth whilat both advanced by the motion of the prinnum mobile, which is calculated thus: The 0^{\prime} 's semi-nocturnal arc is $4{ }^{k} \mathbf{4 2}$; the seminocturnal are of b is $7^{\text {h }} 4^{\prime}$, which I have taken with $13^{\circ} 47^{\prime}$ of m in the ecliptic, or with $=16^{\circ} 13^{\prime}$, which is the declination of b; I add these ares together, and
they make $1^{\text { }} 46^{\prime}$. The right ascension of is $322^{\circ} 52^{\prime}$; this I reject from the 0 's right ascension, in order that I may have their right difference below the earth, and the remainder is $164^{\circ} 44^{\prime}$. I now say,

As the sum of the semi-nocturnal ares . $1^{16} 46^{\prime}$
is to the semi-nocturnal.arc of b . . 74
so is the right ascen. diff. of b from $0 \quad 164^{\circ} 44$
to h 's secondary distance from 4th . . 9910
The primary distance of h from the imume cell is $18^{\circ} 13^{\prime}$; which, subtracted from the secondary, gives the are of direction $80^{\circ} 57^{\prime}$, less by 1° than that above taken : this parallel precedes, and the other succeeds. Lastly, the \odot, by converse direction, applied very closely to a a of the D, whose declination is $13^{\circ} 23^{\prime}$, which, reduced to the ecliptic $=24^{\circ} 30^{\circ}$, whose semi-nocturnal are is $6^{\mathrm{h}} 5^{\prime}$. The 0^{\prime} s semi-nocturnal arc is $4^{\mathrm{h}} \mathbf{4 2}^{\prime}$; the oblique ascension of his $8327^{\circ} 1^{\prime}$; his primary: distance from the west is $75^{\circ} 56^{\prime}$: the $D^{\prime} s$ right ascension is $329^{\circ} 3^{\prime}$; her distance from the imum coeli is $12^{\circ} 2^{\prime}$. Then

As thé D's semi-diurnal arc $6^{\mathbf{L}} 55^{\prime}$
is to her distance from the imum ceeli $12^{\circ} 2$
so is the 0^{\prime} 's semi-nocturnal arc . . . $4^{1} .42$
to his secondary distance from the west $\quad 8^{\circ} \quad 11$
But the \bigcirc° s primary distance from the west is $75^{\circ} 56^{\prime}$, fur the oblique ascension of the 0 's 8 is $327{ }^{\circ} 1^{\prime}$; therefore the primary distance added to the secondary; makes the are of direction $84^{\circ} 7^{\prime}$. Now the D was besieged between ζ and the mundane parallel of δ, who was elevated above her from medium cali, and coascended nearly with 5 , and continued in his house,
terms ${ }_{2}$ and triplicity, so that she was afflicted with the nature of the malefics. To the same time the 0 's direction to the west agrees, with the addition and subtraction of the degrees formed from the interjacent stars and rays, a calculation whereof is given as an example in Canon XXXVIII. The secondary directions are made on the 14th of October, 1551, with the hours $17^{\circ} 35^{\prime}$, P. M. at which time the planets were posited thus:

$\left\lvert\, \begin{gathered} \text { Deg. } \\ \text { of } \\ \text { Lon. } \end{gathered}\right.$	\bigcirc	$)$	h	4	δ	9	8	8
	m	४	2010	Ω	m	7	m	IT
	1.0	7. 0	15.24	2.7	16.33	17.80	19.10	3.87
Lat.		8.3.	S. 1.14	$\begin{array}{\|l\|} \hline \text { N. } \\ \hline 0.10 \\ \hline \end{array}$	$\begin{gathered} \mathrm{S} . \\ 0.1 \end{gathered}$	$\begin{aligned} & \text { S. } \\ & \text { s. } 0 \end{aligned}$	S.	

The progressions depend on the 19th of August, 1558, with the planets posited thus:

$\begin{gathered} \text { Deg. } \\ \text { of } \\ \text { Lon. } \end{gathered}$	\bigcirc	3	b	4	\%	9	\%	0
	吹	7	8	mir	Ω	\%	Ω	r
	5.13	18.0	25.4	3.18	13.50	22.0	21.30	21.4
Lat.		S. ${ }_{\text {2.16 }}$	$\xrightarrow{\text { S. }}$ 23	$\begin{gathered} \mathrm{S} \\ 0.52 \end{gathered}$	$\begin{gathered} \mathrm{N} . \\ 0.16 \end{gathered}$	S. 1.40	N. 7	

He died on the 12th of March, 1639, 10 hours, P.M. under this calculation of the plancts :

Des. of Lon.	0	$)$	あ	4	δ	9	y	8
	\cdots	i	m	1	\checkmark	*	n	1
	29.13	25. 0	14.13	5.46	6. 8	28. 0	28.10	23.16
Lat.		3. 0.11	$\underset{0,51}{\text { S. }}$	N. 0.56	N. 0.22	8.28 1.23	N. 0.10	

On the 4th of the same month there was a new D, near the 8 of of of the nativity, and of wasin 81° in 8 to the \odot 's secondary direction: δ, on the day he died, reached the place of the D 's secondary direction, and \square of the \odot 's radical place : the \odot, by the secondary direction, had gained the declination of the D of the nativity, and the D to the \square of the 0 , with the same declination. The \odot by progression had nearly the same declination with the D in the nativity: the D, bs progression, was between the rays of the enemies, and under the parallel of both the unfavourable planets, to which, on the day of his death, b and $\%$ being conjoined by a quadrate ray, transmitted their mischievous qualities; and, which is worth observing, that the luminaries, with b anareta, were, in the nativity, in fixed signs, and in them also they were constantly found in the secondary directions, in the progressions, and on the day he died, as were likewise \S and δ.

In his 52 d year and 10 months, the \odot was directed to his own $*$, the medium coli to his quintile; the calculations of which are easy. The secondary directions are made on the 9 th of September, with near

22a 30° ，P．M．at which time the planets were as under：

$\left\|\begin{array}{c} \text { Deg. } \\ \text { of } \\ \text { Lon. } \end{array}\right\|$	0	）	b	4	8	9	8	8
	吹	\cdots	2	98	1	的	m	緃
	96.20	6.0	16.6	27.56	21.52	10.25	22.10	5.18

The 0 was in $*$ to 2 and in δ with 8 ，free from the enemies．－The progressions were thus，and are made on the $\mathbf{2 7}$ th of October，1555，whifst the D was in $\boldsymbol{r} \mathbf{5}^{\mathbf{D}}$ ．

	\bigcirc	2	\square	$4{ }^{-}$	8	9	8	8
Des．	7	\boldsymbol{r}	\cdots	m	\uparrow	m	7	II
Lon．	13.15	5.0	7.17	13.50	26.4	0.0	8.20	13.27

The 0 was in δ with ${ }^{7}$ and $\%$ ，free from the eped mies，near the Δ of ψ in the nativity．

On the day of election，which was the © Oh of Juar， 1604，the planets were as under $\&$

$\left\|\begin{array}{c} \text { Deg. } \\ \text { of } \\ \text { Lon. } \end{array}\right\|$	\bigcirc	）	3	4	ช	8	\Varangle	0
	II	m	1	7	\cdots	\％	¢	m
	18．20	17.14	11.46	19.18	12.25	28.28	2.6	5.29

There preceded a new D in 7° of $I I$ ，under the $*$ of the 0 of the nativity，and parallat of ψ ，in．which pa－ Ff
rallel the \bigcirc was on the day he was elected; and the D in a Δ of 4 of the nativity, and in 6 in the progression. Hence is plainly evinced the great power the secondary directions and progressions have, together with the active and passive ingresses, to the places which the luminaries by these motions arrive at.

EXAMPLE XIV.

IN the 19th year and a half of his age he was elected a. Cardinal, on the 9th of June, 1604 ; and in the 56th year and a half he died of the gout and consumption, June the 1st, 1641, to which time Argol directs the ascendant to $2 \square$ of h, though heis in the shortest ascensions, and the \odot, not the horoscope, becomes a powerful significator of life, as he is found in the supreme angle, and the rays taken in the zodiac to the angles are altogether as nothing, as we have in another place demonstrated.

The \odot, therefore, is the significator of life, and in 56 years and a half he comes, by right direction, to the mundane parallel of δ, followed very closely by a parallel of \hbar 's declination, and, by converse motion, to the parallel of δ. The $0^{\prime} s$ semi-diurnal are is $4^{4} 28$, his right ascension is $290^{\circ} 51^{\prime}$, from which, subtracting the right ascension of the medium calt, there remains the ' Q^{\prime} 's distance $6^{\circ} 16^{\prime}$. The semi-nocturnal arc of of is $5^{\mathrm{h}} 3^{\prime}$; and is taken from $\Omega 21^{\circ} 30^{\circ}$, to which the declination of $\delta 14^{\circ} 25^{\prime}$ is reduced ; whence the secondary distance of δ from the imaum cali is $7^{\circ} 5^{\prime}$, and added to the primary, which is $49^{\circ} 35^{\prime}$, (for the right ascension of δ is $154^{\circ} 10^{\prime}$), makes the arc of direction $56^{\circ} 40^{\circ}$,
which, equated as usual, is 56 years and a half. The σ^{\prime} 's polar elevation is near 5°, under which his oblique ascension is $292^{\circ} 54^{\prime}$; to which, if we add the arc of direction $56^{\circ} 40^{\prime}$, the sum is $349^{\circ} 34^{\prime}$, which, in the table, is equal to $x 18^{\circ} 10^{\prime}$, whose declination is $4^{\circ} 42^{\prime}$, and that of $51^{\circ} 40^{\circ}$; so that the \odot applies, within 3°, to a parallel of \hbar 's declination.

The \odot, by converse direction to a mundane parallel of δ, is thus computed:

As the semi-nocturnal arc. of 2 . . . $5^{0} 3^{\prime}$.
is to his distance from the impum coeli : . $49^{\circ} 35$
so is the 0 's semi-diurnal arc 4 28
to his secondary distance from wedium ceeli $43^{\circ} 51$
which, added to his primary, makes . . . 507
for the arc of direetion; so that it had preceded near seven years before.
Also, by conperse motion, the .9 had passed the sesqui-quadrate of b in his 49 th year. The semifiurnad arc of h is $5^{\text {b }} 54^{\prime}$, distance from the Kast $11^{\circ} 46^{\prime}$, the O^{\prime} 's semi-rliumal are is $4^{h} 28$; whence arises his secondapy distance $8^{\circ} 54^{\prime}$, which, added to the primary, makes the are of direction of \odot to the $口$ of h, by converso motion, $15^{\circ} 10^{\prime}$; to which I add the e's triplicate horary times, which are $11^{\circ} 9^{\prime}$, and it makes the aro of direction of the O to the sexqui-quadrate of B, $48^{\circ} 377^{\prime}$ s.

The secondary directiong are made on the Gib of March $11^{\text {b }}, \mathrm{P}$. M. 1585, at which time the planets are posited in the following manaor:

	\bigcirc	2	5	4	δ	¢	¢	8
Deg.	\cdots	8	r	8	Ω	¢	$*$	7
Lon.	15.50	17.30	6. 1	3.35	15.7 R	21.40	$34,0 \mathrm{~K}$	17.59
Lat.		0. 2	S. 1.47	S. 1.10	$\mathrm{N}:$ 4.0		${ }_{3.54}^{\mathrm{N}}$	

The progressions are made on the 3d of August, 1589, for then 56 and a half embolismical lunations are finished, at which time the planets were thus posited :

On the let of Jane; 164t, the day of his dealk, the planets were thus posited:

$\left\|\begin{array}{c} \text { Deg. } \\ \text { of } \\ \text { Lon. } \end{array}\right\|$	\bigcirc	D	ζ	4	d	9	8	8
	II	x	*	"	\pm	$\boldsymbol{\square}$	8	m
	11.5	9248	12.46	128.1	13.14	91.1	17.32	10.27
Lat.		$\begin{gathered} \mathrm{N} \\ \mathbf{N} \\ \hline .53 \end{gathered}$	S.	S S.	$\mathrm{N}_{1.13}$	N. 8. 21	2.34:	

In which it is worthy of admiration, that the 0 , on the
day be died, was posited upon b of the progression, and ζ on the same day upon the \mathcal{O} of the secondary direction, the D upon $\%$ of the secondary direction, who had the declination of k, and the likewise gained the declination of h. In the secondary direction, the D being likewise in \square of δ, and in his declination, In the progression, the 0 was in \square, and declination of δ, and the D in the 8 of 8 . On the day of death, δ transited the 8 of the \odot of the nativity; and there was $2 \square$ of the D with the \odot the preceding day; viz. the 3lst of May, the D continuing in $* 10^{\circ}$, and the \odot in 410°, obnoxious places. You see, Reader, what a multiplicity both of the active and passive agreements happened ; they are altogether wonderful. At 19 years and 5 months, the time of his being made a Cardinal, the \odot was in the mundane parallel with $\&$, whilst both were carried by the rapt motion of the primum mobile; the \odot likewise came to the declination of $\&$: the calculation of this latter is easy. The declination of $\&$ is $18^{\circ} 9^{\prime}$, equal to $=9^{\circ} 20^{\circ}$ in the ecliptic, whose oblique ascension to the $0^{\prime} s$ pole 5° is. $313^{\circ} 24^{\prime}$, from which, subtracting the 0° 's oblique ascension, there remains the arc of direction $20^{\circ} 30^{\circ}$, which, for the equation, add to the 0 's right ascension, which is $290^{\circ} 51^{\prime}$, and it makes $311^{\circ} 21^{\prime}$, answering to $8^{\circ} 54^{\prime}$ of 2μ, to which the \odot, from the day and hour of birth, arrives in 19. days and one-third nearly.

The Sun's direction to the mundane parallel of q is as follows:

The declination of q is $18^{n} 9^{\prime}$, equal to $=9^{\circ}$ in the ecliptic, whose semi-diurnal are is $4^{\mathrm{h}} . \mathrm{47}^{\prime}$, the right
ascension of q is $315^{\circ} 58^{\prime}$: therefore, the right difference between the 0 and \mp is $25^{\circ} 7^{\prime}$. I then say,

As the sum of the \odot and 8^{\prime} 's semi-diurnal arce $9^{\text {h }}{ }^{15} 5^{\prime}$
is to the \odot 's semi-diurnal arc 438
so is the right difference of the \odot and $\% \quad 25^{\circ} 7$
to the 0 's secondary distance . . . 128
which, added to the primary, makes the are of direction $18^{\circ} 24^{\prime}$; therefore, it had preceded two years, in which the native had shewn himself deserving the honours conferred upon bim. But as the \odot continued, by right direction, in $9^{\circ} 20^{\circ}$, he applied to the, quintile of 4 in the zodiac; at the same time the medium coeli had reached the quintile of 4 , whose declination is $8^{\circ} 33^{\prime}$; ascensional difference $\mathrm{S}^{\circ} 21^{\prime}$: the semi-diurnal arc is 98.21 ; the fifth part of the same arc is $19^{\circ} 40^{\prime}$, which, should be the distance of 4 from the horoscope when posited in the quintile to the medium cocli. The oblique ascension of 4 in the horoscope is $16^{\circ} 16^{\prime}$; from which, suberacting the horoscope's oblique ascension, there remains his primary distance under the ho-rizon $1^{\circ} 41^{\prime}$; this, added to the secondary $19^{\circ} 40^{\prime}$, makes the are of direction $21^{\circ} 21^{\prime}$.

Lastly, the © applied to a $*$ of ψ in mundo; for,
As the \odot 's semi-diurnal arc $4^{\text {b }} 28^{\prime}$
is to its distance from medium cali . . $6^{\circ} 16$
so is $\psi^{\prime} s$ semi-diurnal arc $6^{\text {k }} 33$
to his secondary distance from 12th house $9^{\circ} 12$
The oblique ascension of the 12 th house is 34435
The oblique ascension of 4 to the pole of
the 12 th house 83°, is 19 1
therefore, the primary distance of 4 from the twelfth
house is $84^{\circ} \mathbf{2 6}$, from which; subtracting the secondary distance, leaves the arc of direction $25^{\circ} 14^{\prime}$, whereby it appears evident that the θ and medium coeli were, at that time, found between several aspects of the friendly planets. The secondary directions are made on the 28th of January, 1585, with $9^{4} 35^{\prime}$ P. M., under the following eidereal constitution :

$\left[\begin{array}{l} \text { Deg. } \\ \text { of } \\ \text { Lon. } \end{array}\right.$	\bigcirc	D	b	4	8	9	8	8
	2	Vf	\boldsymbol{r}	\boldsymbol{r}	Ω	\cdots	쓰N	m
	8.40	18.8	2.0	87.38	28.401	6.13	16.0	20.0
Lat.		N. 4.14	S.	s. 1.38	N. ${ }^{\text {N. }}$	S. 1.17	S. 2.0	

The progrestions for 19 years and 5 months fall on the 5 th of August, 1586, the D being in $\boldsymbol{\varphi} 15^{\circ}$; and the rest as under:

Deg. of Lon.	\bigcirc	D	h	4	8	9	8	9
	Ω	\boldsymbol{r}	8	$\boldsymbol{4}$	${ }_{\sim}^{\circ}$	吹	Ω	\sim
	12.1	15.0	2.40	4.10	6.50	2.41	4:38	20.36

On the 9 th of June, 1604, the day of election, the planets were found in this position :

$\begin{gathered} \text { Deg. } \\ \text { of } \end{gathered}$Lon,	\bigcirc	11	\square°	4	δ	9	$\underline{8}$	8
	II	m	1	1	t	\%	क5	m
	18.20	17.14	11.46	19.18	12.95	98.28	20	5.22

Where you see the \odot in Δ to his place of the secondary direction, and in $*$ to his progression, applying to the * of 4 of his secondary directions, and in parallel ff-u's declination of. the progression. . Jupiter, on the day of his election, entered in Δ to the \odot 's progression, and, also, both the malefics h from the Δ, and δ from the $*$; there preceded a new D in 7° of ir in exact Δ of the σ 's secondary direction, and $*$ to his progression.

This cannot but be convincing.

EXAMPLE XV.

IATIIUDES.

WE are told, hy Argol, that this Catdinal had a dangerous illness in the 7th year of his age, owing (at be says) to the direction of the horoscope to the 8 of b; but we say, it was from the 0 's direction to the D by converse motion : for the $D^{\prime} s$ pole is 16°, to which her oblique ascension is $352^{\circ} 48^{\prime}$; this' subtracted from the \bigcirc 's oblique ascension $0^{\circ} 7^{\prime}$, leaves the arc of direction $7^{\circ} 19$; for the D was in the \square to h, by which means she assumed his nature. The \odot, abso, by a right direction, afterwards fell upon the mundane sesqui-quadrate of k, whence a long sickness was the consequence, which was of the longer duration from,k being in the western angle; for thus we have the true cawses from the real significator of life.

At the age of 16, he was elected Cardinal ; from the ρ^{\prime} 's direction to the quintile of $\%$ in the zodiac, the 0 's duplicate horary times are 30°, his oblique ascension to the pole 18° of the eleventh house is $0^{\circ} 7^{\prime}$, and his distance from thic same house is $3^{\circ} 41^{\prime}$; the pole of the twelfith house is 33°; the difference then of the poles of the eleventh and twelfth houses is 15°; therefore, the Θ^{\prime} 's pole becomes 20°, to which his oblique ascension is 8°; the quintile of 4 falls in $19^{\circ} 41^{\prime}$ of r, whose oblique ascension there is $15^{\circ} 20^{\circ}$, from which, subtract the O 's oblique ascension, and there remains the arc of direction $15^{\circ} 12^{\prime}$; which, being equated, denotes 16 years. This direction is differently calculated in Canon XIX.

He died in May, 1606, and, according to Argol, from the y 's direction to \boldsymbol{f}; but it was impossible for the

D to be hyleg, as she was under the O 's. rays, going to the occultation; and as the nativity was diurnal, the fitst place belongs to the \odot, who remained in the eleyonth house, and came to the σ. of δ, where the sesqui-quadrate of h in the zodiac exactly coincided, and, by a converse motion, the \odot came to the mundane parallel of the. D, whilst both were carried away by the rapt motion of the primum: mobile. The oblique ascension of of to the pole 20°, is $27^{\circ} 38^{\prime}$, from which, subbrecting that of the \odot_{y} makes the anc of direction $27^{\circ} 31^{\prime}$, which, added to the 0 's right ascension, makes $27^{\circ} 39^{\prime}$, answering to $r .29^{\circ} 45^{\prime}$, at which the 0.arrives in near 31 days; and, as 8 was in north latitude after the δ., it followed his parallel of declination. The calculation of the O 's parallel with the D is thus computed: the $0^{\prime \prime}$ s semi-diurnal are is $6^{\text {b }}$, and that of the . $5^{\text {h }}$. 23^{\prime}, for her declination answers in the ecliptic: to near $5^{\circ} 30^{\circ}$ of \times. I add these sermi-diurnal ares together, and, the sum is $11^{4}, 28^{\prime} ;$ the D 's right ascension is $349^{\circ} 48^{\prime}$, that of the $0^{\circ} 0^{\circ} 8^{\circ} 8^{\prime}$; froma this of the 0 I subtract the $)$'s, and their disfance, in right ascension, is $10^{\circ} 20^{\prime}$: Now say; as the sum of the arce $11^{h} 23^{\prime}$ is to the semi-diurnal arc of $\odot 6^{\text {b }}$, so is their distance, in tight ascension, $10^{\circ} 20^{\circ}$, to the 0^{\prime} 's secondary 'distance frome the medimen cocli: 5°, $2 \mathbf{7 j}^{\prime}$; luis primary is $33^{\circ} \mathbf{4 2}^{\prime}$; from which, taling the eecondary, thene remains the anc of direction $28^{\circ} 15^{\prime}$.

The also applied very closely to the mundane of h, by converse motion.
The secondary directions for 31 yearls and 2 months are made on the 14th of April, 1575, with rear :
thours，P．M．，the plamets remaining in the following mannet ：

	\bigcirc	D	万	$4{ }^{\prime}$	\bigcirc	9	8	$8 \cdot 1$
Deg．	४	8	7	$\boldsymbol{\sigma}$	\bigcirc	8	8	\succ
Lon．	1． 0	9.19	19.16	4.35	26.14	11.36	29.39	－89．14
Lat．		S． 1.48	$\xrightarrow{\text { N }} 1.2$	0.07	N． 0.8	S．	${ }_{1.47}^{\text {N．}}$	

The progressions are made on the 15 th of September， 1577 ；whilst the D was in the last decanate of η ，and the stars were disposed in the manner following ：

	\bigcirc	$D=$	万	4	δ	$\%$	¢	8
Deg.	\bumpeq	m．	倠：		．吹	Ω	吸	r
Lon．	2.10	200	5.50	24.40	20，40	$16.40{ }^{\text {r }}$	28.0	12.8

To the middle of May，1606，the time the native died，there was a of the luminaries，with this con－ btruction of the stars：

	0	7	7	4	\％	9	\checkmark	8
Desor．	૪	＇Ω	bs	\cdots	1	－	15	\％
Lon．	＇24．0	24.0	7.40	0.0	${ }^{8.0}$	$\begin{gathered} 18.20 \\ R \end{gathered}$	12.1	

The ingresses of the Raminaries wcre the D in o to the place of t and ψ in δ in the secondary direct－ fions；b in of the \odot＇s progression，who was there
in the a of h, and the \odot, by progression, came tQ the 8 of his place in the nativity, with a a of b, as we have said, and was, in the return of the year, in the same a ray to the place of the \odot unfortunate.

EXAMPLE XVI.

LATITUDES.			DECLIXATIONS.		
b	- $1^{\circ} 54^{\prime}$	N.	11°	81'	N.
4	1. 20	S.	8	57	N.
8	- 03	S.	18	50	S.
\bigcirc	\cdots. $0 \cdot 0$		17	90	S.
9	. 116	S.	10	15	S. ${ }^{-}$
8	0.50	S.			
$)$. $0 \cdot 31$	N.	23	54	N.

HE died, April 16, 1602, aged 65 years, 2 months, and 15 days. This nativity is among the seven examples which we have extracted from Maginus; apd to: 65 years and 3 months which the native lived, we have shewn that the D, by direction (who is hyleg), according to a right motion, came to the fixed star Cor Leonis, and to the parallel of declination of δ and the \odot; but, according to conyerse motion, to their $口$; which directions ought, doubtless, to be esteemed sufficiently powerful to infer a fatal sickness, especially in an old man. Now, after having well considered the matter, we add that the ' D, by converse motion, came to the mundane parallel of b, by exact calculation. Maginus takes the \square of 5 to the horoscope in the equator, and Argol, to the same, adds the antiscion of δ; both neglecting the D being the significator, having dignity of life. The calculation of the D ' s direction to the fixt star Regulus, and parallel declination of the \odot and δ; is as follows: The D 's declination is $23^{\circ} 54^{\prime}$, ascensional difference $24^{\circ} 26^{\prime}$, semi-diurnal arc $114^{\circ} 26^{\prime}$, the thind part of which is $38^{\circ} 9^{\prime}$, the pole of the ninth

294*

PARTON MORES

house is 18°; the D's right ascension is 83.38^{\prime}, her distance from the medium coli $10^{\circ} 24^{\prime}$; therefore,

To which the oblique ascension of the D 's 8 is 265° 25' : the oblique ascension of the 8 of Regulus in that place is $326^{\circ} 54^{\prime}$; from which, subtracting the former, leaves the arc of direction $61^{\circ} 31^{\prime}$, which, for the èquan timon, I add to the 0 's right ascension, which is 314° 13^{\prime}, and it makes $15^{\circ} 44^{\prime}$, answering to $17^{\circ} 4^{\prime}$ of \odot, to which the \odot, from the day of birth, arrives in 65 days and one-third; and points out 65 years and 4 months of his life ; the D in that place had $4^{\circ} 32^{\prime}$ north latitude, and, consequently, her declination was $18^{\circ} 3$, the σ^{\prime} s declination was $17^{\circ} 20^{\prime}$, and that of $\sigma^{\prime \prime} 18^{\circ} 50^{\prime}$; the $\#$ was therefore between the declination of the 0 and δ. Again, by reason of the magnitude of the \odot and D 's bodies, and, also, on account of the parallax; the D had already gained the \odot 's declination, and was declining from that of δ, who, being combust, did not discover his effects; but the \odot, instead of him, according to the opinion of Cardan. The converse direction of the $>$ to the mundane parallel of b_{2} is thus: The semidiurnal are of b is $100^{\circ} 58^{\prime}$, his right ascension 1.57° 30°, his distance from the medium coli $63^{\circ} 28^{\prime}$, the D 's semidiurnal arc $114^{\circ} 26^{\prime}$; whence, if $100^{\circ} 58^{\prime}$ give $63^{\circ} 28^{\prime}, 114^{\circ} 26^{\prime}$ will give $71^{\circ} 56^{\prime}$, which is the D^{\prime} 's se-
condary distance from the medium coeli, her primary is $10^{\circ} 24^{\prime}$; ${ }^{\circ}$ which, subtracted, gives the arc of drection $610 \cdot 32^{i}$.

The D 's direction to the \square of the 0 , by converse motion is thus computed: The 0 's semi-nocturnal are is $1060^{\circ} 56^{\prime}$, distance from the imum cali $40^{\circ} 11^{\prime}$, the D 's semi-diurnal are is $114^{\circ} 26^{\prime}$, which gives the D 's secondary distance from the eorenth bouse 43°; the oblique ascension of the D ' $s \%$ is 288°; from which, subtracting the horoscope's oblique ascension, the D 's primary distange from the seventh house becomes $103^{6} 58^{\prime}$; there remains, therefore, the arc of direction $60^{\circ} 58^{\prime}$. The secondary directions are made on the 27 th of March, 1537, $15^{\wedge} 32^{\prime}$ P. M. at which time the planets were posited in the following maninet :

The ${ }_{\kappa} D$ and $\&$ in an exact diametrical 8 , had the declination of b, both there and in the nativity. The progressions to the day of his death were, as follow ; For 65 years they are finished on the 25 th of April, W4e, the $\Rightarrow D$ continuing in 27°; for two months and a half the p is posited in 17°, May 1, 1542 .

It is remarkable, that all the planets are here retrograde, and, also, at his death, at which time they abound with diseases; on the 16th of April, 1602, the day he died, the stars remained in the following manner:

	\bigcirc)	万	4	δ	9	8	8
Deg.	r	2ni	7		叫	r	8	1
Lon.	25.45	18.40	28.17R	16.22 R	3.25 R	18.16R	18.54R	16.57
Lat.		S.	N. 2.56	$\text { 2. }{ }_{4}$	$\begin{aligned} & \mathrm{N}, \\ & 3.0 \end{aligned}$	N.	S. 2.47	

There was a full θ on the 6 th of April, the \odot remaining upon his own place of the secondary direction. Therefore, on the day he died, ${ }^{5}$ entered from a 0 the place of the D 's direction in the zodiac, and was posited in 8 with nearly the same decfination, 5 in 8 of the σ 's progression'; the σ, by progression, catine to δ; and its own parallel; the γ; on the day he died, was posited in a parallefnear the 0 of b and δ of the progression; h, ox the same day, was in a parallel of
the 0 's dectipation of the nativity, and of the place of the D 's direction in the zadime.

On the 13th of December, 1583, when he wase 46 years and near 11 months old, he was crearied a Candinal ; the 0 , by right diventions, catne to a patallel of $\boldsymbol{\mu}{ }^{\prime \prime} \mathrm{sm}$ dealinstion in $\overline{3} 22^{\circ} .35^{\prime}$, which is the declivation of \boldsymbol{y} $2^{\circ} 57{ }^{\prime} \times$

> Of the ©
-The meni-necturnall arcis: . . . $7^{4} 70$
Crepusculine arc . . $\because . \therefore \cdot . \quad 1$ 43
Obscure arc - . . : 5. 24
Right ascension 3140 13
Distance from the $\mathbf{i m u m}$ cali . . -... 4011
Of $\boldsymbol{x} 22^{\circ} 35$:
The semi-mocturnal arc is $6^{\boldsymbol{p}} \mathbf{1 1}^{\prime}$
Crepusculine arc 1 39
Obscure arc 42
Primary distance from the imum coeli $79^{\circ} \quad 10$
Right atcenaion 353.12
The secondary distance is, therefore, 33044^{\prime}, whish,' subtracted from the primary, leaves the arc of direction $45^{\circ} 26^{\prime}$, which, added to the O^{\prime} 's right ascension, which is $314^{\circ} 13^{\prime}$, makes the sum $359^{\circ} 39^{\prime}$, answering to $29^{\circ} 30^{\circ}$ of x, at which the 0 , from the day of birth, arrives in 48 days; but the effeet antieipated this direction 8 months: If, lowever, the ptace of 4 be true, as to Joingituđe and Tatitude, or otherwise, because the luminaries are usually antecedeat by reason of the magnitude of their bodies', in the directions to the parallels, as is seen in the other calculations, for the 0,3
years before; had, by converse direction, arrived at the * of $\%$, therefore, the difference of 8 months is but small. The horary times of 9 are $16^{\circ} 37^{\prime}$, her distance from the sixth house 1038 ; for the oblique ascension: of the 8 of q is $152^{\circ} 24^{\prime}$; the $0^{\prime} s$ hotary times are $17^{\circ} 49^{\prime}$, whence arises his secondary distance $1^{\circ} \mathbf{4 5}^{\prime}$ from the imum coli, and, added to the primary, mäkes the arc of direction of the 0 , by converse motion, to the - of : \boldsymbol{q} in mundo $41^{\circ} .56^{\prime}$, The secondary directions. for 46 years, 10 months, and 10 days, are made on the 9 th of March, 1537 , with $6^{\text {b }} .12$, P. M. under this constitution of the heavens:

$\begin{gathered} \text { Deg. } \\ \text { of } \\ \text { Lon. } \end{gathered}$	0)	b	4	f	9	¢	8
	3	3 .	吹	r	3	8	\boldsymbol{r}	n
	29.0	4.50	2.40	20.58	14.20	4.30	14.0	15.50

The progressjons for full 47 years depend on the 10th of November, 1548, when the D was in $r 10^{\circ}$.

Therefore, one sign 24°, for the one month and 20 days, must be subtracted from the aforesaid place of the D, who will then be in $=16^{\circ}$, and the rest disposed in the following manner:

On the day of election, December 13, 1583, the Stars were thus posited :

	\bigcirc)	万	4	δ	9	8	8
Deg.	1	1	x	\cdots	F	1	5	1
Lon.	20.56	13.4	17.0	80.4	25.24	7.6id	10.288	11.46

There had preceded a full - , the 0 being in 7°, the D in II 7°, under the Δ and $*$ of $\boldsymbol{\psi}$ of the nativity.

You see, that the 0 , on the election day, was in the exact Δ of ψ of the secondary direction, and applied to the Δ of the same in the progression; and, on the contrary, 4 , on the same day, was in Δ to the 0 's progression, and applied to the same of the secondary direction, which, indeed, is worthy of admiration. Add to this, that $\%$, on the day he was made a Cardinal, was in * of the D in the secondary direction, and the j, on the same day, was posited in Δ of of the se condary direction, for he was a very learned man.

In the secondary directions the D is in * of P ; in the progression, in Δ of q; which gave famous and good offices of friends; the \odot, on the day of election, was in of q of the progressions, and in the Δ of \% of the secondary directions.

EXAMPEE XVII.

HE died, May the 26th, 1616 ; aged 52 years, 4 months, and 12 days, at which time the D, who is moderator of life, as being the conditionary luminary in the centre of the horoscope, came, by right direction, to a parallel of $h^{\prime} s$ declination in $m 15^{\circ} 48^{\circ}$, where stre is in ' $3^{\circ} 53^{\prime}$ south latitude, 'the declination of whieh place is $20^{\circ} 20^{\circ}$; a parallel of 4 succeeds, but because there is, at the same time, a mundane parallel of o to the D, and she, by ' 2 converse motion in a to $\delta, 4$ coald be of no service: The D 's direction to the parallel of ' b is this calculated: The D 's decination is $6^{\circ} 25^{\prime}$, which; in the ecliptic, answers to $\AA 16^{\circ}$, whose nocturnal horary times are $150^{\circ} 55^{\circ}$, which, doubled, make $31^{\circ} 50^{\prime}$; the ∇^{\prime} s oblique ascension in the horoscope is $187^{\circ} 3^{\prime}$, from which there remains her distance from the east $5^{\circ} 5 \mathbf{1}^{+}$; the pole of the second house is 30°, therefore the difference of the poles of the first and second is 11°.

If therefore the double horary times of the D' 914 50
gives the polar difference of the 1 st and $2 d^{\prime} 11^{\circ} \quad 0$
the D 's distance from the east . : . $\quad 5 \cdot 51$
gives 20
and there remains the D 's pole 39 , to which pole her oblique ascerision is $187^{\circ} 28^{\circ}$.

The oblique ascension of $15^{\circ} 48^{\circ}$ of in, with $3^{\circ} 3 \%^{\circ}$ south latitude, is $239^{\circ} 32^{\prime}$, from which, subtracting the D 's oblique ascension, there remains the arc of direction $52^{\circ} 4^{\prime}$, which, for the equation, add to the ϱ^{\prime} 's right ascension, which is $295^{\circ} 47^{\prime}$, and it makes
$347^{\circ} 51^{\prime}$, answering to $16^{\circ} 45^{\prime}$ of x, to which the 0 arrives in 52 days and oquartor, which denotes so many years.

The D 's right direction to the mundane parallel of δ is thus: The D 's semi-nocturnal arc is $6^{\mathrm{h}} 22^{\prime}$, its distance from the east $5^{\circ} 51^{\prime}$; the oblique ascension of the 8 of δ, taken in the horoscope, is $229^{\circ} 32$! ; from .which,: subtracting the oblique ascension of the horoscopen there remains the pripmary distance of $\%$ from the west $47^{\circ} 32^{\prime}$.

Therefore, as the D 's. semi-nacturnal arc - 6h $\mathbf{~ 2 2 ~}^{\prime \prime}$
in to her-distapce from the east :- . . . 50.51
so is f 's semi-nocturnal arc : $\because \cdot 5^{\mathrm{b}} 8$
to his sefondary distance from the west . $4^{\circ} 33$ which, added to the primary, as this is under the earth, and the ather above, makes the afc of direction $52^{\circ} 10$. The D at the same time came, by a converse motion, to the \square of o $^{\text {a }}$

As the semi-diurnal are of \&. $6^{\mathbf{k}} 57^{\prime}$
is to his distance from the west : $47^{\circ} 32$
so is the D's semi-diurnal, arc 5h 38
to her secondary distance from medium coeli $38^{\circ} 32$ Her primary distance from medium coeli is $90^{\circ} 16^{\prime}$, for her right ascension is $182^{\circ} 16^{\prime}$; subtracting, therefore, the secondary distance from the primary, there remains the arc of direction $51^{\circ} 4 \dot{4}^{\prime}$, The secondary directions are made on the 25 th of February, with $19^{\text {h }}$ P. M., the \rightarrow remaining in 8° of r .

$\begin{gathered} \text { Dog. } \\ \text { of } \\ \text { Lon. } \end{gathered}$	\bigcirc	$)$	¢	4	8	9	y	8
	\cdots	吹	${ }^{6}$	Σ	I	\boldsymbol{r}	\boldsymbol{r}	up
	17.0	8.0	28.56	28.2	4.16	4.58	2.16	4.16

The progressions for 52 years complete, fall on the _ 19th of March, 1568; whilst the D continued in t. 19°; for 4 months and a third she came to 89°, on the 30th of the same month, when the planets were in the following position :

	\bigcirc	1	ζ	4	¢	9	8	8
Deg.	\boldsymbol{r}	8	明	+	¢	\cdots	$\boldsymbol{\gamma}$	\triangle
Lon.	19.50	9.0	22.46	8.18	26.38	6.34	26.35	15.9
Lat.		S.	N. 2.98	N.	N. 8.83	N. 1.30		

On the day he died, May the 26tb, 1816, these were the places of the planets :

$\begin{gathered} \text { Deg. } \\ \text { of } \\ \text { Lon. } \end{gathered}$	0	D	b	4	δ	7	\%	8
	II	\sim	\bigcirc	F	¢	8	8	3
	4.58	7.45	4.87	26.9	5.58	2.54.	19.1	13.57
Lat.		$\begin{aligned} & \text { S. } \\ & 8.9 \end{aligned}$	$\begin{aligned} & \mathrm{S} . \\ & 2.8 \end{aligned}$	N. 1.9	S. 0.10	S.	S.	

The D was in the secondary direction, in \square to δ; Ii
and, on the day he died, the \odot entered the place of δ, and in 0 to the D. The \odot, by progression, leaving the parallel of ζ, applied to the of of , who was in 8 of the \odot 's place of the nativity : on the same day, h and δ entered upon the D 's progression; the D, likewise, on that day, with the declination of b 's progression, goes to the 8 of the \odot and \square of δ 's progression; but what is most important, is, that the \odot, on the fatal day, entered upon of in the secondary direction; but, from the \odot 's situation, the times of the effects are first principally defined, and then from the D.

In the 41 st year and two months of his age, that is, in 1605, Argol says he was dangerously ill, and lays down the manner of his death, by supposing it to be from the ascendant directed to the of 2 ; but we say, from the D to an 8 of δ. The D 's oblique ascension is $187^{\circ} 28^{\prime}$ to the pole 39°; and the oblique ascension of the 8 of of $228^{\circ} 36^{\prime}$; from which, subtracting the former, leaves the arc of direction $41^{\circ} 8^{\prime}$, which, equated in our way, denotes 42 years, though the effect was very slow; if only the place of o be true, for other tables place him in 89°, but the difference is but trifing; and if the direction is made to the 8 in the zodiac it will be found to precede. The D also, by a converse direction, reached the mundane parallel of 8.

is to his distance from the west . . . $47^{\circ} 32$
so is the semi-diarnal arc of the D. . $5^{\text {b }} 38$
to her distance.from the east $38^{\circ} 32$
which, added to her primary distance : 551
makes the arc of direction 4423

But, if this figure be altered one degree, this direction agrees nearly.
The secondary directions fall on the 14th of February, 1564 ; the D remaining in $r 13^{\circ}$, that is to say, $14^{\text {a }}$ 27', P. M. At his death, of was found in $\boldsymbol{r} 180$ upon this place of the D, she being in 8 to h , and in the declination of δ of these motions.

The progressions are made on the 5 th of May, 1567, whilst the D was in $r 10^{\circ}$, applying to δ, he being in :r 15°, and in the same place at his death; the D, therefore, had arrived at the 8 of her radical place. On the 5th of March, preceding his death, there was a full - in 暔 14° upon ξ of the progression, and in parallel there of δ, according to the doctrine of Ptolemy, in the last chapter of his 4th Book; and, that you may not look upon this as a dream, if you observe, in these examples, the equal progression now commonly used; you will find little or no agreement between them; so that you may perceive they are altogether false and useless.

In the 41st year, when the native was created a Cardinal, the medium coeli, having stopt first at a of 4 , came afterwards to the biquintile of 4 , who assumed the nature of $\boldsymbol{\psi}$ from that biquintile ray, and partly of \& from the parallel of the declination. remained very strong in the centre of the imum cali, when the satellites of the luminaries were very fortunate, the 0 of 9 , the D of 4 from the $\%$. The declination of is $24^{\circ} 4^{\prime}$, ascensional difference $22^{\circ} 50^{\prime}$, and semi-nocturnal arc $112^{\circ} 50^{\prime}$; the fifth part of which is $22^{\circ} 34^{\prime}$, and, doubled, are $45^{\circ} 3^{\prime}$; the right ascension of $\%$ is 270°

22', whence his distance from the imum cceli becomes $1^{\circ} 38^{\prime}$, which, subtracted from the geminated 6fth part of is 's semi-nocturnal arc, there remains the arc of direction $43^{\circ} 30^{\prime}$, which, equated in our way, denotes 41 years : but, if the nativity be increased 1°, as aforesaid, the time agrees exactly. Argol places in 8° of \boldsymbol{m} : in this he must certainly be mistaken.

Moreover, the © had arrived at the sesqui-quadrate of \boldsymbol{x} by a converse motion: the oblique ascension of $\boldsymbol{\psi}$ to the pole of the eleventh house 16°, is $120^{\circ} 43^{\prime}$; the oblique ascension of the 0 's 8 to the same pole is $100^{\circ} 21^{\prime}$; this, subtraeted from the former, leaves the 0^{\prime} 's distance from the 8 of $\times 11^{\circ} 22^{\prime}$. The 0 's horary times are $18^{\circ} 19^{\prime}$, which, triplicated, are $54^{\circ} 57^{\prime}$; and as the distance of the sesqui-quadrate ray from the 8 are the triplicate horary times; from this, therefore, subtracting the 0 's distance from the 8 of \boldsymbol{x}, leaves the arc of direction $43^{\circ} 35^{\prime}$. The secondary directions fall on the 14th of February, 1564, when the \odot was in the exact biquintile of ψ, and the D in Δ.

EXAMPLE XVHL

HE died, January 27, 1639. The D, in this nativity, possesses the horoscope, and, as she is the conditionary luminary, the signification of life belongs to her. At the time of his death, which happened when he was 66 years and ten months old, she came, by a right motion, to a parallel of \hbar 's declination, and, by a converse motion, was in a mundane parallel with him; whilst both were carried away by the rapt motion of the primum mobile. Lastly, she came very near the 6 of δ.

Argol directs the ascendant to the Δ of δ, who is in a sign of long ascension ; she, therefore, does not take the nature of a \square; so that the D, and not the horoscope, is the significator of life. The direction to the mundane parallel of $\sqrt{ }$'s rapt motion is thus calcuJated:

The declination of b_{2} answers to $m 7^{\circ}$ in the ecliptic, whereof the semi-diurnal arc is $5^{\mathrm{k}} 9^{\prime}$; the D 's declination is adequate to $m 29^{\circ}$, whose semi-diurnal arc is $4^{\mathrm{h}} 54^{\prime}$. I add these arcs together, and the sum is 10^{b} 3'. The right ascension of h is $224^{\circ} 14^{\prime}$, and that of the $D 259^{\circ} 17^{\prime}$; the difference is $35^{\circ} 3^{\prime}$; therefore,

As the sum of the semi-diurnal arcs . . $10^{n} 3^{\prime}$
is to the semi-diurnal arc of \hbar. 59
so is the difference of right ascension . $35^{\circ} 3$
to the secondary distance of \bar{b} from the medium coeli. 1758
The primary distance of b is $44^{\circ} 33^{\prime}$, which is to be added to the $17^{\circ} 58^{\prime}$, because b moves from thé
ascendant to the descendant parts, and makes the arc of direction $62^{\circ} 31^{\prime}$, which, for the equation, add to the ©'s right ascension, which is $356^{\circ} 50^{\circ}$, and it makes $59^{\circ} 21^{\prime}$, answering to $1^{\circ} 30^{\prime}$ of π, to which the \odot arrives in 66 days and 20 hours, which denotes the age of 66 years and 10 months.

The D to the parallel of the declination of ξ; the D 's oblique ascension under the pole of Rome is 275° 16^{\prime}, to which I add the arc of direction $62^{\circ} 31^{\prime}$, which makes $340^{\circ} 47^{\prime}$; I look for this in the same table, near the end of the, sign m, where the $)$ gains near 2° south latitude, and I find it in m precisely $23^{\circ} 14^{\prime}$, of which place, with 2° south latitude, the declination is $15^{\circ} 42^{\prime}$, and that of $\bar{b} 14^{\circ} 2^{\prime}$; so that the $)$ had not yet exactly reached the declination of ζ, either because the places of \bar{b} and the $>$ are not yet exactly true, or that the luminaries in the directions to the parallels of declination always. precede, as we have said, in producing the effects, the true time of the parallel; or, lastly, because the preceding directions and agreement of the other motions were urgent, which frequently happens.
The D to the σ of δ. The pole of δ is 90 , his oblique ascension $196^{\circ} 39^{\prime}$; the D 's oblique ascension under that pole is $262^{\circ} 32^{\prime}$; from which; subtracting the former, leaves the arc of direction $65^{\circ} 53^{\prime}$; so that the D was but 3° distant from δ.

The secondary directions happened on the 12th of May, 1572, at $8^{\mathrm{h}} 5^{\prime}$ P. M. when the stars were thus posited:

	0	）	h	4	8	9	8	8
De	II	II	断	\boldsymbol{r}	\％	ש	II	E
Lon．	1.40	12.0	10.44	19.46	29.6	7.0	9.0	25.50
Lat．		S． 8.25	$\begin{aligned} & \mathrm{N} . \\ & \mathbf{2 . 9 1} \end{aligned}$	$\underset{1.10}{\mathrm{~S} .}$	$\begin{gathered} \mathrm{N} . \\ 0.41 \end{gathered}$	$\begin{aligned} & \mathrm{N} . \\ & 1.44 \end{aligned}$	$\begin{gathered} \mathrm{S} . \\ 0.89 \end{gathered}$	

The progressions are made the lst of August，1577， whilet the D was in $\times 22^{\circ}$ ．

	\bigcirc	D	万	4	8	9	8	8
Deg．	Ω	3	bs	吹	Ω	\％	Ω	\boldsymbol{r}
Lom	18.80	22.0	5，54	15.8	21.39	26．47R	17.57 R	14.31
Lat．		$\begin{gathered} \mathrm{S} . \\ 1.54 \end{gathered}$	$\begin{aligned} & N . \\ & 0.40 \end{aligned}$	N． 1．	$\begin{gathered} \mathrm{N} . \\ 0.6 \end{gathered}$	$\begin{gathered} \text { 8. } \\ 4.49 \end{gathered}$	$\begin{gathered} 8 . \\ \mathbf{3 . 5 8} \end{gathered}$	

January 27th，1639，the day he died，the planets were placed in the following manner：

$\begin{aligned} & \text { Des. } \\ & \text { of } \\ & \text { Lon. } \end{aligned}$	\bigcirc	D	b	4	f	\％	8	8
	2	m	2	1	\boldsymbol{r}	二゙H	2	1
	7.31	22.40	9.11	1.52	4.50	2.18	86.92	20.29
Lat．		S．	$\begin{array}{\|c\|} \hline 8 . \\ 0.45 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline N . \\ 0.55 \end{array}$	S．	S．	N：	

The preceding day there was a a of the D ，the \odot remaining in $=7^{\circ}$ ，in the \square of b＇s secondary direction，
and the D in 7^{9} of η upon \hbar, and with the declination of his primary directions, viz. that of h of the nativity. On the day he đied, the D passed from h 's radical place to the 口of the ρ_{2} and t 's progre'ssion; who, with retrograde, were conjoined in 8 to the D's place in the right direction, who, in the seçondary direction, being posited in opposition to ber radical place, made the year climacterical ; and likowise in the progression was posited in the \square of the ratical places but the preceding of of the luminaries, as it happened there in an hostile aspect of h, who was in a paralld of the declination and δ of the \odot and \square of the $D ;$ and lastly, the enemies configurated to the place of the D 's directiop, who is hyleg; and o in.$r 5^{\circ}$ from the fourth house of the nativity, afficted the D. in her radical place, it is very evident, to her it belonged tp produce the effeets demoted by the dinection of the same tp the aspects of 6 . These agreements are, indeed, truly worthy of admiration!

Kk

LXAMPLE XIX.

HE died the 10 th of March, 1621 , aged 49 years, 11 months; was elected a Cardinal in January, 1592, being at that time nearly 20 years and 10 months old.
Argol speaks of this nativity in the last edition of "Critical Days,". page 184. He places the D in 8 25°, and directs the horoscope to its o in the 50th year, rejecting the \odot, to whom belongs the signification of life; but the D, according to the common Tables and Ephemeris, is posited in II 25°, and then that direction will not be the \square, but the $*$. Now we, in imitation of Ptolemy, make the \odot entirely aphæta, who, in 43 years and 11 months, comes to the mundane parallel of 5 , both by a right and converse motion. A calculation of the right direction is thus : The 0 's declination is $7^{\circ} 34^{\prime}$, ascensional difference $6^{\circ} 52^{\prime}$, semidiurnal arc $96^{\circ} 52^{\prime}$, right ascension $17^{\circ} 47^{\prime}$, distance
 ascensional difference $8^{\circ} 18^{\prime}$, semi-nocturnal arc $98^{\circ} 18^{\prime}$, right ascension $210^{\circ} 6^{\prime}$, primary distance from the imum cali $30^{\circ} 6^{\prime}$; these produce $\hbar ' s$ secondary distance $18^{\circ} 3^{\prime}$; this, added to the primary, makes the arc of direction $48^{\circ} 9^{\prime}$, which, added to the 0^{\prime} s right ascension, makes $65^{\circ} 56^{\prime}$, answering to $y^{\circ} 45^{\prime}$ of I, to which the © arrives in $\mathbf{5 0}$ days, which gives 50 years.

The converse direction is thus :

is to his distance from the imum coeli . 306
so is the 0 's semi-diurnal arc . . . 9652
to his secondary distance 2940
which, with the primary, makes the arc of direction $47^{\circ} \cdot 27^{\prime}$. Bet you are to observe, thit the O; when in \& with \mathbf{t}., applies to a parallel of the declination of b; wherefore as aphrata, be denoter the corrupt grelities, of the body and shortness of life; especially; as from, the modimen ceeli be, by a \square ray, afticted the horoscape.

The secoudary directions bappen on the 19th of Mays. 1571 , with $80^{4} 49$, P. M. under the following disposition of the stase:

	\bigcirc	D	ל	4	${ }^{\text {d }}$	9	¢	8
Deg	II	\boldsymbol{r}	\approx	x	\checkmark	\checkmark	1	36
Lon.	8.0	29.6	980	20.50	26.0	23.55	6. 6	14.87
Lat.		S. 4.50	N.	$\begin{gathered} \mathrm{s} .19 \\ 1.19 \end{gathered}$	\mathbf{S} 0.8	$\begin{gathered} 3 . \\ 1.23 \end{gathered}$	S:	

- The progressions for full 50 years are made on the 15th of April, 1575 ; therefore, for 49 years and 10 months, those progressions are made on the 11th of April, the D remaining in $\Varangle 6^{\circ}$; the other as you may see under:

$\left\|\begin{array}{l} \text { Deg. } \\ \text { of } \\ \text { Lon. } \end{array}\right\|$	\bigcirc	7	万	4	8	9	¢	8
	8	8	1	$\boldsymbol{\sigma}$	γ	8	8	8
	0.50	6. 0	19.0	5. 2	26.37	11.18	20.21	29.5
Lat.		S. 1.57	${ }_{1.48}$	0. 0	Na/ 0.8	8.	N. N.	

February 10, 1621, the day he died, the stars were thus placed :

In the secondary direction the D was in 8 to h, as well there, as from the nativity : on the day of death 5 was upon D in the nativity; the \odot, by progression, in 8 of h 's radical place; the Θ, on the day he died; in the \square of δ of the progression.
In the progression, the was in the same paralled of b 's dectination, and nearly so on the day of his death : on the contrary, the D on the same day was found upon b of the secondary direction. And is this not wondẹtul?

Before his death there was an 8 of the luminaries, the σ in $m 18^{\circ}$, and the A in $\Omega 18^{\circ}$, in a to of the progression and secondary directions.

The nonutlity of the common progression "ts easily perceptible.

In the 2 lst year ${ }_{2}$ the \odot, by direction, came to the * of 4 and .

EXAMPLE XX.

HE died May 16, 1637, at the age of 45 years, 6 months, and 15 days.

In his nativity the 0 becomes entirely hyleg, and not the ascendant, according to Argol; for he is on the cusp of the medium coeli, and at the time of death, in 45 years and a balf, came, by right direction, to f $24^{\circ} 50^{\prime}$, where he is afflicted by the D 's.sesqui-quadrate, having, for some time before, been under a paralle declination of 5 and δ, and likewise in a of δ in mundo, to which the \odot from 0° of \ddagger applied, but, from a 6 with $\%$ and the terms of the favourable planets, he was preserved : besides, it is to be obsorved, that both the luminaries were moved, by converse direction, to a mundane o of \bar{b}, who in the nativity afflicted the horoscope from the 8 and the luminaries by $2 \square$ ray in mundo, and being posited on the cusp of the seventh, he denoted 2 short life with bad health, and had not 9 , in exact mundane $*$, assisted the \odot in its radical place, the native would never have lived so long. Lastly, there was an application of the \odot by converse motion to the parallel of δ in mundo, whilst both were carried away by the-rapt motion of the primum mobile. The catculation is thus: The \odot^{\prime} s semi-diurnal are is $5^{\mathrm{h}} 7^{\prime}, \delta^{\text {' }} \mathrm{s}$ declination answers to $4^{\circ} 30^{\prime}$ of f, whose semi-diurnal arc is $4^{4} 39^{\prime}$; I add these arcs together, and the sum is $9^{\text {h }} 46^{\prime}$: the \odot^{\prime} 's right ascension is $215^{\circ} 58^{\prime}$, and that of ${ }^{\top} 307^{\circ} 28^{\prime}$, from which I subtract the ©'s right ascension, and the right difference between them is $91^{\circ} 30^{\prime}$. Now say,

As the sum of both semi-diurnal arcs . $\mathbf{9}^{\mathbf{k}} \mathbf{4 6}$
; is to the O"s sermidiartal arc 5 7
so is the difference of right asceasion : $\mathbf{N}^{\circ} 0$
to the 0° ssec. distance from nediano colic. 47^{\prime} 'st
which, added to the primary, maskes the are of disection 48° ' 2 ', which for the equation add to the 0^{\prime} 's right asceraion, and the sum is 264°, answering to $24^{\circ} 30^{\circ}$ of f, to which the Q, from the day of birth, airives in 45 dayis, which desoetes so many yeaps.

In this example, $2 s$ swell as others, is proved the measure of directions which we make use of; for, if we add to the 0^{\prime} 's right ascension $45^{\circ} 80^{\prime}$, according to the comimon method, we make the sam $261^{\circ} 28$, equal to * $22^{\circ} 10^{\prime}$, where 7 's paralled is,' who doubtless woutd have preserved him ; and as our meacupe of the directions brings the \odot farther, to $24^{\circ} 30^{\prime}$, and $\%$ being in ${ }^{20} \mathbf{3 6}^{\prime}$ south taxitude, she was alrcady separated from the 0 , and constitued in the terms of 5_{5}.

The secondary directions fall on the leth of December 1591, with $13^{\text {b }}$, P. M. at which time the placos of the stars were as follow :

$\begin{gathered} \text { Deg: } \\ \text { of } \\ \text { Lon. } \end{gathered}$	0	1	b	4	$\boldsymbol{*}$	9	-	$\boldsymbol{8}$
	1	20	\pm	7	\cdots	\checkmark	1	\square
	24.40	6.0	10.29	4.33	7.13	1.38 R	8.26	6.49
Lat.		N.	S.	N.	$\stackrel{\text { S. }}{\text { S. }}$	1. 5	N. N.	,

The progressions for 45 years and a half, exact, are
raade on the 7th of Iuly, 1595 , the D, being in $18^{\circ} 59^{\circ}$. of $\operatorname{ton}^{\circ}$; to these I add. $16^{\circ} 30^{\prime}$ far the haff manth, and. the D is posited in a, $A^{\circ}, 30^{\prime} ;$, butt the feat, on the 8th of July, 1595, are as follown: :

	\bigcirc)	h	4	δ	\%	8	8
Deg.	¢	Ω	Ω	or	r	!	. 8	r
Lon.	15.0	430	22.45	9. 6	19.80	7. 0	20.0	27.56
Lat.		N.	$\begin{gathered} \mathrm{N} . \\ 0.98 \end{gathered}$	$\begin{aligned} & \mathrm{S} . \\ & 1.25 \\ & \hline \end{aligned}$	${ }_{2.11}{ }_{2}$	8. 1.48	N.	

On the day he died, May .16 at $1^{\text {n }} 5^{\prime}$, the planeth remained thus :

$\begin{gathered} \text { Deg. } \\ \text { of } \\ \text { Lon. } \end{gathered}$	\bigcirc	3	b	4	δ	9	\Varangle	8
	\checkmark	N	Ff	Y2	II	8	\checkmark	ケ0
	26.0	22.0	25.18	25.24	6.52	10.46	10.15	28.3
Lat.		${ }_{2}$	N.	. N.	N. 0.32	8. 1.17	S. 0.42	

In the secondary directions the D was with the of i ip 8 to K , and the σ nearly in the parallet of the de; dination of 5 ; and these lummaries, by the same so apndary direction on the day he died, entered a similer parallel of h and δ.

In the progression the \odot in \square of o continued upon B's radical place; the $)$ in 8 of δ 's radical place, exactly: on the day of his death the \odot was in \square of 1 L1
of the progression, and, on the contrary, h in 8 with the parallel of the 0 's progression; of had likewise the same declination with him; on the above day the D was found in the exact 8 of k of the progression.

The luminaries had alternately the a on that day, with many other attestations of the infortunes; so that the effect was not frustrated.

> EXAMPLE XXI.

IN this nativity, if the ascendant had $18^{\circ} 37^{\prime}$ of f, according to the explanation of Argol, we freely confess if the 0 were hyleg, no direction of his would agree with the time of the native's death.

For the direction's arc for 36 years 8 months, is $61^{\circ} 15^{\prime}$, the 0^{\prime} s oblique ascension is $279^{\circ} 41^{\prime}$; to which, if we add the direction's arc $61^{\circ} 15^{\prime}$, the sum is $340^{\circ} 56^{\prime}$; answering to $=27^{\circ}$ in the same table, obnoxious to none of the malefics.

Wherefore, as in this nativity the \odot begins to be separated from the horoscope, if, to the time in the nativity, a quarter of an hour is added, which is probable and likely to be true, because of the usual difference between the solar and civil horology, the prorogatory dignity of life is taken away from the σ, as he has now left the horoscope, and is transferred entirely to the D; which that it is so, is confirmed by the agreements of the D 's directions with the time of death, as will be presently evident.
The native died the 4th of August, 1620, aged 36 years and 8 months, at which time the \geqslant came, by a

25e

right direction, to a parallel declination of δ; the parallel of preceding near $21^{\circ} 25^{\prime}$ of when the D gains 2° North latitude, and dectination 81° 18. But because about the tropics the decfination sufiers very little variation ; so that the \rangle, for some preceding degrees, participated of the parallel of δ; a subsequent Δ of 4 preserped him, and also from his o with the © ; but the Δ of 4 began now te cense, and the D entered the terms of k. Lastly, there was, by conveppe directions a moundame paraltit of of to the D; the efect of this pasallel of : to the immediately appeared; and at the seme time the D, by a converse motion, came to the. 8 of ' δ; and secing so many agteendente on the part of the \boldsymbol{V}. concur, of comotquence the signification of hife belongs to her.
. Wre have ssid, that the ard of ditrection for 56 years and 8 macouthe is $61^{\circ} 151$. Nour the 1 , in 50 days and 16 hours from the nativity, arrives at $1510^{\circ} 8^{\prime \prime}$, whose right aseonsion is $318^{\circ} 97^{\prime}$, from which sabructing the Q's. right ascension, 257° ' 22^{\prime}, there remains the arc of ditections $65^{\circ} 15^{\prime}$, which ind due to she aforesaid years; the ∇^{\prime} rixht asconaion is $199^{\circ} 91^{\prime}$, to which addiog 6is 30°, the san is $960^{\circ} 46^{\prime}, 3$ hios, in the tables of right saceu-
 8° nowh, whish the Y gine thetes and wheve she is pow sised in the deatination of x.

The ealeulation of die converso diruation to the mitnt dane parallel of the same is thus: The y 's declinationy,

anowets to bf 26°, whose semindiurnal are is 4° s5 I add these अres fogether, hach the sum is $10^{\prime k} £ 9^{\prime}$. The right ancention of δ is $904^{\circ} 33^{\prime}$: from which, subtracting the i 's right ascersion, there remains the right' difference between them, $105^{\circ} 4^{\prime}$; therefore,

As the sum of the semi-diurnal arcs . . $10^{\mathrm{h}} \cdot 29^{\prime}$
is to the D 's semi-diarnal arc 550
sois the right asconational difference . . 105°. 4
to the D 's secondary distance 58
which, added to the primary . . . 351
makes the arc of direction 19
greater than that above taken by one degree; so that this direction succeeded the yearr, and also the 8 of of, if the places of the D and o betriser

The converse direction to the 8 of 8 is thus calculated: The elevation of the pole of the second house is 31°; but as of hath $1^{\circ} 18^{\prime}$ south latitude, and is 1° distant below the cusp, the elevation of his pole is 30°, under which δ^{\prime} 's oblique ascension is 915°; but the obliqueascensiot there of the $\nabla^{\circ} \mathrm{s} 8$ is $17^{\circ}-59^{\circ}$, from which, subtracting that of δ, leaves the arc of direction $62^{\circ} 50^{\prime}$.

Argol says that the mative was sick in the 44th year and a a half ol his age; at that time the D came, by conterfe motion; to a muadarie io of h; wtrich direction, Tf you would see, is thue: The firse nomber is the semfodurnat are of 万; the second his distance from the east by the oblique ascensidia of the Aoroscope; the third is the \rightarrow 'semi-diumal are; and the fourth nomber will be her secondary distance from the medium
coeli, which added to the primary, and the direction's arc: equated, for the 44 th year and a half, is $48^{\circ} 47^{\prime}$; but the luminaries seem very frequently to precede, in their effects, the intimate application of the direction, especially in the parallel, as has been frequently mentioned.

The secondary directions happen on the 23 th of ' January, 1573, with the hours 12, from meridian, under the following construction of the stars :

$\begin{gathered} \text { Deg. } \\ \text { of } \\ \text { Lon. } \end{gathered}$	\bigcirc	\geqslant	\hbar	4	t	9	\%	$\boldsymbol{8}$
	2	m	m	r	3	bf	3	$\underline{8}$
	16.30	12.36	26.24	25.9	17.0	4. 0	6. 0	11.50
Lat.		${ }_{4.17}^{\mathrm{N} .}$	$\begin{gathered} \mathrm{N} . \\ 2.10 \end{gathered}$	S. 1.20	S.	2. 8	N. 1.53	

The progressions are made on the SOth of June, 1577, the stars in the position following:

$\begin{aligned} & \text { Deg. } \\ & \text { of } \\ & \text { Lon. } \end{aligned}$	\bigcirc	2	b	4	8	9	8	8
	[83	bo	no	m	${ }^{3}$	Ω	Ω	\boldsymbol{r}
	17.20	18.0	8. 4	8.50	29.58	11.49	12.24	16.22
Lat.		N. 4.17	$\stackrel{\mathrm{N} .}{ }$	1. 0	${ }_{\text {N. }}^{\text {N. }}$	S. 0.40	N. 0.15	

On the 4th of August, the day of his death, the stars were as under:

On the day he died, there wàs a full - in the \square and parallel of b in the radix, and in his place of the secondary directions, in which of was, in \square of the \odot and parallel of the D. On the same day b was in \square of the O and D of the progression, and exactly upon the place of the D - in the radix; and δ on that day had a parallel declination in the place of the D 's right direction ; $\&$ had the $*$ to the D in the nativity, but was combust. On the above day, the \odot was in an exact parallel declination of ξ of the secondary direction, and the D entered the same parallel.

You see, Reader, how various and inutual the agreementsare, both active and passive, and yet how exact. In the 24th year, the time he was made a Cardinal, the © came to the quintile of q in the zodiac, near $13^{\circ} 42^{\prime}$ of \mathfrak{f}, which hath the same declination with the \odot in the nativity, the direction is easy, viz. by the right ascensions; for as many days as the \odot was arriving at $45^{\circ} 42$ of bf, so many years do they denote ; the num-
ber of days is 84 ; beaides, the Θ applied at the sampe time to the quintile of 4 in mundo, which is thas colener lated :

I divide 4^{\prime} 's nocturnat horary times $13^{\circ} 58^{\circ}$ by 5°, the quotient is $2^{\circ} 48^{\prime}$, which, added to kis nocturnal horary times, make $16^{\circ} 46^{\prime}$, which are the 5 th part of Ψ^{\prime} 's semi-noctūrnal arc.
-1 direer φ to the \square of the θ in the world thus: If the horary times of \odot. $11^{d} 15^{\prime}$.
give his distance from the East : , . 559
What - m 4', roury times give : . . 1358
Andiver, X's secondary distance from the imusn eceli . : 7 . 25
The right ascension of ψ is 19°, whence his primary: distance from the imuse coeli is $3^{\circ} 20^{\prime}$; which, added' to the secondary, maloes she are of direction of the 0 to the of $\boldsymbol{u} 10^{\circ} 45^{\prime}$: to this I add $2 \cdot 5$ th part of 4 's. semi-nocturnal arc, taken as before $96^{\circ} 46^{\prime}$, and the sum is $27^{\circ} 31^{\prime}$, for the arc of direction of the \odot to the quintile of μ in mundo, which turned intd time, gives 95 years neanty.

In this nativity, is to be observed a very moblo Satet litom of the luminiaries, particularly of the \mathcal{O}, who was in the Δ of 4 and $*$ of q, wis. in the world to 95 for ρ, in such $2 *$, confers very great honours on the Θ. Soe in other examples brought by Argol in the Cardinals Leniua, Lanfranche, Borromeus; in George Prince Aldobrandine, Charles I, Gonzago Duke of Mantua, Dominic Molinse, Bernard Vamarims, and others.

The secondary directions are made' on December 23,

1572, with $7^{\text {h }} 54^{\prime}$, P. M. and the progression on the 25th of October, 1574, almost in the meridian, in which the luminaries were alternately in Δ, and both in exact Δ of 4 . On the 5 th of June, when he was elected, The füminaries werre positedalternately in and wete found in Δ of $\%$ of the progression, the O in parallel of $44,8 c$.

Argqu directs the miedium coeti to the of g : . For the 24th yeat; but the fén falls in - 50 '46', which precedes, not succeeds, the médium coeli; and the right ascensich of the $*$ of $\frac{1}{}$, where it is tatiten $\$ 13^{\circ} 94^{\prime}$, is $5^{\circ} 46^{\prime}$ of m, and nol in.

Argol takes the medium räl to the \ddagger of $\%$ in the zodiac, whieth cannot be admitted, as the angles cannot be directed to sodiachl aspects. And, thin this instance, he has mistaken his own theury.'

EXAMPLE XXII.

HE died August 1, 1629, aged 70 years and 9 months ; was created a Cardinal on the 5th of June, 1596, at the age of 37 years and 7 months.

In this nativity, which is explained by Argol, q is to be placed in $\simeq 120$, not 91°; he directs the ascendant to the \square of-h in the zodiac; but, as the rays to the angles in the zodiac are rejected by us for very plain reasons, and also by Ptolemy; and on the other hand, the ©'s arc of direction corresponds very well with the propier \square in mundo, whereby both the prerogatory virtues', viz. one by a right direct motion, and the other by a converse, is mjured, especially by the subsequent parallels of 5 in mands, as will appear by calculating them.

Likewise, as the significator of life belongs to the \odot, that he may obtain this dignity, the time of birth must be lengthened some few minutes; wherefore we add to the given hour 18 minutes. At the time of his death the \odot came to its own $\square i^{i}$ mundo; the calculation whereof is easy ; for the $\mathcal{O}^{\circ} \mathrm{s}$ semi-diurnal arc is $74^{\circ} 54^{\prime}$, his horary times are $12^{\circ} 29^{\circ}$. The \odot likewise came by right motion to a mundane parallel of 5 .

As the horary times of the $0.1: \quad 18^{\circ} 99^{\circ}$
to his distance from the medium coeli . 34.33
so is b 's horary times 1239
to his secondary distance from the imuln coeli 3444
The right ascemsion of b is $-47^{\circ} 81^{\prime} ;$ from which, subtracting the right ascension of the imum coeti, leaves the primary distance of 5 from the imum coeli $42^{\circ} 1^{\prime}$; which, added to the secondary, makes the arc of di-
rection $76^{\circ} 45^{\prime}$; lastly, the \odot, by converse motion, came to the mundane parallel of k.

For as 6 's horary, times $12^{a} 33^{\prime}$ is to his distance from the imum coeli $42^{\circ} 1^{\prime}$, so is the 0^{\prime} 's horary times $122^{\circ} 89^{\prime}$ to his secondary distance from the mediume cosli $41^{\circ} 48^{\prime}$; which, added to the primary, $84^{\circ} \$ 88^{\prime}$, makea the arc of direction $76^{\circ} 21^{\prime}$. For the equation add the arc of direction to the 0^{\prime} 's right ascension, and it makes $296^{\circ} 24^{\prime}$, answering to $24^{\circ} 299^{\prime}$ of kf , to which, from the day of birth, the \odot arrives in 70 days and 18 bours, which denotes 70 years and nipe months. The secondary directions are made on the 14th of Japuary, 1559, with the hours from meridian, $15^{\circ} .23^{\prime}$, in this situation, of the stars,

	\bigcirc	0	b	4	*	9.	9	9
Deg	5	1	8	\%	n	bs	b	r
4 H	84.29	15.0	17.45	17.35	7.20	10.0	20.10	13.44

The progressions, forfull 70 , years, are made on the
 other 9 months, we have the λ posited $\mathrm{in}_{1} \mathrm{C}, 25^{\circ} 30^{\prime}$; the rest, on the 13th of July, were an under:

i	\bigcirc	D.	万	4	δ	9	\checkmark	$\boldsymbol{\Omega}$
Deg.	Ω	\sim	Ω	Ω	Ω	吹	Ω	1
Lup.	237	25.50	8. 7	14.36	27,30	17.0	25.19	20.51
Lat.		$\begin{gathered} 6 \\ 4,23 \end{gathered}$	$\begin{aligned} & \mathbf{N} . \\ & \mathbf{0 . 3 0} \end{aligned}$	$\begin{aligned} & \mathbf{N}_{\bullet} \\ & 0.38 \end{aligned}$	$\begin{aligned} & \mathrm{N} . \\ & 0.17 \end{aligned}$	$\begin{gathered} \mathrm{N}, \\ 1.31 \end{gathered}$	2.48	

On the day of death which was the 1st of August 1699. the Stars were thus posited:

$\begin{gathered} \text { Drge. } \\ \text { of } \\ \text { Lon. } \end{gathered}$	\bigcirc	D	万	4	8	9	8	
	Ω	b	\pm	"Y	T	8	m	樶
	9.5	10.0	18.89	1.25	1.43	14.20	3.32	0.41

On the day he died, the \odot entered the progression of h, and in a . of the secondary direction of f ; h, the D 's progression, and the \square of the Q 's secondary direction; $\delta^{2} 2$ parallel of the Q 's secondary direction.

In 1596, aged 37 years and 7 months, he was made a Cardinal ; the \odot came, by a right direction, to the * of 4 in mundo; likewise, to the quintile of $\%$, and parallel of the same, by a converse motion.
The direction to the $\#$ of ψ is thus calculated:
The ©'s oblique ascension under the pole of the eleventh house 18°, is $295^{\circ} 16^{\prime}$, from which, subtracting the oblique ascension of that house, which is $215^{\circ} 30^{\prime}$, leaves the 0^{\prime} 's distance from the eleventh house $9^{\circ} 46^{\prime}$; therefore, ψ^{\prime} 's horary times $18^{\circ} 21^{\prime}$, will give his secondary distance from the East $14^{\circ} 21^{\prime}$. The oblique ascension of 4 in the horoscope is $397^{\circ} 1 \mathbf{1 2}^{\prime}$; from which, subtrecting the horoscope's oblique ascension, leaves the primary distance of $\boldsymbol{\psi}$ from the ascendant, $51^{\circ} 45^{\prime}$; from this, subtracting the seeondary distance, the remainder is the arc of direction, $\mathbf{3 7 ^ { \circ }} 22^{\prime}$.

If you want the direction to the parallel of $\%$, by converse motion, say, As the horary times of q are to her distance from the medium cali, so is the 0 's horary times to its secondary distance; and adding the fourth number to the \odot 's primary distance, the sum will be the are of direction.

The secondary directions fall on the 2d of December, 1558 , with $11^{\mathrm{h}} 41^{\prime}$, P. M. in the following situation of the stars :

$\left\|\begin{array}{c} \text { Deg. } \\ \text { of } \\ \text { Lon. } \end{array}\right\|$	\bigcirc	B	b	4	8	9	¢	8
	1	m	४	200	\sim	m	7	r
	20.43	27.0	19.4	10.30	18.41	28.0	28.0	15.30

The progressions depend on the 8th of November, 1561, the $>$ remaining in $f 16^{\circ}$; the rest as under :

$\begin{gathered} \text { Dep. } \\ \text { of } \\ \text { Lon. } \end{gathered}$	\bigcirc	2	h	4	δ	9	¢	8
	m	2	${ }_{8}$	8	x	\bumpeq	m	\cdots
	26.30	16.0	6.50	26.33	12.25	13.0	23.0	18.41

On the day of election, June the 5 th, 1596, the stars were posited thus:

On the day of election the \odot was posited in Δ of 4 of the secondary direction, and Δ of $\%$ of the progression. On the contrary; i, on the day he was elected, was posited in the Δ of the 0 's progression, and in the $*$ of the. $)$'s secondary direction; and the \odot in Δ of q of the nativity, there was a new) on the 26 th of May, in II 5°, in Δ of ψ^{\prime} s radical place and secondary direction; the \rangle, on the sth of June, was upon q and in Δ of 4 , of the nativity, \&c.

EXAMPLE XXIII

. latitudes.
K . . $1^{0} 54, ~ S$.
DECEIMATIONS.
$19^{\circ} 33^{\prime} \mathrm{N}$.
24 . . 056 S
f . . 248 S
○.. 00
$\begin{array}{rlllll}\mathbf{8} & \cdot & \cdot & 2 & 11 & \mathrm{~S} \\ \mathbf{8} & \cdot & . & 1 & 19 & \mathrm{~S} \\ \mathbf{D} & \cdot & . & 3 & 2 & \mathrm{~S}\end{array}$
1820 S.
1635 S.

We fied the 30th of November 1fit, aged 52 years, 2 months, 10 days. He was sent for in 1006 from Naples by Paul V, to be secretary to his grandson, Cardinal Burghesus. He was elected Cardinal on November $94,1608$.
Argol; in this nativity, as usual, directs the ascendant for the native's death ; but the Θ is 'undoubtedly tyleg, who, according to our method; fatts on a parallel'declination of the $>; q$ and \wp following immediately after ; and what is very remarkable, the \odot with that declination, $16^{\circ} 33^{\prime}$, found the declination of Syrus, Aldebaran,' Cauda, and very nearly Cor Leonis,' four fixed stats of the first magnitude, of a hot and destructive nature.' I have found, by observation, that this declination is possessed of a great force and virtue; so that if any significator obtains that declination, the signification is thierehy greatly increased; good with the benign, "and evil with the malignant. I have observed that with that declination gives acuteness to the mind and understanding; q, a desire for luxury and pleasure; δ, anger, madness, boldness, temerity, \&cc.

The O with this declination causes a warm pestilenffaldir ; he brings back the heat of summer about the 晚gming of Nowember; and, when configurated with the malefics, raises storms at sea, spoils the fruits and wines, and produces on the earth vermin to destroy the seed. With the benefics, the contraty; he purifies the air, makes it productive, increases the buds, \&e.; s6 that there seems to be great power in the declination of those stars.

N π

But it is very evident that this right direction of the \bigcirc o was alone sufficient; for in the nativity the \odot, who is hyleg, was surrounded by the encmics by both motions; in the zodiac, it applied very near to the \square of δ, and in mundo, by converse motion, to the \square of h, and o only, of the benefics gave any assistance by the mundane $\%$, whereby she conferred great dignities; nevertheless, she being unfortunately situated in the sign \boldsymbol{m}, ber detriment, and under a parallel of \hbar 's declination, who is in the western angle, where he is genorally the cause of diseases: what of denoted shewed it only to be corrupt, sickly, and of short duration. The 0 , directed to the Δ of 4 , both ways, and of of $\%$, conferred very great honours on the native, and unexpected: he did not seek for honours, but was sought for to be promoted. . But as the benefics were with violent fixed stars in the nativity, after the \odot had passed through the rays of the favourable planets, and declined to the parallel of the malefics, the native died.

But I am of opinion that the secondary directions, with the other motions, contributed greatly to his death, as we shall observe.

The calculation of the \odot 's direction is thus:
The 0^{\prime} s pole is 16°, his oblique ascension there is 179°. 18^{\prime}; the oblique ascension of $1015^{\circ} 40^{\prime}$, in which the $D^{\prime} s$ declination $16^{\circ} 95^{\prime}$ falls, is $228^{\circ} 4^{\prime}$, from which subtracting that of the \odot, there remains the are of direction $48^{\circ} 46^{\prime}$, which for the equation add to the Θ^{\prime} 's right ascension, which is 179° 24', and it makes 2 $08^{\circ} 10^{\prime}$, answering to $90^{\circ} 40^{\prime}$ of m , to which the 0 .
from the day of birth, arrives in 52 days, which denotes 59 years nearly.
The secondary direetions are made on the 4th of November 1559, three hours P. M.

You see that the 0 was exactly in 2 parallel of the declination of δ, the $)$ in sesqui-quadrate of h, the \odot likewise remaining in a parallel of h. The progressions fall on December the 2d, 1563.

November 30, 1611, the day he died, the stars were posited in the manner following :

$\begin{gathered} \text { Deg. } \\ \text { of } \\ \text { Lon. } \end{gathered}$	\bigcirc)	々	4	δ	\%	¢	8
	7	へ	m	\&	m	1	\%	-
	7.28	21.55	29.38	25.33	20.35	456	18.56	10.45
Lat,		$\xrightarrow{\text { N,46 }}$	$\underset{1.6}{\mathrm{~S} .}$	N.		N. ${ }_{\text {- }}$	N.	1

The \odot, on the day he died, was posited in 8 of \hbar 's radicaT place, and in 8 of k 's secondary direction; the D upion $\%$, and in \square of his secondary directions and progression ; b, on the same day, was in \square to the 0 's secondary direction, and upon the D in the radix, and δ upon the secondary direction of the $\dot{\sigma}$, and \geqslant in δ vich him near the place of the primary directions, and in \square of the is'radical place; on the day of his illness, the \odot was upon the place of the primary directions, and the \rangle in \square of δ ' s progression.
Thus you see a dintuat permutation of the ingtesbiols.'

EXAMPLE XXIV.

latitudes.

HE died the Sd of September 1651, aged 64 years, 7 months, and 20 days.

Le wes ormed a-Gandinat on daly 17, HGOH' at the, age of 48 years-and 6 months.
Argel, takes the cause of his death to be from the horoscope, directed to the \square of ξ, omiting the O, who is undoubsedly hyleg, and in the 64th year and a half comes, by night direction, to the parallel of , 5 in mundo, and in the zodiag to the declination of δ, having, by converse direction, some years before come to the cusp of the $\mathbf{7}$ th house.

The direction to the mundane paralld of h is thus calculated.

The 0 's horary times are $11^{\circ} 29$; distance from the medium oalk $11^{\circ} \mathbf{2 0}$; the right ascension of k is, $24^{\circ} 54^{\prime}$, from which his primary distance from the 10 Ch . is $79^{\circ} 53^{\prime}$; horary times $76^{\circ} 10^{\circ}$; from which there arises ${ }_{3}$ in the foorth place, his secondary distance from the. medium coli $15^{\circ} 57^{\prime}$, which; subtracted from the primary, leave's the arc of direction $63^{\circ} 56^{\prime}$, which, for the equation, add to the 0 's right ascension, which is' 295 11^{\prime}, and it makes the sum $557^{\circ} 37^{\prime}$, assmering ta is $7^{\circ} 90^{\prime}$ of x, to which the 0 , frem the day of birthyarrives in 65 days, which denotes so many years.'

The 9th house is elevated 17°; therefore

the 0^{\prime} 's double horary times - - $22^{d} 58^{\circ}$ is to the elevation of the 9th . . . 170 so is the \mathbb{O}^{\prime} s distance from the medium cali 1120 to the O's pole

To which, the oblique ascension of his 8 is $110^{\circ} 29^{\prime}$ s to which I add the arc of direction $63^{\circ} 56^{\prime}$, and the sum is $174^{\circ} 25^{\prime}$, answering to $24^{\circ} 15^{\prime}$ of 呗, in the tam bles of oblique ascension; so that the \odot had asrived at $\times 24^{\circ} 15^{\prime}$, whose declination is $2^{\circ} 18^{\prime}$, and that of of $1^{\circ} 21^{\prime}$, if his place is true by longitude and latitode; therefore, the o applied to his declination within ane degree, and the luminaries in the directions to the parallels, always anticipate their effects, as is seen in alf these examples. The 0 , by converse motion, had' departed from the west, and t, at the same time, was found at the centre of the imum cacli (i. e.) in a mundane a ray to the 0 ; with this same ray of t, the 0 moved successively, and continued so; and this is worth observing; that any significator whatsoevtr, together with the other-etars, whilst they are moved by α cortverse universal motiop, change the aspect alternately, apd, consequently, the mundane rays, as it likewise happens when they acquire parallels which we have already calculated.

But, because this happens insensibly, and such ray: so aoquired are: generally lasting, we have not, for a long time, laid down a method to calculate them in the Canons, but any one may, from the tables of the honses, know the time of acquisition, and duration of these rays. As, in this example, the \odot, posited in the west, with is 22°, in the imum coeli, are found $\approx 2^{\circ}$; and as the rays, thus acquired, are of a long continuance, they denote a certain universal disposition of the thinge signified, either good or bad, according to the nature of the aspecting stars, as it happened to this

Cardinal; who, some years befofe his death, was always sickly; and this observation is wonderful in the changes of the times and weather; for this principle Ptolemy sithered to in the Almajest, Kib. viii, chap. 4. This doctrine he mentions in the Second Book of Judgments in. the Chapter on the Nature of Events.
But, to our business; the secoridary ditections fall on the 17 th of March, with $16^{\text {h }} 5^{\prime}$ P. M.

	\bigcirc	D	万	4	δ	9	8	8
Deg.	3	\square_{0}	\checkmark	¢	叫	\cdots	\times	\sim
Lon.	26.30	0. 4	0.45	5.30	97.148	11.39K	0.38	8.42
Lat.		5. 0	$\underset{2.10}{S .}$	$\begin{gathered} s . \\ 0.18 \end{gathered}$	$\begin{gathered} \mathrm{N} . \\ \mathbf{3 . 5 6} \end{gathered}$			

The ρ was found in 8 of ${ }^{\circ}$ near his primary direction, undet the declination of of the nativity; the D in a of δ of the nativity; and, therefore, the δ with him of 4 availed nothing, nor the Δ of q and ψ, because $\%$ had the declination of \dot{b}, and being upon the D of the nativity, was rather prejudicial; 'and as the D was in 5° south fatitude, she was at a great distarice from 4.

The progressions for full 64 years are finished on the 16th of March, 1592, whilst the D lustrates S° of 8 ; where her vespertine distance from the \odot is 42° nearly, the same as in the nativity; for the other 7 months 1 add 7 signs, and $17^{\circ} 30^{\prime}$, and come to $f 25^{\circ}$. Lastly; for the 19 days, till the day of his death, I add 21°, and the D is posited in in 16°; the rest as fullows:

September the 3d, 1651 , the day he died, the stars were in the following order:

$\left[\begin{array}{l} \text { Deg. } \\ \text { of } \\ \text { Lon. } \end{array}\right.$	\bigcirc	1	5	4	d	9	\checkmark	8
	吸	8	\boldsymbol{q}_{8}	f	m	Ω	吹	r
	10.56	0.18	24.41	3. 1	21.37	18.45	14.43	22.3
Lat.		N.	$\begin{gathered} \mathrm{S} . \\ 0.14 \end{gathered}$	N. 0.29	$\underset{1.14}{\text { S. }}$	$\stackrel{\text { N. }}{\substack{\text { 0,56 }}}$	${ }_{1}^{\mathrm{N} .16}$	

On the day he died the \odot was found with the decli! nation of 5 of the nativity, and almost of the second: ary directions, and the D also upon 5 in the secondary directions exact ; b in 8 to the D and in \square of the \odot 's progrescion. Preceding his death, there was a full D, the © remaioing in an exact parallel of declination of \bar{h} 's radical place, and secondary directions; δ, on the same day, obtained the declination of the D 's secondary directions; b was posited in 8 of the \odot of the nativity. You see a murual transit, active and passive, of 5 to the \odot. 0 -

EXAMPLE XXV.

HE died November the 16th, 1635, 14 hours, P.M. 2ged 63 years, all but 14 days.

For this effect, Argol directs the \odot to the antiscions of \bar{b} and $\%$; but as these planets are in 2° north latitude, their declination becomes 16°, whereby they cut the ecliptic in 16° of m, and Argol takes the antiscion of $\%$ in $9^{\circ} 10^{\circ}$ of \boldsymbol{m}. But we direct the 0 to $=16^{\circ}$, and then we shall see whether our method corresponds; for, otherwise, in this example, we must comply with the opinion of others; viz. that the antiscions are not to be taken by preserving the latitude as we do, but wholly neglected according to their method.

The 0^{\prime} s direction to $=16^{\circ}$ is thas calculated:
The 0^{\prime} 's horary times are $11^{\circ} 6^{\prime}$, which, doubled, makes $22^{\circ} 12$; the space of the eleventh house, lustrated by the 0 's motion; the pole of the eleventh house is 19°, and of the twelfih house 349, the difference between them is 15°; the oblique ascension of the eleventh house is $247^{\circ} 15^{\prime}$; the 0^{\prime} 's oblique ascension is 254° 22', therefore his distance from the eleventh house is $7^{\circ} 7^{\prime}$. Therefore,

As the 0^{\prime} 's double diurnal hörary times $22^{\circ} 12^{\prime}$
is to the difference of the poles . . . 150
so is the 0 's distance from the 11th house 7
to the ©'s polar distance 50
which, added to the pole of the 1 rth, $=19$, makes the 0 's pole 24°, under which his oblique ascension is 2560 44°; the oblique ascension there of 16° of $=1$ is $325^{\circ} 51^{\prime}$, from which, subtracting that of the 0 , leaves the are of direction $69^{\circ} 7^{\prime}$, which, for the equation, add to
the \odot^{\prime} 's right ascension, which is $246^{\circ} 30^{\prime}$, and it makes $315^{\circ} 87^{\prime}$, answring to 13° of , to which the 0 , from the day of birth, arrives in 68 days, which denotes 60 many years. You see, therefore, gentle reader, that our method in this, as in all other examples, agrees perfectly well; therefore, the numbers of Argul's computations, in this one nativity, were merely a fortunate case that they agreed with the time of the effects.

The \odot, likewise, had arrived at its proper 0 in mundo two years before, for the ${ }^{-}$'s semi-diurnal are is $66^{\circ} 36^{\prime}$; but when the significator does not change the hemispbere, the semi-diurnal or semi-nocturnal are is the arc of direction of its proper - in mundo, and, by his ray, both the prorogatory virtues are injured; vix. that in the primum mobile and that in murdo. Lastly, the \bigcirc arrived to the mundane parallel of the D, which is calculated thus : The 0^{\prime} s semi-diurnal are is $4^{\mathrm{h}} 26^{\prime}$, distance from the aredium cooli $29^{\circ} 15^{\prime}$; the D^{\prime} s semi-nocturnal arc is $4^{\mathrm{L}} 33^{\prime}$, from which arises ber secondary distance from the imuin coeli $30^{\circ} 1^{\prime}:$ this, added to the primary, which is $38^{\circ} 31^{\prime}$, makes the arc of direction $68^{\circ} 32^{\prime}$.

Buf, because the declination of the 0 and D is nearly the sarae, and the semi-diurnal are of the \odot and seminocturpal are of the) the same, the \odot, a little before, was, by converse motion, porited in the D 's mundane parajlel : for

As the D's semi-noturinal anc $4^{\text {b }} 33^{\prime}$
is to her distance from the imum cali .. . $38^{\circ} 31$
so is the ©'s semi-diurnal are 26
to his secondary diptanpe $3 j^{\circ} 22$
which, added to the primary $29^{\circ} 15^{\prime}$, makes the arc of direction $66^{\circ} 4^{\circ} 7^{\prime}$. You may ask, Why he was not preserved, as the place of the parallels of h and $\%$ are nearly followed; hy the m ray of 4 and Δ of $?$? I answer, that they are first followed by the \square ray of b and $\overline{\boldsymbol{P}}$; When, therefore, more testimonies of the malefics that of the benefice presented themselves, the malefics prevailed.

Hence we are taught, that the testimonies of the aspects may be multiplied by one and the same planet from which the quality of the effect is augmented, though that planct only is the cause of them; and so in all kinds of things.

The secondary directions happen on January the 21st, 1557, with 21^{b} P. M.

Deg. of Lon.	\bigcirc	$)$	b	4	δ	9	8	8
	\cdots	吸	m	\boldsymbol{r}	*	f	\%	5
	12.48	28.0	26.14	24.38	14.20	29.45	2.30	12.3
Lat.		N. 4.	N. 2. 9	S. 1.22	S.	N. 2.23	N. 1.20	

The \odot remains in an exact parallel of b 's declination, without any assistance from the benefics.

The progressions are made on the 24th of December, 1577.

$\left\|\begin{array}{c} \text { Dep } \\ \text { of } \\ \text { Lon. } \end{array}\right\|$	\bigcirc	\rangle	反	4	¢	9	$\underline{6}$	8
	40	ε	65	\triangle	m	1	1	\boldsymbol{r}
	18.80	8.0	14.20	10.56	26.53	9.40	28.0	6.50
Lat．		S． 5.0	${ }_{\text {N．}}^{\mathbf{N} .20}$	$\begin{gathered} \mathrm{N} . \\ \mathbf{1 . 3 1} \end{gathered}$	${ }_{\text {N．}}^{\mathrm{N} .1}$	N． 2．	0.0	

The \odot was in δ there with b ；the D in their 8 ． November the $16 \mathrm{th}, 1635$ ，the day he died，the stars were posited thus ：

$\begin{aligned} & \text { Deg. } \\ & \text { of } \\ & \text { Lon. } \end{aligned}$	\bigcirc	$)$	ל	4	\％	9	8	8
	\boldsymbol{m}	m	bo	吸	吹	m	1	H
	24.0	13.0	0.40	3.28	21.12	20． 0	14.40	26.37
Lat．		S． 1．10	N． 0.40	${ }_{0.57}^{\mathrm{N}}$	$\begin{gathered} \mathrm{N} . \\ 1.37 \end{gathered}$	$\begin{aligned} & \text { N. } \\ & 0.45 \end{aligned}$	$\underset{1.36}{\text { S．}}$	

He fell sick when the new D was upon b and $\%$ of the nativity，and died when she came to the place of the \odot＇s direction，who，on the day he died，was found upon b of the secondary directions，and upon d of the progressions，and the D was posited in their \square ．
These agreements are wonderful．The year was also ＇climactric，because the D ，in the secondary direction， had stopped at the proper \square of her place in the nati－ vity．

EXAMPLE XXVI.

HE died the 12 th of August, 1632 , aged 44 yeart and 11 months.

Argol directs the ascendant to the \square of δ; whereas the Δ is hyleg, who, according to our calculation, comes exactly to an 8 of 8 . The δ^{\prime} 's declination $2^{\circ} \mathbf{3}^{\prime}$, anowers to 5° in the ecliptic, whose horary times are $15^{\circ} 18^{\prime}$, and, doubled, $30^{\circ} 36^{\prime}$; the $D^{\prime} s$ right ascensiorr is $6^{\circ} 32^{\prime}$, from which her distance from the medium coeli becomes $9^{\circ} 19^{\prime}$; the pole of the eleventh house is 17°, whence, by the golden rule, is had the D 's pole 5°; under which her oblique ascension is $6^{\circ} 21^{\prime}$. The oblique ascension of 8^{\prime} ' 8 is $48^{\circ} 11^{\prime}$, from which, subtracting that of the D, leaves the arc of direction $41^{\circ} 50^{\prime}$, which, lor the equation, add to the \odot 's right ascension, which is $174^{\circ} 33^{\prime}$, and it makes $174^{\circ} 33^{\prime}$, answering to $8^{\circ} 47^{\prime \prime}$ of m, to which the 0_{3} from the day and hour of birth, arrives in 45 days, which indicates so many years. The \rangle, likewise, near $21^{\circ} 15^{\prime}$ of 8 , came to the paralle! deelination of h, where, being in 4° south latitude, she gains the declination of $h \quad 14^{\circ} 16^{\prime}$, the oblique ascension of which place, according to latitude and longitude under the D 's pole, is $48^{\circ} 38^{\prime}$, from which, subtracting the D 's oblique ascension, therc remains the arc of direction $42^{\circ} 17^{\prime}$. But, by converse motion, the D applied to the mundane paraltel of b ; and if there was placed on the midheaven $2^{\alpha} 16^{\prime}$ of r, it answers exactly, for the right ascension of the midheaven would be $2^{\circ} 5^{\prime}$; the declination of $r_{2} 14^{\circ} 1^{\prime} 6^{\prime}$, answers to 8° of 8 in the ecliptic, whose diumal borary times are $17^{\circ} 12^{\prime}$; the right ascension of f is $44^{\circ} 13^{\prime}$, from

Which his distance from the midheaven becomes $42^{\circ} \mathbf{8}^{\prime}$; therefore,
A's the horary times of k. $17^{\circ} 12^{\prime}$
is to his distance from the medium cali . 428
so is the horary times of the D . . . 1518
to her secondary distance 3727
which added to the primary, which is . . 427
makes the arc of direction : 4154
so that this direction had not exactly arrived, but, nevertheless, it strongly co-operated with the other two above computed.

The secondary directions remained thus, November the $1 \mathrm{st}, 1587$, at $10{ }^{\circ}$ P.M.

$\begin{gathered} \text { Deg. } \\ \text { of } \\ \text { Lon. } \end{gathered}$	\bigcirc	$)$	5	4	8	9	\Varangle	8
	m	m	8	Ω	7	\cong	\bumpeq	吹
	8.35	86.0	13.9	15.22	25.20	26.30	25.0	26.97
Lat.		$\begin{aligned} & \mathrm{N} . \\ & 4.20 \end{aligned}$	$\begin{array}{\|l\|} \hline \text { S. } \\ \text { 3. } 3 \end{array}$	$\begin{aligned} & \text { N. } \\ & 0.13 \end{aligned}$	$\begin{gathered} \mathrm{S} . \\ 0.28 \end{gathered}$	$\begin{gathered} \mathrm{N} . \\ 1.11 \end{gathered}$	N. 7	

Thus, you see, the © is between a parallel declination, and in 8 to ζ; the $)$ nearly also with the declination of h. On the day of his death, the progressions are made on May 10, the stars being as under:

$\left\|\begin{array}{c} \text { Deg. } \\ \text { of } \\ \text { Lqu. } \end{array}\right\|$	\bigcirc)	b	4	\%	9	¢	8
	\checkmark	\bumpeq	II	m	bp	u	r	90
	15. 0	28. 0	26. 0	13.13	1.43	0.12	29.20	18.45
Lat.		N. 5. 0						

On the day of his death, August 12, 1632, the stars were thus posited; viz.

$\left\|\begin{array}{c} \text { Deg. } \\ \text { of } \\ \text { Lon. } \end{array}\right\|$	\bigcirc	》	b	4	8	9	\Varangle	8
	Ω	\square_{0}	m	\checkmark	2	Ω	Ω	\checkmark
	19.53	10.52	22.88	24.19	11.43	9.45	19.21	2.17
Iat.		4. N.	N. 2. 0	1. 4	N. 0.9	$\begin{array}{r} \mathrm{N} . \\ 1.0 \end{array}$	$\begin{gathered} \mathrm{N} . \\ 1.22 \end{gathered}$	

The \odot, on the day he died, was separated from ψ in the secondary directions, and was posited in a parallel - declination of \bar{b} 's secondary direction; and e contra h, on the day he died, had the parallel of declination to the secondary direction, and, also, to the 0 's progression ; and h was upon the \rangle of the secondary direction. In his sickness, the \odot was found in the exact \square of k 's secondary direction, δ in 8 of the D 's place in the nativity.

EXAMPLE XXVII.

HE died, May the lst, 1626, aged 49 years and 8 months.

This nativity, as explained by Argol, contains many errors, for 4 should be posited in 27° (not 22°), $々$ in 24°, not 19°; δ° in $ヶ \rho$, not \bumpeq; the places, likewise, of $\%$ and $\%$ do not agree, but these we have passed over. Argol thinks, and very justly, that the \odot is to be directed for life, for he is hyleg; but he wishes he had exceeded the δ of δ, then he would have been injured by the δ of the D, which seems not'agreeable to reason. Vide the geniture in his Critical Days.

According to our calculation the \odot comes to the \square of δ in the zodiac, with the testimony of a $*$ of b; but as the $*$ of 4 succeeds, it, doubtless, would not have been fatal, unless, by a converse motion, it had come to the δ of δ, and, by direct, to the mundane parallel of 8 .

The calculation to the \square of 8 is thus; The \odot 's horary times are $15^{\circ} 59^{\prime}$, doubled $31^{\circ} 58^{\prime}$; this, added to the right ascension of medium cosli, it makes $154^{\circ} 58^{\prime}$, which, subtracted from the 0° 's right ascension, 164° 48 ', leaves the 0 's distance from the cusp of the eleventh house $9^{\circ} 50^{\prime}$; or, if we subtract the oblique ascension of the eleventh house, $153^{\circ} \sigma^{\circ}$, from the σ° 's oblique ascension there taken, which is $162^{\circ} 50^{\prime}$, there remains the $\bigcirc^{\prime} s$ distance $9^{\circ} \mathbf{5 0}^{\prime}$; the pole of the eleventh house is 17°, of the twelfth house 31°, and their difference is 14. Therefore,

As the \odot^{\prime} s duplicate horary times . . . $31^{\circ} 58^{\prime}$
is to the polar difference 140
so is his distance from the 11th house . . 950
to his polar distance from the llth . . . 40
which, added to the pole of the eleventh house, 17°, the 0^{\prime} 's pole becomes 21°, under which his oblique ascension is ' $162^{\circ} 18^{\prime}$. The oblique ascension of the \square of δ in the ecliptic (upon which the \odot is perpetually moved) is $207^{\circ} 36^{\prime}$; from which, subtracting that of the \odot, leaves the arc of direction $45^{\circ} 18 \prime$, which, for the equation, add to the \odot 's right ascension, which is $164^{\circ} 48^{\prime}$, and it makes $210^{\circ} 8^{\prime}$, answering to $2^{\circ} 20^{\prime}$ of m, to which the \odot, from the day and hour of birth, arrives in 49 days and one-third nearly, which denotes so many years.

To the 8 of 8 , by a converse motion, the calculation is easy.

The polar altitude of δ is 2°, under which his oblique ascension is $229^{\circ} 26^{\prime}$, and that of the \odot^{\prime} 's 8 , there is $345^{\circ} 3^{\prime}$, from which, subtracting the former, there rcmains the arc of direction $45^{\circ} 37^{\prime}$.

To the mundane parallel of δ the calculation is thus :

The 0^{\prime} 's horary times are $15^{\circ} 59^{\prime}$, distance from the medium coeli $41^{\circ} 48^{\prime}$, the declination of δ is $25^{\circ} 18^{\prime}$, ascensional difference is $25^{\circ} 12^{\prime}$, and, divided by 6 , quotes $4^{\circ} 12^{\prime}$, to be added to the equator's horary times, and the horary times of δ 's are $19^{\circ} 12^{\prime}$, from which are produced $50^{\circ} 13^{\prime}$, which is the secondary distance of of from the imum coeli; his primary distance therefrom is 4030^{\prime}, for his right ascension is $298^{\circ} 30^{\prime}$,
and the right ascension of the imum cali is $303^{\circ} 0^{\prime}$; suberacting, therefore, $4^{\circ} 30^{\prime}$ from $50^{\circ} 13^{\prime}$, leaves the arc of direction $45^{\circ} 43^{\prime}$.

You see, therefore now, how well all the directions agree at the same time; so that it is no wonder the native was deprived of life. For the single direction to the - of δ, as has been said, does not seem sufficient. The secondary directions for 49 years and 8 months are made October 15, 1576, with 13 P. M. nearly, under this position of the stars:

	\bigcirc	D 1	万	4	8	\%	¢	8
Deg.	7	Ω	1	吹	m	m	m	\boldsymbol{r}
Lon.	3. 0	18.5*	26.40	6.47	16.0	8.4	8.0	2949
Lat.		N. 4.52	$\begin{gathered} \mathrm{N} . \\ 0.51 \end{gathered}$	$\begin{array}{\|c\|} \hline \mathrm{N} . \\ \mathrm{O} .5 \mathrm{~s} \\ \hline \end{array}$	$\begin{aligned} & \text { S. } \\ & \text { 3. } \end{aligned}$		1. ${ }^{\text {S. }}$	

The D is found in a parallel declination of δ, and ξ with the 8 of δ; the $*$ of ψ to the \odot could give no assistance, because 4 is cadent, and the ray * is very weak, especially when it is the principal ray, for which reason, Ptolemy, in the Chapter of Life, when he mentions the planets that are able to save in the occourses of the infortuncs, does not name the $*$, but the \square, Δ, and 8 ; because the $*$ ray is feeble, particularly when it is less than 60°; neither could $\&$ assist, as she was cadent from the house, and in a sign inimical to the \odot. Lastly, when the primary directions are strong for evil, the secondary rather co-operate for mischief,
from the testimony of the malefics；and，on the con－ trary，they co－operate for good，if the primary are for－ tunate．The \odot was likewise with the 8 ．
The progressions were made Scptember 2， 1580.

$\left\|\begin{array}{c} \text { Deg. } \\ \text { of } \\ \text { Lon. } \end{array}\right\|$	\bigcirc	D	ζ	4	δ	f	8	8
	吹	$\boldsymbol{\sigma}$	2m	7	II	\bumpeq	$\xrightarrow{\sim}$	N／0
	19.25	2． 0	11.3	6.17	7.20	19.38	12.43	14.46
Lat．		N． 3.25	1． 21	${ }_{\text {N．}}^{\text {N．}} 1$	S． 1	$\begin{array}{r} \mathrm{S} . \\ 4.11 \end{array}$	S． 2.13	

On the day he died，May 1，1626，the stars were thus situated：－

Deg． of Lon．	\bigcirc	ν	b	4	δ	9	¢	8
	४	๑	吹	\bumpeq	U	४	8	${ }^{2}$
	10.58	20.8	9.5	24.2	29.1	9.43	29.44	0.51

On the day he died the \odot was found in 0 of 3 of the secondary directions，and \square of $\overline{6}$ of the progres－ sion ；δ upon the D of the progression．And it is to be observed，that for several months before，b remained upon the \odot of the nativity，and without doing any mis－ chief，because 4 was upon the \odot＇s primary and sc－ condary directions：but when he was separated by re－ trogradation，he left the \odot in the power of an infortune， and there was a new before his death，in $女 6^{\circ}$ ，in the place of the ρ to the \odot＇s secondary direction，and in a of the D there，and in $口$ of \hbar＇s progression．

EXAMPLE XXVIII.

THE with the Pleiades, Hyades, Orion's Belt, 2nd near the great Dog-star:Sirius, the \odot with Fomahavit.
He died February 18, 1035 , at the -17 th civil hour. This man was a professor of physic and philosophy in the college at. Bononia, and of great repute. He argued very subtilely, and supported his arguments with the strongest reason. Being sent for by the principal great men of Italy for his advice when they were sick, he always returned loaded with honours and rich presents. He had a great knowledge of the mathematics. His liberality, particularly towards his friends, extended to profusion; in other things extremely prudent and sagacious. His house was ornamented with the most beautiful and valuable pictures, precious stones, gems, 8cc.; and he had filled his library with volumes of the best authors in philosophy, physic, mathematics, and astrology.

To business his application was unremitting : of his promises he was a careful observer. In short, the man was rich in every kind of virtue. He was born with his feet inverted, owing to the constitution of the D in the western horizon with 8 in a mundane a of \forall, who passed through x, the sign of the feet, and in $\mathcal{8}$ of b in f, the sign of the thighs. On account of the friendship that subsisted between us, he desired me (for he was well acquainted with the common way) to calculate the directions of his nativity, which I very gladly performed, and the calculation of past acciQ q.
dents appeared to a minute; but. I afterwards observed to the year 5 E , a direction of the D, who is hyleg to a parallel of \boldsymbol{z}_{3} in the zodiac, near $\$ 14^{\circ} 15^{\prime}$, in soush latitude $\mathbf{y}^{\circ} 98^{\prime}$, though indeed the declination of this place is $19^{\circ} \mathrm{d} 8^{\prime}$ and b^{\prime} 's declination is $18^{\circ} 40^{\prime}$; but I know that the luminaries in these paraliels precede by their effecfs the intimate application; the D, by a converse motion, applied to the mundane paraliel of δ, whilst both were carried away by the rapt motion of the prinaum mobile round the world. Lastly, the $\%$, by a right direction, came to the sesqui-quadrate of δ in muado. And, indeed, as in every direction, the rays of the friends are subsequent, it might be thought these aspects would not prove fatal, yet he died on February 18, 1655, near the 17 th hour, dimost suddenly, having some days.before received the holy saerament, conscious of his impending unfortunate directions, and the unfortunate revolution which happened the day he died; and I think of some inward accident which forewarned him of his death, whence be is said to have feaped the 18th, bectuse, perhaps, on that day, by calculation, a orisis or judgment of some consequence would fald, for it is said the was sick the night before; bowever it be, he died the day he had predicted, to the grief of:che whote city of Felsiua. His auditors, for the tove and eqtimation they bore their very learned preceptors; celebrated his funeral with great pomp and solemnity.

The arc of direction for 52 years is $47^{\circ} 50^{\prime}$; for the 0 , after the nativity, arrives in 52 days to $21^{\circ} 40^{\prime}$ of 9 , whose right ascension is $90^{\circ} 1^{\prime}$, from which subtracting
the 0 's right ascension, which is $332^{\circ} 11^{\prime}$, leaves the arc of direetion $47^{\circ} 50^{\prime}$. . The direction of the $)$ to 2 parallel of. \boldsymbol{h}^{\prime} 's declination is thbus calculated :

The oflique ascepsion of the D ' s \& in the boroscope is $957^{\circ} 10^{\prime}$, from which subtracting the horoscope's oblique ascension, leaves the D 's distance from the west $8^{\circ} 93^{\prime}$; the pole of the second bouse is 38°; therefore the difference of the poles of the 7ih and 8th houses is 11°. Tha D 's diurnal horary tinnes are $18^{\circ} 27^{\prime}$; which doubled produce $36^{\circ} 54^{\prime}$; for the 7 's declination is. equal to y $29^{\circ} 30^{\prime}$ in the celiptic : Now therefore

As the D 's diurnal horary times $\cdot \cdot \ldots$.. $36^{\circ} 544^{\prime}$.
is to the polar difference of the 7 th and 8th houses 11 0
so is the D's distance from the west - . 8 , \$3
to the D 's palar distance 3 a
which added to the pule of 8 th. ss 0 her pole then becames 41°, under which, the oblique asceasion of her 8 is $255^{\circ} 0^{\prime}$, to which I add the anc of direction $47^{\circ} 90^{\prime}$, and the sum is $302^{\circ} 30^{\circ}$, qnowering in the same table to $14^{\circ} 15^{\prime}$ with the north lutitude, which the D. gains in the place of the $\&$ to him, viz. $3^{\circ}: \varepsilon 8^{\prime}$; therefore the D came to 90 . 14°. 16^{\prime} in 3°. 28^{\prime} south lacitude, where she gains a declingtion of $19^{\circ} 13^{\prime}$, that is 333^{\prime} greatertban that of 6 : but as the D lessened her declination, she therefore applied.

Thecalculation of the D's converse direction to the mundane parallel of δ, whilst both were carried away by the rapt motion of the primum mobile, is thus:

The D 's semi-nocturnal are is 69°. 17^{\prime}, tha of of
$96^{\circ} 35^{\prime}$, which added together are $165^{\circ} 50^{\prime}$.' The D 's right ascension is $56^{\circ} 28^{\prime}$, that of o is $344^{\circ} 26^{\prime}$, which, subtracted from the former, leaves the D 's right distance from o $71^{\circ} 50^{\prime}$: the D 's primary distance from the imum coeli is $77^{\circ} 51^{\prime}$: therefore

As the sum of the arc's $165^{\circ} 50^{\circ}$
is to the D 's semi-nocturnal arc . . . 6917
so is her right distance from 8 . . . 7150
to her secondary distance 301
which subtrácted from the primary, leaves the arc of direction $47^{\circ} 50^{\prime}$; and if you have a mind to calculate it by logarithms, the minutes of the first numbers are 9930', where the logarithm is 3.99732 ; the minutes of the second are 4157^{\prime} ', logarithm 3.61878 ; and the mis nutes of the third are 4510 , and logarithm 3.63447. I add these two last together, and the sum is 7.23326 , from which I subtract the first, and the remaining logarithm is 3.25544 ; which gives 1801^{\prime}, or $30^{\circ} 1^{\prime}$.

The)'s dirtetion to the seqqui-quadrate of δ in mundo, by right motion, is thus calculated:
I first direct to his a in mundo thus:
As the ' D 's diurnal horary times . . . $18^{\circ} 27^{\prime}$
is to her distance from the west . . . 833
so is is's nocturnal horary times . . . 165
to his distance from the imum coli . . $7 \quad 97$
which is to be subtracted from the primary. But as the prituary distance of δ is less by $5^{\circ} 41^{\prime}$, therefore of precedes this'口 $1^{\circ} 46^{\prime}$. In this case I first triplicate o's horary times, which must be added to the a's ray, that we may form the sesqui-quadrate, and 1 bave
$48^{\circ} 15^{\prime}$, from which I subtract $1^{\circ} 46^{\prime}$, which f, by his \square, precedes the D, and there remains the D ' s are of direction to the sesqui-quadrate of $846^{\circ} \mathbf{3 9 ^ { \prime }}$; therefore this ray of ot had preceded a year, or more, at which time, as he related to mee, he suffered vẹry great troubtes of mind.

The secondary directions are made on April 11, 1603, $12 \mathrm{~h}, 26 \mathrm{~m}, \mathrm{P} . \mathrm{M}$.

$\begin{gathered} \text { Deg. } \\ \text { of } \\ \text { Lon. } \end{gathered}$	\bigcirc	D	b	4	δ	9	¢	8
	r	\boldsymbol{r}	1	m	\boldsymbol{r}	3	\boldsymbol{r}	m
	21.37	26.0	3.45	20,57	28.47	10.22	21R4	27,53
Lat.		N. 2	${ }_{242}$	$\begin{gathered} \mathrm{N} . \\ 1.53 \end{gathered}$	-8.	N.	${ }_{\text {2:87 }}$	

You see the \odot is in δ with δ, and separating from the sesqui-quadrate of h, and the D under the O 's rays in \boldsymbol{r} in δ with δ; and $\not \approx$ was with the luminaries retrograde ; which denotes an apoplexy, so that it is very probable the native died of that disease; for the place of the \dot{j} 's right direction concirs with the ses-qui-quadrate of $¥$ in the zodiac exactly by calculation, and was the more fatal, as it was also in the terms of \wp.

The progressions happen on May 3, 1607.
The planets as follow :

	\bigcirc	）	¢	4	δ	9	$\%$	
Deg．	8	Ω	6 \％	3	1	8	II：	
trom．	15.0	11.40	19RS4	28.27	8． 0	29． 0	f． 6	9． 17
trat．		$\underset{2.81}{\mathrm{~S} .}$	$\begin{aligned} & \mathrm{N} . \\ & \mathbf{1 . 1 0} \end{aligned}$	$\underset{0.56}{ }$	$\begin{aligned} & \mathrm{N} . \\ & 0.8 \end{aligned}$	N．		

He died on February 18，1665，the planets being 1 found as under：

$\left\lvert\, \begin{gathered} \text { Deg. } \\ \text { of } \\ 1 \end{gathered}\right.$	\bigcirc	D	b	4	δ	9	8	8
	背	Ω	吹	\cdots	1	天	\％	\cdots
	29.48	1.14	6.55	27.53	10.40	1． 5	17.7	15.6
Let．		${ }_{\mathbf{N} .18}$	$\begin{gathered} \mathrm{N} . \\ 1.48 \end{gathered}$	$\text { 1. } 9$	$\begin{gathered} \mathrm{N} . \\ 0.80 \end{gathered}$	$\begin{gathered} \mathrm{S} . \\ 1.27 \end{gathered}$	S．	

It is worth observing，that the native died nearly at the hour of the ©＇s revolution，in which he had the declination of b ；and the D that of δ ；and q was separated froma the \odot ；and the D was also in a parallel declination of t＇s progression；in 8 of the D, \square and parallel of the \odot＇s progression，also D in parallel declination of φ＇s progression，and of with the D＇s anaretic declination．

The magistracy in this nativity is denoted by q oriental in δ with δ in the southern circle，both angu－ lar and in their dignities，ard conciliated to the D by the

PREMyM MOMIF

295
ray quintile; vide' Ptolemy, Cap. de Opificio. "St \& \& \& simul officiis moderandis praficiuntur, \&c. medicamentarios, Medicos, \&qc." But it was the more exoolleat from the Δ of ψ constituted on the cusp of the ascendant and oriental. Ptolemy in the same place says, "Nam orientalia cum sunt, aut in angulis, opificia sua, outhoritate \& fama minime caritara, scc. \& superata 2 beneficis, magna, significant opera, illustria, lucrosa, inculpabilia, venusta; \&c." This one nativity, in preference to numberless others which I háve calculated, I thought proper to insert prere, that the memory of a man so famed for virtue and erudition might survive among the living, who in his lifetime, by his profession and friendly offices, studied only the good of his fellow creatures.

EXAMPLE XXIX.

SHE died December 17, 1034, aged 64 years aind 9 months, nearly.
In this nativity, as explained by Argol, he places $\%$ in
 He directs the ascendant to the δ of the D, as if she was anareta, though she rather appears to be the significator of life, and her directions agree very well; for the D, by right direction, in $6 t$ years and 9 months; comes to a parallel declination of δ, near $5^{\circ} 30^{\prime}$ of Ω, where the D is in $\varepsilon^{\circ} 40^{\prime}$ south latitude, and gains a declination $16^{\circ} 92^{\prime}$; and that of $\boldsymbol{o}^{\circ} 16^{\circ} 25^{\prime}$.

The calculation is thus: the ∇ 's declination, which is $16^{\circ} 38^{\prime}$, answers to $\succ 16^{\circ}$ in the ecliptic, whose horary times are $17^{\circ} 42^{\prime}$, which doubled, make $35^{\circ} .94^{\prime}$, the space of the D 's house; the oblique ascension of the third house is 256°. The oblique ascension of the D 's 8 to the pole of the third house, which is 18°, is. $251^{\circ} 44^{\prime}$; therefore the D 's distance from the cusp of. the 9 th house is $4^{\circ} 16^{\prime}$, and her polar elevation 80°, under which the oblique ascension of her 8 is $252^{\circ} 24^{\prime}$; the oblique ascension of $=5^{\circ} 30^{\prime}$, with $\varepsilon^{\circ} 40^{\prime}$ north latitude under the same pole is $313^{\circ} \mathbf{2 2 ^ { \prime }}$; from which, subtracting the former, leaves the arc of direction $60^{\circ} .58^{\prime}$, which, for the equation, add to the \odot 's right ascension, which is $1^{\circ} 34^{\prime}$, and it makes $62^{\circ} 30^{\prime}$, ansu'ering to $4^{\circ} 38^{\prime}$ of II , to which the \odot arrives in $6+$ days and 18 hours, which denotes 64 years and 9 months.

And because the D 's declination in the nativity is $16^{\circ} 38^{\circ}$, which is nearly the same that sle obtains in the. place of direction, the are of direction may be likewise Rr.
had by the right ascension. The right ascension of the D is $\times 0^{\circ} 40^{\prime}$; the right ascension of as $5^{\circ} 90^{\prime}$, with $2^{\circ} 40^{\circ}$ south latitude, is $127^{\circ} 12^{\prime}$; from which, subtracting that of the D, theie remains the are of dirsection © 0° ' 4 ', greater by 4 ' than the other, by arcans of some difference of the D 's declination and the place of the occourse.

At the same tinne the D, by a direct direction, came to the mundanc paradlel of h, for the D 's deolinativa in the ectiptic answars. to 8. 16°; whose tweary times are $17^{\circ} 49^{\prime}$; her distanoe from the medium nocki is $39^{\circ} 50^{\prime}$; 5 's declination $5^{\circ} 5^{\prime \prime}$, answers to $a 13^{\circ}$ in the eeliptic, whose diurnal horary times are $14^{\circ} 12^{\prime}$. From these, by the Goidten Rule, are produced $\overline{5}$'s secondary distance from the medium cali 31057^{\prime}; his primany distance from the 10 th is $95^{\circ} 4^{\prime}$ (for 3 's right asoension is $109^{\circ} 4^{\prime}$), and subtracting the primary distance frows the secondary, leaves the arc of dircetion $6 \mathbf{a d}^{\circ} \boldsymbol{N}^{\prime}$: this direction was succeeded by the z to the mundme $p a-$ matlel of w, who was endued with the natuse of \boldsymbol{i}.

By converse direction the $>$ had arrived at the 8 of B 4 years before: ζ 'g pole is 39°; under which hisoblique ascension is $903^{\circ} 1 s^{\prime}$; the oblique ascension of the $)$'s 8 under h 's pole, is $360^{\circ} 10^{\prime}$; which therefore being subbracted, leaves the arc of direction $56{ }^{\circ} 57^{\circ}$.

Retention of urine is denoted by. of, lady of the ascendant in the 6th house, and inp perallel of h 's declipation in the horoscope, positedl in the sign of the reins and kidnies; the D was also in a parallel of declination with δ, and in mundaus \square with q in the 6 th house.

The secondary dinections happen MLay 16, 1670, near - hour P. M.

$\left\lvert\, \begin{gathered} \text { Degy } \\ \text { of } \\ \text { con. } \end{gathered}\right.$	\bigcirc)	h	4	8	8	¢	8
	4	\triangle	-	m	㖵	L	\checkmark	吸
	4.40	18.30	15.54	16.45	5. 0	6. 0	16.00	4. 0
Lat.		$\begin{gathered} \mathrm{N} . \\ \mathbf{3 . 3 0} \end{gathered}$	$=\frac{N_{t}}{\pi .50}$	S. 0.97	$\begin{array}{ll} \mathrm{N} . \\ \mathrm{T} . & \mathrm{O} \end{array}$	$\begin{gathered} .8 \\ 0.80 \end{gathered}$	$\begin{gathered} s_{1} \\ 2.20 \end{gathered}$	

Observe: that 8 is conthust of the 0 and in, of t, and with the hyades; the y is in the sesqui-qua-. drate of the \odot and q, and parallel declipation of b, and in the preceding 6,24 assisted with his Δ ray.

The progressian for full 05 years falls, on Jume isth, 1575 , the D. remaining in 7° of m^{\prime}, and the 0 in, 1° of s. . But there is a deficiency of 3 months and 6 days; for the three months I subtract 9 signs 7°, and go back with the D, so that she is posited in $\Pi 0^{\circ}$. Lastly, I subtract 6 ' for the same number of days, and the $)$ is posited in $\chi_{1} 24^{\circ}$; the rest of the planets as under:

$$
9
$$

Deg. of Lou.	\bigcirc	II	h	4	δ	\%	$\%^{\prime}$	8
	I	४	1	¢	50	${ }_{8}$	II	\checkmark
	24.90	24.0	15.40	15.18	3.3 2	19.38	3.48	26.12
Lat.		$\left\|\begin{array}{c} \mathrm{S} . \\ 0.11 \end{array}\right\|$	N. 1.48	$\begin{aligned} & \text { N. } \\ & 0.6 \end{aligned}$	$\left\lvert\, \begin{gathered} \mathrm{N} . \\ \mathrm{O} .8 \\ \hline \end{gathered}\right.$	$\underset{\text { N. }}{1.30}$	S. 2.	

The' \odot was in an exact parallel declination of δ, f
also with the declination of δ, and the D in \square of of of the nativity.

December 17th, 1634, the day she died, the stars were found as under:

$\left\|\begin{array}{c} \text { Deg. } \\ \text { of } \\ \text { Lon. } \end{array}\right\|$	\bigcirc	D	¢	4	8	9	¢	8
	\uparrow	m	7	Ω	bf	2m	bs	*
	2539	20.0	24.10	2.54	28.4	12.51	15.31	1652
Lat.		$\sqrt{\mathrm{S} .}$	N. $\text { 1. } 2$	$\begin{array}{\|c\|} \hline N . \\ 0.31 \\ \hline \end{array}$	$\begin{gathered} \hline \text { S. } \\ 1.16 \end{gathered}$	s. 1.53	1. 2	

The \odot is conjoined to ζ in the 8 of his progression, and b in 8 exactly to the \odot 's progression; the remaining with the declination of h in 8 of his progression, and in the sesqui-quadrate of δ, \cdot when he was separated from the Δ of 4 . There was a full - December 5 th before her death, the \odot remaining upon b of the progressions. Both the luminaries were found in parallel declination of the malefics; the D stopped at the - of δ in the nativity on the day of death, and ψ, by retrogradation, separated from the place of the D 's right direction:

EXAMPLE XXX.

Latitudes.			
ζ	- . 0^{0}	26'	S.
2	- . 0	6	N.
8	-. 0	51	N.
0	- . 0	0	
9	- . 2	17	N.
8	- . 1	52	N.
2	-. 3	50	S.

DECLIRATIOXS.
$21^{\circ} 22^{\prime} \mathrm{N}$.
1936 S.
$20 \quad 57$ N.
20 44 N.
$25 \mathrm{5J}$ N.
21 31 N.
1921 N

MEDUSA's head on the cusp of the seventh house, with of and the D; or April 0th, 1560, he was beheadech, at the aqe of 85 years, 10. بnouhs, and 26 days.
This remarkabte geniture of Juthn Baptist, eldest son of Jerome Cardan, was first calculated and published by his father; after him, by Valentine Naibod, and lastly, by John Anthony Maginus, three rery learned and celebrated authors, though none of them would allow the ? to be hylcg. But, agreeable to Ptolemy's method, who teaches by day, first to tate the Q, then the $2, \& c$. ; by night, first the $D, \& C_{1}$; and at tbe end of the Chapter coucludes thus: "Tune demwm gubernatoren utrisque Iuminilous anteferinuss, quaudo honorificentiorem occupat: locum, \&f ad utrasque conditiones, gwhernandi ius habet." In this case $¥$ is more dignified and strong than the 9, who is the conditionary lummary in the western angk, and the first in apparition from the \odot. You may perceive, studious Reader, how my opinion of the familiarities of the stars agrees with the truth of things, by comparing what has before beet done by these thrce learned authors with this Example. I say that the D is absolutely moderator of lifé, and at the time of his. death came, by right direction, to a prollet dechimation ef the 0 , near $13^{\circ} 50^{\prime}$ of \mathfrak{m}, where having obtained ε° south latitude, her declination is $q 0^{\circ} 50^{\circ}$. Next follows the σ of h, and the parallel of 4 's declination ; but. he being very unfortanate, and not agreeing with the signs of the luminaries, threatemed (according to Pwolemy) the anger of the Prince, and the sentence of the judges, who in Cap. de Morte saith thus : " Quod si \& 4 testificetur
t simnl prowitctem indutus, illustri rurgut mortis gencre decedunt, condemnatione ninxirum, of irc primoipimm, ac negwon:"for it is occidental, retrograde, peregrine, with 8 , and in 8 of δ, with the deolination of

The $D, t 00$, by converse direction, came to the marndane parathel of h , succeeded also by that of 1 and 24 . The arc of direction for 25 years 11 moonthg is $36^{\circ} 39^{\prime}$; fur the Q, from the day of birth, in the epace of 25 days cz hours, arrives at $97^{\circ} 17^{\prime}$ of π, whose right ascensiop is $87^{\circ} 2^{\prime}$; fram which, srbtracting the right asoension of the O, which is $60^{\circ} .30^{\prime}$, there semains the arcof direction R(foser

The obliquie ascencion of the D 's 8 uader the pole 44° (for the D is on the cusp of the seventh housc) is $279^{\circ} .37^{\prime}$; to which, adding the arc of direction $\$ 6^{\circ} 32^{\prime}$, makes $\kappa_{0} 00^{\circ} 9^{\prime \prime}$; which, in the same table of oblique ascension, answers to $19^{\circ} \mathrm{SO}^{\prime}$ of tho with $\mathcal{2}^{\circ}$ nomet latitude; the declination of which place is $80^{\circ} 50^{\prime}$. Parallels about the mopics are of tong daration, and their effects mare fully appear, when the other motions of direction, both direct and converse, the secondary directions, proo gressions, ingresses, \&c. agree with them. The cateulation of the D "s converse direction to the muodane parallel of b will be thus : The declimatios of $\chi_{0}, 21^{\circ} 22^{\circ}$. is equal to 5894° in the ecliptic, whose diumal horary times are $18^{\circ} 42^{\prime}$; the oblique ascemsion of his 8 in the horoscope is $315^{\circ} 86^{\prime}$; from which subtracting the horasoope's oblique ascensiot, there remains in's distance. from the west $38^{\circ} 99^{\circ}$.

The D 's declination, $19^{\circ} 21^{\prime}$, is reduced to 826° in the ecliptic, whose nocturnal hurary times (for the D is
posited below the earth) are $11^{\circ} 48^{\prime}$; the oblique ascension of the) 's 8 is $979^{\circ} 97^{\prime}$, from which, subtracting the horoscope's oblique ascension, leaves her primary distance from the west $2^{\circ} 33^{\prime}$; therefore

- As the diurnal horary times of 5 . . . $18^{d} 42^{n}$
- is to his distance from the west . . . 3822

$$
\text { so is the } \mathrm{s} \text { 's nocturnal horary times . } 11.48
$$

to her secondary distaace from the west $\mathbf{2 4} 0$
which added to the primary, as the D in the nativity is above the earth, and by the direction posited below, suakes the arc of direction $\mathbf{9 6 ^ { \circ }} \mathbf{3 s ^ { \prime }}$.

The secondary directions happen on the 9th of June, 1534, $\mathbf{4}^{\mathrm{h}} 10^{\prime}$ P. M. at which time the planets were found ss follows:

$\begin{gathered} \text { Deg. } \\ \text { of } \\ \text { con. } \end{gathered}$	\bigcirc	D	万	4	8	9	8 '	8
	1	I	${ }_{5}$	\%	Ω	I	I	8
	27.28	3.37	26.31	OR16	13.59	1R36,	24829	P.
Lat.		3. 4.33	$\underset{0.13}{\mathrm{~N} .}$	$\begin{gathered} \mathrm{S} . \\ 0.21 \end{gathered}$	$\begin{aligned} & \mathrm{N} . \\ & 0.34 \end{aligned}$	S. 1. 1	4.90 4.90	

The progressions fall on June 17th, 1586;' the .D. remaining in II 90°, and the rest as under:

$\left\|\begin{array}{c} \text { Deg. } \\ \text { of } \\ \text { Lon. } \end{array}\right\|$	\bigcirc)	h	4	δ	9	¢	8
	¢	U	Ω	\boldsymbol{r}	m	L	11	II
	5. 0	20.0	21.31	12.45	2.20	0.10	28.0	29.56
Lat.		0.58	N. 1.12	- ${ }_{1.51}$	N. 0.34	S. 1.23	N.	

On the day of his death, April the 9 th, 1560, the itars were thus found:

Deg. Lon.	. 0	$)$	b	4	0^{7}	8	\%	8
	\boldsymbol{r}	\cdots	L	v		3	r	\cdots
	29.99	14.54	6.51	8.17	037	17.27	93.46	19.81
Lat.		S.	S. 1.26	S.	N. 0.13	$\begin{gathered} \mathbf{8 .} \\ 0.20 \end{gathered}$	S.	

In the secondary direction the D had a declination $16^{\circ} 17^{\prime}$, and that of ${ }^{\circ}$ was $17^{\circ} 15^{\circ}$, and the D was near Aldebaran and Medusa's head. The day he died, both the malefics were found upon this place of the D in $I I$ 4. Besides, the \odot, by secondary direction, was in δ with retrograde, who having a declination of 19°, and communicating to δ. from the parallel, transferred the enmity of δ to the \odot, who, on the day of his death, was found in the of of \quad 's secondary direction, and in the 0 of δ of the nativity, and in o of ψ 's secondary direction unfortunate.

In the progression the D was found upon her place of the nativity in δ sith \sharp, under the 0 's rays near Meduse's head; and the day he died, ot had a parallel of declination to her. The same day she applied to the \square of \hbar_{2} 's radical place, the 0 was in Δ of δ of the progression, and in parallel declination, exactly to minutes, viz. 11° 14. According to Ptolemy, Cap. de Vita, it is observable that in this geniture nearly all the planets have the aame declination, 4 in obedience and $\%$ under S 3
the \odot beams; ζ and δ are elevated above 0 , who is : falling from the angle of the 7 th into the 6th, but they are succedent in the 8th, the house of death, which is terrible. Whenever the-malefics are-found in the 8 th, and afflicting the lomineries, especially the conditionary, so that neverthetess if they are well siluate and powerful, their strength is of no avail when vielent death is threatened, and the more so if the places of both the malefics agree with the nature of the signs and the fixed stars, and the luminaries are found in the same horary circte with the matefics, as in this case the D descends with Caput Medusx. See Ptolemy, Chap. of Death

He was beheaded for poisoning his wife; that being the ysal mode of executing malefactors, at that time, in that country.

Dignities of the Planets in the Signs.

CANON.

Gf the 种art of Fortune.

WHEN this work was finished, the very illustrious D. Adrian Negusantius, of Fanum, a man, not only very well versed in Astrology, according to the true doctrine of Ptolemy, but, also, in Physics and the sublime secrets of Nature, having transmitted to me a method to calculate the \oplus perfectly agreeable to reason and expe: rience, I thought proper to set it down here, word for word, that every one might see a secret in this art, in. vented by so great a man, truly worthy the pen of the greatest Astrologers; for I willingly confess, that, with regard to the Φ, I have laboured a long time, and have nor becr able hitherto to fipd any truth in it.
"The \oplus (says he), if we may credit the precepts of Ptolemy, who asserts that it has the same position to the D as the O has to the horizon 1 Quadripart. Book III, chap. xii), qught to be described and defined in the lunar parallels; for neither, if it be constituted in the ecliptic, according to the intentions of the common Astrologers, or in the D 's orbit, as was the ppinion of a very emiment professor, will it be found
so preserve that order and similitude which the respective conversions of two luminaries, both diurnal. and annual, denote." Thid man subacribes to the truth of every thing I lately mentioned in my Celestial Philosophy, wherein I said, that the \oplus moves upon the orbit or way of the D's latitude, and, therefore, sot in the ecliptic.

But as I have shewn that the distances and rays to the angles are, by no means, made in the zodiac, but upon the parallel of every star, he argues, and, indeed, very ingeniously, that the 0 , in like manner, is elongated from the East, viz. upon his parallel ; and, also, the \rightarrow, who has. not by any other method nor way different than when the \odot is in the horizon, by her real presence, posited the place of \oplus; for no other fundamental principle is seen to constitute this part in nature, unless by such an assignation and impreasion of virtue, exhibited by the D, at \odot rise. When this learned man adds, - For when the 0 comes to the Cardinal Sign of the East, then it is necessary the $>$ be found in its horizon; afterwards, in an equal space of time, the \odot digressiag, he is removed from it according to his ascension;" wherefore, if we study the matter with accuracy, we shall find that, entirely in the same manner as the 0 departs from the East, the D is likewise separated from the \oplus, that is, both upon their parallels, so that as many degrees as the 0 , in his parallel circle, is elongated from the East, so many is the D in her paralle, distant from He \oplus : whence it follows, that the true place of \oplus does not always remain in the zodiac, but always under the V 's parallel eircle, that is, with the D 's declination
the same both in riwmber and name, and, therefore, the (1) does notireceive any aspects: frowe the stars in the zodiac, but ondy in mumdo We' may make a oalculation of the \oplus sereral ways, but it will be shorter, as well as easier, if, in the diurnal geniture, the O's true distance. from the East. is addedito the D 's right ascension, and, in the nocturnal, subtracted, for the number thence arising will be the place: and right ascension of $\oplus .:$ and it alwaya has the same declipation with the y, both, in number and name, wherever it is found. Again, let the O's oblique ascension, taken in the ascendant, be subtracted always from the oblique ascen-. sion of the ascendent, as well in the day as in the night, and the remaining difference be added to the D 's right ascension, the sum will bo the right ascension of \oplus, which will have the D 's deelination. These are likewise qther methods to take the ,ploce of \oplus.: He, who has.* mind to make its directions, will accomplish it only by the motions in the warld, that ings, to the aspects in mundo; and; indeed; ir appears that the conversions of both the luminaries agitate the \oplus by the two motions, since, if the luminaries are carried together by the motion of the primum mobile, then the \oplus remaining inmoveable in its horary circle of position, waiting for the ooming and rays of the opposite stars, will be directed by a right motion; bat, by a converse motions. if the \odot be constituted immoveable, and the D preceding as usual. \oplus will, by the rapt motion, be devolved, t ρ the bodies and rays of the promittors; but as it mant very reasonably be doubted whether the \oplus institytes the directions by converse motiop, I will omit speaking of:
this till another time, and, in the interim; see what experience says. This is worth observing, that if \oplus does not consist in the zodiac, it is, nevertheless, directed to the parallels of the stars in the primum. mobile, together with the D, whose declination it is always known to follow, and which they vary continually and successively; therefore, when the $>$ comes to the declination of any star, she produces a double effect, according to the proper signification of every one portended in the geniture, because she then falls together with \oplus on the parallel of the same star: an invention truly ingenious; for, as the \odot, by his motion in the zodiac, successively changes his parallel, and, therefore, that relative point of his rising in the horoscope, s.o likewise the D, whilst she, by a right direction, lustrates the zodiac, and varies her parallels, seems therefore of consequence to draw to her declination the point of existence of \oplus. All these things, however, I confess must be confirmed by examples and experience.

And, as the same Negusantius transmitted to me some things which he found relating to this in the Commentaries of George Valla, on the Quadripartite, which appear to the mind of this learned author, I therefore spubjoin the following : -
" But, that the \oplus (says Valla) is the necturnal and lunar horoscope, is manifest from what Ptolemy says; for the D will bave the same ratio of parts to the part of Fortune, and the same figuration, as the O has to the horoscope :" and that every one may know that this Gguration and ratio of the distance of the luminaries must be taken in the parallels of the luminaries \boldsymbol{z}_{2} he adds,
"I It will be likewise plainer still, if we follow the same method by the Canons, as in the horoscope ; for it will be found again, that the horoscope is the Part of Fortune, for, adding the part of the D in the diurnal nativities, and, in the nocturnal, by taking the ascensionary times of the opposites, we multiply the hours, and compounding the produced number with the ascensions, look in their climates, where the number falls, and there we say is the lunar horoscope." The ascensionary times and hours are nothing but the times of the parallels, whereon the luminaries are moved by an unirersal motion, and effect their distances from the Cardimals and other Houses, and, consequently also, configurations, as I have evidently demonstrated in the Celestial Philosophy. And the climates are distinguished by parallels to the equator, as has been observed; therefore they are taken, by this author, for the parallels, which he explains in these words: "In like manner we shall find, from a measurement from the O to the D, that whatever ratio and figuration the \odot has to the eastern horizon, the same has the D to $\oplus ; "$ for; indeed, the luminaries, and all the stars, form no other distances from the horoscope and house3, except upon every one of their parallels, and, as has been said, by the horary and ascensionary times. Ptolemy speaks exprossly of this in the Chapter of Life, whence Valla reasonably infers, "the figuration of \oplus to the D; taken in this manner, will be the same as the horoscope to the 0 ; and, on the contrary, whatever figuration the - has to the horoscope, the same will be that of the D to \oplus. In like manner, for the same reason, both will
be the same as the other; that is, as many parts as the © was distant from the horoscope, so many was the) from $\oplus,>$.piz. always upon their paradlels, and by the ascensionary times in them. To prevent any one supposing this doctrine fictitious and void of experience, and that the method of calculating might not be obscured, I have subjoined ove example, in preference to others, which I myself have observed, which you have in the nativity of Francis, the infant son of D : Camillius Piazole, a native of Padua.

HE was born in the year and day placed in the celosfial constitution, and baptized immediately, as he was not expected to live. He did not live to be more than three years of age, for, on the 7th of March, 1655, at about the 20th hour, he was drowned in a small quantity of water where chickens were used to drink. In this nativity; if the \oplus be computed in the common, way, it will fall in ' $20^{\circ} \cdot 27^{\prime}$ of the sign \boldsymbol{r}^{\prime}; to which, without exception, according to the doctrine of Ptolemy, the signification of life belongs, and which does not there appear to suffer any violence or mortal direction in the third year; if any one finds it,so, I beg he will communicate it. But, according to the ingenious invention of Negusantius, we look for the place of \oplus thus : The oblique ascension of the \odot, taken in the ascendant, is $7^{\circ} \cdot 45^{\prime}$, which, subtracted from the oblique ascension of the ascendant, leaves the 0^{\prime} s distance from it $242^{\circ} 52^{\prime}$: I add this to the D 's right ascension, and I make the right ascension of pars fortunce $198^{\circ} 32^{\prime}$, which, as we have said, wiH have the D 's declination. 1 subtract the right ascension of the medium cafif from that of pars
fortunce, and its distance therefrom is $37^{\circ} 55^{\prime}$; and, as its horary times are $11^{\circ} 9^{\prime}$, it doubtless remains about the middle. of the, eleventh house, where δ 's 8 and ち's a cosmical ray in mundo fall. But let us calculate these rays exactly :

As the horary times of pars \oplus. . . $11^{\circ} 9^{1}$
is to its distance from the medium coli . . 3755
so is δ 's horary times 1257
to his secondary distance from the imum coeli 442
his primary distance is $48^{\circ} 40^{\prime}$; from which, subtracting the secondary, leaves the are of direction of pars to δ^{\prime} 's $8,4^{\circ} 38^{\prime}$.
Again. The semi-diurnal arc of pars is $66^{\circ} 54^{\prime}$, and is taken from the horary times multiplied by 6 ; therefore, if from the semi-diurnal arc is subtracted its distance from the medium coll, there will remain its distance from the horoscope $28^{\circ} 59^{\prime}$. Now, I say,

As the horary times of pars fortiunce .. . $11^{\circ} 9^{4}$
is to its distance from the horoscope . . 2859
so is b 's horary times 1857
to his secondary distance from the medium coeli 4916
from which, subtracting the primary, which is $46^{\circ} 28^{\prime}$, leaves the arc of direction of pars fortunce to the cosmical of $\mathrm{b} 2^{\circ} 48^{\prime}$. But the \oplus remained about the beginning of m, b in the eighth house, the \rangle in m, and both the D and \oplus under a parallel of \hbar 's declination, and \oplus applied to the hostile rays of the malefics, which threatens drowning, according to the doctrine of Ptolemy, in the chapter of death.

What wonder 2 therefore, if this unhappy infant met
with the aboveinentioned fate, and came into the world attended with nothing but sickness ?

It is rather wonderful he survived; the reason he did, was, perhaps, owing to the cosmical parallel of 4 concurring to that part; which, if any chooses, he may calculate, and will find it follow.

But, 4 being so very unfortunate, and alone, against two enemies; could be of no service; and, it is worthy of observation, that, at the 20th houf of the 7th of March, in which this infant was drowned, δ went over the middle of the fifth house, that is, in 8 of the mundane place of the \oplus, and 5 was in the middle of the second, in 0 of the same; so that we know there was no other place of the \oplus, except that which we have calculated : and this method, concerning it, is certainly conformable to reason, and also experience.

Receive, my very courteous reader, this secret in Astrology, as truty worthy, and not taken from the common professors of this art, but freely communicated by the truly learned Negusantius.

And, may the conclusion of the whole work turn to the praise of ALMIGHTY GOD:

Adibu.

From what has beek said in this Canon, and its exemplification, the following conclusions are to be drawn as to Θ, tiz. That \oplus is the mindane place of the D at 0 rise; and, conwequently, has the D 's declination, both in quantity and denomination. And if \oplus reo maint in the some hemisptrere as the y, it has the D's arc aod bo-
rary times; but, if the $\mathbf{~ 2}$ and \oplus are in different hemiepheres, \oplus will have the complement of the arc and horary times of the \geqslant.

The \oplus cannot be directed in mundo converse, because it is not affected by the rapt motion; nor can it be directed to the aspects in the zodiac, either direct or converse, except only the zodiacal parallels, and, of them, only such as the falls upon, and at the same time with the $)$. The \oplus hath no determinate latitude, but its latitude is constantly varying, and it is rarely, by position, in the ecliptic; and whatever configuration the \mathcal{O} has to the ascendant, the same has the \boldsymbol{D} to the Θ, as Ptolemy declares in Lib. III, cap, xiii, Quad. by Leo Allatius, page 184. "Hanc itaque \oplus vero, gue semper die, ac nocte colligitur; ut guam habet rationem, \& positum $(\bigcirc$ ad horpocopum, eandem hubeat $)$ \& ad \oplus sit veluti lunaris horoscopus." And which is most elegantly and demonstrably proved by Cardan, in his Commentary upon the Quadripartite, folio edition, printed at Basil in 1578, page 359, which, for its peculiar beauty and simplicity, I will here insert, with the diagram by which its relacive situation is proved by mathematical demonstrap tion.

Cardan says, "If the \rangle is going from the δ to the 8 of the 0 , s then:the $)$ follows the 0 , and \oplus is always under the earth, " from the decendant; but if the $>$ bae passed the 8 , she goos " before the $\boldsymbol{\odot}$, and \oplus is before the ascendant, and always above " the earth. Which is thus shewn;

1
318 pRinum мовilg.

\therefore Let the O be in A, the D in B, and draw the line $A C$, from " the σ to the ascendant, and, from the $), \mathrm{BD}$ equal to AC : " then it is demonstrated in the third of the Elements of Euclid, " that the arc BD is equal to the arc $A C$. Subtract $A D$, which " is common to both, and'there remains $A B$, equal to $C D$: there* " fore, the distance of the \rangle from the \mathcal{O}, being added to the " ascendant, there arises the place of Θ, which is the place where " the D reflects the O^{\prime} 's rays, equal to that with which the \mathbf{O} irra" diates the ascendant; therefore the place of is had, by adding " the distance of the D from the 0 , to the ascendant." By which it appears, that Cardan had a good general idea of \mathbb{P}, but his crror, in computing its place, arose from his taking it in the ecliptic instead of taking it upon the farallel of the D 's decliuation.

abdenda.

URBAN THE EIGHTH.

(from the author's celestial philosopey.)

THIS curious nativity being referred to, by the Aus. thor, in Canon XXXVIII; page 108, it was deemed proper to subjoin it to the present work, as an illustration of that Canon.

P.	Latitudes.	Arcs.	Horary Times.	Rt. Ascension.
5	20 37' N.	$89^{\circ} 55^{\prime}$	$14^{\circ} 8^{\prime}$	$173^{\circ} 58$
4	115 N.	110 24	$18 \quad 23$	246
8	213 N.	11253	$18 \quad 49$	12124
\bigcirc	$0 \quad 0$	9926	16.38	2349
8	0 O 3 S.	8350	$13-57$	844.43
8	0 T N.	10339	$17 \quad 17$	3511
D	450 S .	10650	$17 \quad 48$	120, 26

THE cause of this fortunate constitution, is, by the common professors, unanimously asserted to be, Cor Leonis in the ascendant and in Δ with the \odot, from the ninth house, in the sign r; but neither have any weight with me, for I can affirm, of my own knowledge, to have seen many genitures of unfortunate men, with Cor Leonis in the ascendant and tenth, and the \odot beheld, by fortunate rays, in the zodiac. But, according to my opinion, the principal cause was the fortunate position of the luminaries, the satellites of the © being benefics, and angular; for the 0 is in $*$ to ρ in mundo (as it is in the first, and many of the examples brought by Argol, which I have long ago examined), and also in zodiacal parallel with 9 , by reason it has nearly the same declination : moreover, it is in mundane parallel with 4 , namely, at the same distance from the medium cali that 4 is from the imum coeli, and applies to a sesqui-quadrate and biquintile of 4 in the zodiac. Lastly, it is in Δ to Cor Lconis, with which it is $f_{R}-$
voutrably conjoined in the zodiac, and effects, with the sarne, all the rest of the familiarities. The D is upon the cusp of the twelfith house, with the fixed stars Canis Major and Minot, in parallel with 4 and $\underset{\sim}{\circ}$, in the zodiac, ρ is descending with Lucida Fidiculee to a quintile with the medium cali; to which the. ϱ, by converse dinection, arrived in 56 years. At 78 years and 3 months, the 0 came to the west, and it happeaned that q was intetposed, which added some small time, but b 's 8 succeeding, diminithed more than 7 added; then ψ^{\prime} 's Δ from the cusp of the third house, superadded more time than was diminished by h. Lastly, of lustrates a greater space, by his quintile ray from the medium coeli, than all the rest, whence he diminishes more than all the others. ℓ, who is mixed with the $*$ of q, and sesqui-quadrate of \hbar, neisher gives nor takes awny by his $*$ 。

The calculation of the Directions by Canon XXXVIII.

$$
\begin{aligned}
& \text { b, As } 16946: 148:: 3320: 237 \text { - } \\
& \text { 4, As } 22048: 1823:: 5738: 447+ \\
& \text { to As } 22546 \text { : } 1849:: 7553: 616 \text { - } \\
& \text { U u }
\end{aligned}
$$

$\boldsymbol{u}+8=6^{\circ} 41^{\prime} . \quad$ b $+8=8^{\circ} 53^{\prime}$; their difference $=2^{\circ} 12^{\prime}$ to be subtracted from the 0 's arc to the west $=77^{\circ} 44^{\prime}$, and there remains the arc of direction of the \odot to the west, diminished by the addition and subtraction of the fortunate and unfortunate stars $=$ $75^{\circ} 32^{\prime}$. For the equation, I add this are to the O^{\prime} 's right ascension, aud the sum is $99^{\circ} 21^{\prime}$, answering to $8^{\circ} 35^{\prime}$ of \approx, to which the \odot arrives in 76 days and a quarter. At which place is found the \square of os to the west, just before the \odot descended, that is, nearly 2°, and is a great proof that I am right in my opinion.

Urban the Eighth was a Florentine, and succeeded Gregory the Fifteenth in the Papal Chair. At the time of his election disputes ran so extremely high, that ten cardinals lost their lives on this occasion. In the year 1626, Urban had the hopour of consecrating St. Peter's church at Rome, which wan performed with ponip and spleddour equal to the magnificence of the structure. That the grandeur of the apostolical chair might be the more adranced, in 1631, he gave to the cardinals the title of Eminence, forbidding them to acknowledge any other appellation. There was a conspiracy against his life in 1633, but which was detected, and it authors punished. In 1694, he issued a bull, compelling the cardisals and bishops to residence. Pridcaux, in his Introduction to History, says, that the cardinals had long wished for a vacancy by the death of Urban, and were afraid he would have outsat St. Peter. He was a man of yreat abilities, and a good poet.

TABLES

of

ZReclination, 3Right $\mathfrak{A s c e n s i o n , ~}$ ASCENSIONAL DIFFERENCE, CREPUSCULINES,

AND
PROPORTIONAL LOGARITHMS,
FOR COMPUTING
the Arcs of direction.

TABLES

OF

DECLINATION.

North Latitude.

		1	2	3:1,4		5	6	7	8	91	
50	D. M.D	D. M.	D. M.	D. M. D	D. M.	D. M	D. M. D	D. M .		D. M	M.
.	$25 \quad 922$	$24 \quad 32$	25	$20 \quad 31$	27	48	2932	30	315	383	38
1	23 912 2	2431	$\begin{array}{ll}25 & 31\end{array}$	$25 \quad 312$	$27 \quad 31$	$\begin{array}{ll}28 & 31\end{array}$	$29 \quad 3130$	$30 \quad 31$	3131	38	31
2	$23 \quad 31$	-	-	-			$2{ }^{2}$	-			
	89		-	$36^{\prime} 5$	37.89						
			$25 \quad 28$	26. 25	-	\% 28	29.8				
5	23312	2426	25 2t	$26 \quad 26$	$27 \quad 26$	$38 \quad 26$	29263	3) 96	31 26	322	26
	$23 \quad 232$	24.35	45 5^{5}	76:9	1 ${ }^{1} 2$	2812	26, ${ }^{8}$	573	ग'29	32	2982
7	2380		25-20	26×20	- 719		$20^{\circ} 193$	3019	Si 19	32	19
	73	24 17						3016	S1 16	38	1.418
?	$23 \quad 132$	$24 \quad 13$	$25 \quad 19$	26	22: 182	2\% 12	29 is-3	12	$31 \quad 12$	32	1281
10	23	14	25	26	27	28	998	30	91	32	2
11	$23 \quad 4$	$24 \quad 4$	25	26	$27 \quad 220$	28	2933	30	31	32	119
12	22592	2385	$24 \quad 59$	$2.5 \quad 59$	-6	27	98	$29 \quad 57$	50 67	31	57
IS	$22 \quad 582$	23,53	24.5it	25.53	26, 64	$27 \quad 52$	28.52	2961	3061	31	5117
14	2241	23	-	5.40	48	27-4.2	28-45	43	d	1	44
1:	22.412	2341	$26 \quad 40$	$25 \quad 40$	$26 \quad 40$	$27 \quad 39$	$28 \quad 39$	2939	$90 \quad 38$	1	38
	28	43	24 3	$25 \quad 20$	36	7) 34	88	$29 \quad 32$	30 31	S1	31
17	2782	$23 \quad 27$	$24 \quad 26$	$25 \quad 2$	$26 \quad 25$	27.20	$28 \quad 24$	29 94	$50 \quad 84$	31	0
18	228192	23					9816		5015	S1	13
19	$22 \quad 102$									31	,
$\overline{20}$	22	23	24	$25 \quad 0$	85	$26 \quad 58$	$\overline{27} 57$	$28 \quad 57$	$49 \quad 56$	50	5510
21	$21 \quad 592$	$22 \quad 59$	23 52	$24 \quad 51$	$25 \quad 50$	2649	27 483	$28 \quad 48$	29 471	30	40, 9
$2 \times$	21-4828	22	23	24.41	$25 \quad 40$	$26 \quad 39$	$27 \quad 38$	28 $\quad 38$	8937	30	56
23	31828	$28 \quad 33$	23 32	$24 \quad 31$	$25 \quad 30$	$26 \quad 29$	$27 \quad 28$	$28 \quad 28$	29 27	30	25
24		22	23	$24 \quad 20$	$25 \quad 15$	$\begin{array}{ll}26 & 18\end{array}$	27 17	$28 \quad 16$	$29 \quad 15$	30	17
25	$21 \quad 13$	$22 \quad 11$	$29 \quad 10$	$24 \quad 9$	$25 \quad 8$	$26 \quad 7$	$27 \quad 6$	$28 \quad 6$	29	30	55
26	21	$22 \quad 0$	24	$23 \quad 58$	24 67	$7{ }^{25}$	26	$27 \quad 54$	28-59	89	32
27	720502	$21 \quad 48$	22 47	2346	$24 \quad 45$	2.544	$26 \quad 45$	$27 \quad 42$	28 41	29	40
28	180	91	22: 35	23 34 24	24	25 32 25	0	27 89	28 28	29	27
29	$20 \quad 20$	$21 \quad 23$	$22 \quad 22$	$23 \quad 21$	$34 \quad 20$	$25 \quad 19$	$26 \quad 17$	$27 \quad 16$	6815	29	14
30	$20 \quad 132$	$21 \quad 12$	9210	$43 \quad 9$	24.7	$25 \quad 6$	$26 \quad 4$		28	28	59
											1

TABLES

08

DECLINATION.

South Latitude.

	0					3		4		5				7					
00	D. M.	i) M.iD	D. 1	M.	D.	M.		. M.	D.	M.	D.	. M.		M.					
	$23 \quad 32$	4238	21		20	38	19		18	52	17	39	1.	49	$t 5$			38	
	331812	281312	21	91	20	31	19	31	18	31	17	731	16	31	15	31	14	31	29
	23.31	22812			20	31	19	31	18	31		731	16	31	15	31	14	31	188
	133 30	$22 \quad 302$	21	30	80	30	19	90	18	80	17	90	16	30	15	30	14	30	
	43	9298	21	48	20	88	19	28	18	28		78	16	23	15	88	14	98	
	38	82 20 2	21	86	80	86	19	86	18	86	617	786	16	26	15	96	14	26	
	25	92 23	81	83	20	85	19	33	18	29		723	16	29	(s)	85	14	25	
	$23 \quad 20$	282012	21	80	20	80	19	80	18	20	17	780	16	20	15	20	14	20	23
	2317	2217	21	17	80	17	19	17	18	17				17	1.$)$	17	14	17	2
	$23 \quad 18$	2819	21	15	80	13	19	13	18	18	17	$7 \quad 13$	16	18	15	14	14	14	21
		28.9	21	9	20		19		18		17	710	16	10	15	10	14	10	80
	23	22-421	21	4	80	4	18		18	b	b 17		16	5	15	6	14		B19
	28 by	31.5920		69	19	58	19		18	-	17		16		15		14		8
19	$28 \quad 68$	81598	80	63	19	63	18	54	17	54	16	654	15	55	14	53	13	65	17
	$28 \quad 47$	$21 \quad 47$	20	47	19	47	18	48	17	48		48	15	49	14	49	13	49	16
	2841	$21 \quad 412$	80	41	19	41	1.8	48	17	42	16	48	15	49	14	43	13	49	1.3
	2834	81.36	20	35	19	36	18	56	17	30	16	¢ 96	1.5	37	14	97	15	37	14
	28878	$21 \quad 88$	80	88	19	98	18	29	17	29	16	639	175	30	14	30	13	30	-13
	$7^{72} 1019$	8180	20	80	19	21	18	81	17	21		- 21	15	22	14	89	13	89	
	$98 \quad 10$	81.112	80	11	19	12	18	18	17	13	16	613	15	14	14	13	13	15	
	98	21	80		18		18		17		118		15		14	7	13		10
	$21 \quad 68$	$80 \quad 541$	19	56	18	56	17	57	16	57	15	$5 \quad 58$	14	58		39	12	59	
		90	19	46	18	46	17	47	16	47	715	-48	14	48	19	49	19	4	8
	93 85	90-84 10	19	35	18	36	17	87	16	57	715	$5 \quad 38$	14	39	13	10	18	40	
	123	90 24	19	8.5	18	26	17	27	16	28		28		89	13	50	12	3	6
23	18119	$80 \quad 141$	19	1 b	18	16	17	11	16	18	115	519	14	20	13	21	12	22	
		208	19		18		17		18		715	8	14		19	10	18	1	4
	$180 \quad 60$	$49 \quad 51$	18	52	17			b4	15	56	614	487	13	58		39	12		15
	2436			40			16	42	15	44		45		96	18			48	8
	$20 \quad 2+$	1987	18	28	17	29	16	30				- 33		34		35		37	1
	20 1.5	1914	18	15	17		16	18				- 20				23		24	0
																			π

TABLES

OF
DECLINATION. .
North Latitude.

TABLES
OF
DECLINATION.
South Latitude.

TABEES

OF

DECLINATION.

North Latitude.

	0	1	2	3	4	5	6	7	8		
In	D. M	II. M.	D M	D. M.	D. M	D. M	D. N	D. M	D. M		M.
-	1181	1887	1383	$14 \quad 19$	$15 \quad 15$	16 I1	17	18	1869	19	3030
1	11	12	13	$13 \quad 37$	14 53	1546	$16 \quad 45$	$17 \quad 18$	$18 \quad 37$	19	
9	$10 \quad 48$	11.43	$18 \quad 41$	13 =6	14 32	$15 \quad 28$	$16 \quad 44$	$17 \quad 20$	1816	19	21
9	1026	1128	$18 \quad 19$	13 1414	1410	156	$16 \quad 2$	$16 \quad 58$	$17 \quad 54$	18	
4	10	1	11.57	1858	1548	14 44	$15 \quad 40$	1636	17 S1	18	275
5	948	1039	1195	1830	1326		1518	16 14	17.	18	
6	$\begin{array}{ll}9 & 21 \\ 8 & \end{array}$	1017	118	$12{ }^{8}$	13	140	$14 \quad 85$	15051	10	17	124
7	$8 \quad 68$	$9 \quad 55$	10 51 10	1146	1242	13 37	143.	$15 \quad 28$	$16 \quad 23$	17	1825
8	886	32	10.28	$11 \begin{array}{ll}11 & 23\end{array}$	$12 \quad 10$	13.14	1410	15	16 0	16	5.82
9	8 19	910	10	11	111	12, 52	13187	$14 \quad 42$	$15 \quad 38$	16	$\underline{1}$
10	751	840	948	$10) 98$	1139	12:29	13 29	If 19	$15 \quad 14$	16	
11	78	8 23	$9 \quad 18$	10	119	12	13 Of	$13 \quad 65$	$14 \quad 50$	15	
12		8	$8 \quad 53$	51	$10 \quad 46$	11	1237	$13 \quad 38$	1487		
18	642	\% 97	$8 \quad 32$	928	$10 \quad 28$	111912	$12 \quad 14$	139	14	14	59
(14)	6	7		9	10	10	$11 \quad b 1$	1286			9616
115	$5 \quad 50 .$	$6 \quad 52$	$\begin{array}{ll} 7 & 47 \end{array}$	842	957	$10 \quad 95$	1128	12 23	13 18		12
$\left\|\begin{array}{l} 16 \\ 17 \end{array}\right\|$	$\begin{array}{cc} 6 & 33 \\ 6 & 9 \end{array}$		$\begin{array}{ll\|} \hline 7 & 24 \\ 7 & 4 \\ \hline \end{array}$	$\begin{array}{ll\|} \hline 8 & 19 \\ 7 & 55 \\ \hline \end{array}$	$\begin{array}{ll} 9 & 14 \\ 8 & 30 \end{array}$	$\left\|\begin{array}{rr} 10 & 10 \\ 9 & 4 t \end{array}\right\|$		120	$\left\|\begin{array}{ll} 12 & 54 \\ 12 & 51 \end{array}\right\|$	18	CN
18			637	$7 \quad 34$				11.12	18		
19	423	$\begin{array}{ll} 5 & 18 \\ \hline \end{array}$	615	78	8 \%			10 19		8	
2 L	$\begin{array}{ll}3 & 6.3\end{array}$	$4{ }^{4} 54$	5	d	734					1	12006
21	$3 \quad 35$	4.30	5 2j	6 20	71.2	810					5
42	$3{ }^{3} 11$				78			936	108	1	87
25	$9 \quad 47$	$\begin{array}{lll}3 & 49\end{array}$	498	6 33	6 20	$7 \quad 29$	8 18				
2.85 25	2								-	10	3
25		- $2 \quad 55$	3 30	45	5 50	6 95	30			0	14
23	$\begin{array}{ll} 1 & 3 \mathrm{t} \\ 1 & 12 \end{array}$	$\left.\begin{array}{\|rr} \hline 2 & 94 \\ 2 & 7 \end{array} \right\rvert\,$	$\begin{array}{rr} \hline 3 & 26 \\ 3 & 2 \end{array}$			$6{ }^{6} 11$		$\begin{aligned} & 8 \\ & 7 \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \end{aligned}$	9	
28	0	48	238	34	8	25	6 18	719	8	9	
29	0.24	119	214	39	44	459	5 54.		I	\%	
30	0 O	0 B.i)	50			3	530	6	29	8	37
											Con

TABLES

OF.

DECLINATION.

South Latitude.

TABLES
OF

DECLINATION.

North Latitude.

TABLES

or

DECLINATION.

South Latitude.

332.

PRIMUM MOBILE.

TABLES

OF

DECLINATION.

North Laritude.

TABLES

of

DECLINATION.

North Latitude.

TABLES

65

DECLINATION.

North Latitude.

TABLES

OP

DECLINATION.

Sonth Latitude.

					$\underline{2}$		3		4		5		6		7		8			
I	D. M		D. M				. M		J. M.). M		D. M.		D. M					
$\underline{0}$	80	13	$21 \quad 12$			23			48											
1	20	2n 2	$21 \quad 25$	22	29	23	2		420		519							29		
4	20		2137	22	3 t	2.3	Y 2		14 3 3		5 32	26	6 31	C27	789		8 2i			
3	20	50.2	$21 \quad 49$	22	45:	23	47		44.5		544	96	643	327	27 44	28	$8 \quad 40$	29	2	
	91		290	2%	54	23	54		13		5 53	26	6 b.	, 27	2751		8 b9			
5	21	1512	291112	23	10	24	,	2.5	5 8	26	$6 \quad 7$	27			85		9 br	30		,
6	21	83 :	$22 \quad 42$	23	21	34	$\mathbf{z P O}^{\prime \prime}$		51		$6 \quad 18$		$7 \quad 17$	728	2811		915	30	$1+$	+24
7	21	35 2	$29 \quad 34$	23	31	24	31		590		$6 \quad 29$	27	728	828	887		9 2t	so		
	21	4318	$22 \quad 42$	23	41	24	41		$5 \begin{array}{ll}5 & 40\end{array}$		$\begin{array}{lll}6 & 39\end{array}$	27	738	828						
9	21	5:3 2	$22 \quad 52$	29	61	34	51	125	$5 \begin{array}{ll}5 & 50\end{array}$	26	$6 \quad 49$	27	7 4:	28	8847		9	30		2
10	28		23	24	C	25		25	$\begin{array}{ll}5 & 59\end{array}$		6	27	$7{ }^{7} 57$	72	33 5i				55	
(11)	22	102	2310	24	4	25	-9	92	68	827	77	28	86	629	9		05	31		
	22	192	2319	24	18	85	18		6 Lit	27	711	28	8 1.	, 29	29 is		1	31		
19	22	272	$23 \quad 27$	21	26	25:	2.		26		724	28	824	4 z9	4 2:		0 2:	31	22	
14	2	${ }_{31}$	23 311	24	33	25	3.3		26		$7 \quad 31$	18	8 31	1 \%	[9 51		0 3:	31	29	
15	22	412	$23 \quad 41$	24	40	25	39		$6 \quad 39$		$7 \begin{array}{ll}7 & 38\end{array}$	28	838	829	2957		0 37	31	29	12
	22	47		24	4 r	3.5	45		$6 \quad 4$		7 4		8 44	$4{ }^{29}$	2944	30	0 44	31	43	14
17	22	$53{ }^{3}$	33 5: 5	24	52	25	52		$1{ }^{6} 52$		$7{ }^{7}$ 5:	28	$8 \quad 51$	129	$9 \quad 51$		0. 51	31	50	15
	22	$5: 1$	$23 \quad 59$	24	59	25	58		26.8		$7 \quad 5 t$	28	$8 \quad 57$	729	2967		0 5i	11		ε
	23		24	25	4	26			$7 \quad 3$		8				30			i2		11
	25		14	25		$2{ }^{2}$			78		8 8	89			07	31		34		10
21	23	152	$2+13$	25	1 s	25	15		$7 \quad 12$		$8 \quad 12$	29	912	230	3012	31	110	32	1.	9
	23	17)	\%4 17	25	17	26	17		4711		8 1t	29		- 30	3011		110	Y2		\%
24	23	202	24.26	25	2 C	26	20		719		$8 \quad 19$		919	9.50	019		119	82	19	7
24	23	$25:$	$\because 4$.	25	25	26	2:3		77		8 22		922	$2 \cdot$	r) 22		122	32	2.	6
25	23	$26 \mid 2$	$24 \quad 20$	25	24	26	$2 t$		$7 \quad 25$		8 2:		925	5.30	$30 \quad 25$		125		95	8
20	23		24.28	25	$2 \times$	26	28		278		$\begin{array}{ll}8 & 28\end{array}$	29	9 28	850	3088		128	42	28	84
27	23	3012	$2+30$	25	30	26	30		780		8 90		- 30	030	30.30		180	92	20	3
28	23		24	25		26			$7{ }^{7} 31$		(6) 3	29	$9 \quad 31$	130	3031		131	22		2
29	29		$24 \quad 31$	25	31	25	31		$7 \quad 31$		8 S1		9 31		(0) 31		131		31	11
	23		$24 \quad 92$		S_{2}	20			$7{ }^{7} \quad 36$		$8 \quad 3$		932		$30-32$		1 92	32	32	20
																				9

TABLES

O.F

RIGHT ASCENSION.

North Latitude.

	0	1	2	3	4		5		0		7		8		9	
\underline{v}	D. N1.	D. M	U. M.	U. M	1). M		1). M.		D. M.). M.		Ј. M.			
L	0	353	35915	358 49	35825		358	136	36787	37	2,7 13		35648		629	
1	105	0	$0 \quad 6$	\|359 44		55920		35858	58.5	35832	3255	538		35743		718
2	1 50 2 4	$\begin{array}{ll}1 & 2 i \\ 2 & 28\end{array}$	$\begin{array}{ll} 1 & 3 \\ 1 & 58 \end{array}$	1 39 1 34			359 0 0			27	359 ${ }^{5}$		35838 559 34			
4	384	3	\% 5i	2	2	5	141	1	117	70	0 0 3		C 29	O	4	
5	$4 \quad 35$	$4 \quad 1 \leqslant$	$\begin{array}{lll}3 & 48\end{array}$	421	30		230	c. 2	918	21	148			0	59	
7	$\begin{array}{\|ll\|} \hline 5 & 20 \\ 6 & 9 \\ \hline \end{array}$		4	$4 \quad 19$	355	55	$3 \quad 31$	1	3	2	943		219	1	5	
	6	6	$\begin{array}{lll}5 & 98\end{array}$	5 14	$4 \quad 50$	0		4	42	3	$\begin{array}{lll}3 & 58\end{array}$		314	8	49	
[$\begin{gathered}8 \\ 9\end{gathered}$	$\begin{array}{ll} 7 & 21 \\ 8 & 11 \end{array}$	6- ${ }^{6}$	$\begin{array}{ccc}6 & 32 \\ 7 & 28\end{array}$	0 7 4		45	$\begin{array}{ll}6 & 21 \\ 6 & 10\end{array}$		$\begin{array}{ll} \hline 4 & 57 \\ 5 & 52 \end{array}$		$\begin{array}{ll} 4 & 94 \\ j & 28 \end{array}$		$\stackrel{\psi}{\dot{0}}$	$\begin{aligned} & 3 \\ & 4 \end{aligned}$		
10	9 10	8	$8{ }^{8}$	$\begin{array}{ll}7 & 53\end{array}$	7 \% 5		$7 \quad 11$	16	$\begin{array}{ll}6 & 47\end{array}$	76	6		5	5	34	
11	$10 \quad t$	9 48	$9 \quad 18$	$8 \quad 55$	$8 \quad 31$	31	37	7	$7 \quad 48$	37	7		$6 \quad 5$.	6	30	
12	11 $11 \begin{gathered}2 \\ 11\end{gathered}$	10	$10 \quad 14$	$\begin{array}{ll}9 & 51\end{array}$	$9 \quad 47$	27		38	$\begin{array}{lll}8 & 39\end{array}$				$7{ }^{7} 51$	7	20	
1:3	1157	113	11	$10 \quad 41$	$10 \quad 22$	22	55				$9 \quad 10$		840	8	22	
$\left[\begin{array}{l} 14 \\ 1.5 \end{array}\right.$	$\begin{array}{\|ll} 12 & 5 . \\ 13 & 4: \\ \hline \end{array}$	$\left\|\begin{array}{ll} 12 & 99 \\ 13 & 25 \end{array}\right\|$	$\left\|\begin{array}{ll} \hline 12 & 5 \\ 13 & 1 \end{array}\right\|$	$\left\lvert\, \begin{array}{\|cc\|}11 & 48 \\ 12 & 38 \\ 18 & \\ \end{array}\right.$		1410	10 51 11 50	$\begin{array}{l\|l} -10 \\ 0 & 10 \end{array}$	$\begin{array}{ll} 10 & 36 \\ 11 & 96 \end{array}$	$\begin{array}{l\|l} 36 & 10 \\ 36 & 11 \end{array}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$		$\begin{array}{ll} \hline 9 & 42 \\ 10 & 38 \end{array}$		18	
$\left\{\begin{array}{l} 10 \\ 17 \end{array}\right.$	$7 \overline{16} 41$	$\left\|\begin{array}{ll} 14 & 20 \\ 15 & 16 \end{array}\right\|$	$\left\lvert\, \begin{array}{ll} 13 & 57 \\ 1+ & 53 \end{array}\right.$	13 14 14 15			$\begin{array}{ll} 12 & 4 c \\ 13 & 48 \end{array}$		$\begin{array}{ll} 12 & 24 \\ 13 & 1 t \end{array}$	11 4 12	l 58		$\begin{array}{\|ll} 11 & 34 \\ 18 & 30 \end{array}$		10	
$\left\{\begin{array}{l} 18 \\ 19 \end{array}\right.$	$\begin{array}{\|cc\|} \hline 16 & 31 \\ 17 & 35 \end{array}$		$\begin{array}{ll} 15 & 49 \\ 16 & 45 \end{array}$	15 20	$\begin{array}{ll}15 & 4 \\ 15 & 5 \\ 15\end{array}$	4	14 39 5 3.		$\begin{array}{ll} 14 & 10 \\ 1.5 & 11 \end{array}$	$\begin{array}{l\|l} 15 & 13 \\ 11 & 14 \end{array}$	$\begin{array}{ll} 3 & 51 \\ 4 & 47 \end{array}$		$\left\|\begin{array}{ll} 13 & 2 i \\ 1+ & 23 \end{array}\right\|$		3 39	
	18	18		1718	$16 \quad 64$	4110	$1 \begin{array}{ll}1 & 3 i\end{array}$		i	1.0	, 4-1		. 20		56	
21	$19 \quad 2 ;$	19	18.737	1814	$17 \quad 51$	3117	$7 \quad 20$		7	16	6	16	$6 \quad 17$		53	
22	$20{ }^{2}$	19 5.	19	$19 \quad 11$	18.4	18	8 \%		8 -1	117	$7 \quad 36$		$7 \quad 14$		50	
2.5	$21 \quad 10$	20, 5:	20 Sn	On <		$51:$	11 2		8 b ,	, 18	8 3.5	18			47	
24	$22 \quad 12$	$\begin{array}{ll}21 & 51\end{array}$	21 27	21 b	2042	22	0 1ッ		9 . 5	519	9.20	19	93		4t	
25	33	$28 \quad 47$	$92 \quad 24$	$22 \quad 2$	$21 \quad 30$	3012			() 52	220	O 2 :	10	$1) 5$		41	
20	24	29	$23 \quad 21$	12254	2430		2		130	听21					S9	
27	-25	24.41	24 1! 2	123 37	93131		3311		248	8,22	2 \%	22			57	
28	45	2585	$25 \quad 16$	24	24	12	449	92	340						56	
29	$26 \quad 67$	$26 \quad 3$.	26.1412	$25 \quad 51$	$2.5 \bigcirc 9$			1:1							36	
50	27	77 ${ }^{7}$	$27 \quad 11$	\%									- 30		58	

TABLES

OP

RIGHT ASCENSION.:

South Latitudes

	0	1	2		3		4		5		b		7		8	9	
	D. M.	D. M.	D. M.		D. M.	M. D.	D. M.	D.	. M	4 D	, M	M 0	D. M	M. D .	M.		
	0	023	3548								298	29	247	7	12		$3{ }^{36}$
	$0 \quad 53$	118	8142	42	26	62	230			4		18	342	4		64	
	$1{ }^{1} 50$	13	$3{ }^{3} 57$		$3{ }^{3} 1$	9	325	5	349	9	418	15	437	7		1.6	
	245	8	8398		56	664	+ 20			44			592	2	56		
	340	43	49.	2. 4	451	51	515	5	39	9	6		27	7	51		
	$4 \quad 95$	58			. 546	46	610			$3+$	$6 \quad 58$	58	728	2	46		
	5	5 58 6 40	$\begin{array}{ll}6 & 18 \\ 7 & 19\end{array}$	${ }_{8}^{8} 7$		487	7	8		3	$\begin{array}{lll}7 & 59\end{array}$	3	[17	78	41	19	
	$6 \quad 25$		713		$7 \quad 37$	378					848	489	918	89	36		
	7 91 8 16	$\begin{array}{ll}7 & 4+ \\ 8 & 40\end{array}$	98		8 39 9 38	38		$1{ }_{1} 10$							30 25	5110	[538
10	911	935	$9 \quad 59$	510	089	310	-46	1		011		311		718		9	48
1110	$10 \quad 6$	$10 \quad 30$	$10 \quad 54$			811		12		519	288			919		419	37
121	11.2	1185	1114	19		312	46	19		013	83	319		14		914	32
131	$11 \quad 371$		1244			81.3					18	81	+ 41	115		15	
141	12.53	$1{ }^{18}$	1839	9		314				01.3		315	596	6		16	21
15	134814	1412	1\% 3.		458	815				516		816	131	16		17	16
261	1484		15 30			16				017		817		17		18	11
1715	154016		216. 23		648	817	111	17	3	17	- 68	818	821	18		19	
18	163516	658	17.41	17		418		18	30	18	63	19	916	19		80	
191	17 S112	It 54	1817		840	019		19						120	34	40	56
20	192710	18.50	19.13	919	${ }^{9} 36$	6	58	20		18	${ }^{4} 4$	31		\% 21	29	21	1
21	$19 \quad 23,19$	1946	20 '9	920		320				121	9918	928		228		22	,
82	2020	$0{ }^{4} 8$	$2{ }^{2}$	6 9 İ		8 27	50	29		229	34	429		23		23	41
2.32	21 1621	2198	$22 \quad 1$	122	29	422	46	23		823	30	093		294		4.24	36
24	22 18 22	2935	22			0.23				424		624	488	88		25	82
12: 2	23 923	331	$23 \quad 63$			644	98			025		125		826		325	
126	21.6	2198				223				62		726		9,27		27	22
	$25 \quad 295$					926								327		28	
${ }^{28}$	$25 \quad 597$					527						928	8 \%	128		29	18
199,	$26 \quad 5127$					128				429		529	- 26	$6 \cdot 29$			
0	97-54 28	810	28	28	8 SB	29				30		130	O 92	0	43	1	

TABLES

OF

RIGHT ASCENSION.

North Latitude.

TABLES

OF

RIGHT ASCENSION.

South Latitude.

TABLES

OF

RIG.HT: ASCENSION.

Norkh Latitude.

TABLES*

07

RIGHT ASCENSION.

Sonth Latitude.

	v	1		2		3		4		5		6		7				
4	D. M.	D. M.	D.	D. M.	0.	M		. M	D.	. M	D.				D.	M.		4.
	0.37	58	58	816	58	29	58	348	5	5.	3y		59	20	59	32	59	45
	158	69	9	917	59	90	59	433	39	- 35	0	7	60	- 20	00	38	60	48
	86		60	019	60	33			\%0	00	61		61	120	61	38	61	42
	96056	61	61	121	61	38		146	01	157	02		68	221	62	34	62	41
	46159		62	293	64	Y5		248	cis		803		4,3	321		12	, 5	1
	503 9k	163	63	385	63	98			f. 3	$3 \quad 59$	96		64	21		32	61	1
	6646		64	428	64	38					1.5		105	5 2y	05	32	65	40
	$765 \quad 9$	0.5	05	$5 \quad 31$	65			354			906	12		622	66	32	6	40
	800190		06	634				$0 \cdot 6$)
	967176		-7	737	07			75.	ci8		608	15		194		33	68	4
	06821		0 b8		68			$8 \quad 69$	-9		704	16	-9	980	69	33	09	40
	16925		409	943	69	- 38			170		910	17	10	126	70	94	70	10
															71		71	41
	$3[71 \quad 34]$	7148	871	$71 \quad 49$					672									41
	$\begin{array}{ll} 478 & 36 \\ 475 & 43: \end{array}$		$\begin{aligned} & 78 \\ & 79 \end{aligned}$	$\begin{array}{ll} 78 & 58 \\ 73 & 57 \end{array}$	319					4 4 4 1.1				530			73	2
	07441	7454	4.75	75	76		776	$6 \quad 14$	47.5) 24			715	533	375	39	75	44
	776	$75 \quad 58$	4.76	76	76	611				62	76			635	76	40	76	
	676 67		377	$77 \quad 9$	$\longdiv { 7 7 }$	71.	7	78	178	7	77	31	177	$7 \quad 37$	777	48	77	46
	978	78	778	7813	78	818		82	78	$8 \quad 98$	78	8 33	378	838		48	78	
	079	7918	879	$79 \quad 17$												44	79	8
	140112	$80 \quad 17$	740	$50 \text { 91 }$	180	$0 \quad 26$		$\begin{array}{ll} 30 & 99 \end{array}$		094	1×0			042	280	46	$\$ 0$	
	8817	8181	3181	1193	81	1.28	81	192	251	130	c 1	140	081	1.44	481	47	81	50
	388 22	8295	2582	$32 \quad 29$	88	238		$22{ }^{2}$	508	\% 99	98	242	282	2816	632	48	82)
	44838	83	3048	3383	383	39		3399	$9 \times$	() 4	$4{ }^{3}$	345		3 4	83	50	83	32
2:	2. 84.35	843	338	$34 \quad 37$	784	440		+ +42	$2{ }^{2}$	1	b 84	$4 \quad 47$	784	4450	84	31		53
	765	8540	4085	$85 \quad 45$	85	544		3545	585	5548	88	549	985	53	88	53	85	54
	786	dion	4) 86	8646	86	648		3649			186	$6 \quad 52$	88	654	486	55	86	53
	88749	87	508	$87 \quad 50$	087	752		$37 \quad 62$	277			754	487	756	687		87	57
	988	$88 \quad 55$	558	$38 \quad 53$	888	856		836			788			858	88			58
	090	(41		90	90		0	30	$0 \mid 89$		090		0	30	089		90	0

TABLES

OF

RIGHT ASCENSION.

North Latitude."

	0	1	2	3	4	5	6	7			
	D. M	0.	D. M.	D.	D. M	D. M.	D. M.	D. M	D. M.		
	90		90			90			$\begin{array}{l\|l\|} \hline 0 & 90 \\ 9 & 01 \end{array}$		90
-	9211	9232	9214	9.2	9215	92	98	92	92		92
	9316	9312	9320		9329		93	93	93		
$\left.\left\lvert\, \begin{array}{l} 4 \\ 5 \end{array}\right.\right]$	9422	9481	$9+27$	9428	Y 2	94	2	94	$6{ }^{\text {9+ }} 39$		9442
	9597	9530	9539		9538	9540	95	95	95		
$\begin{array}{r} 0 \\ 2 \end{array}$	9638	9630	9639		96	9648	89	$9{ }^{\text {9 }}$			
	9738	9742	9743		9762	97 be			98		
$\left[\begin{array}{l} y \\ 9 \end{array}\right]$	98	9847	9851	98 bj	99	99					
	9948	9968	9957	110	110	10012	2100	100	110026		0
	10050	10058	101	101	10114	101	101	101	0101 35		
	10168	108	1089	10215	10291	1:02 26	6108				
	108	03	10315	10981	103	103	103	109	6103		03
		10414	10421	104	104	104	104		¢105 2		
	10513	10619	10697	105	105.41	10548	8105		910611		
$\left[\frac{15}{15}\right.$	${ }^{106} 17$	10624	10639	106	106	10655	5107	107	1107		
	10722	10729	107 Y8	10746	1075	108	210811	10819	9108		
$\left[\begin{array}{c} 10 \\ 17 \end{array}\right]$	710826	10834	10848	108	10859	109	910918				
	10991	10939	10948	10967	11106	511015	511025	110	4110		
	11035	10	110		11						188
$\left[\begin{array}{l} 20 \\ 21 \end{array}\right]$	1113	11149	11158		811818	11829	911238	112			13
	111243		11.39	11319	311324						1
	[1347	1195		114	11490	011441	111468		411515		1597
	311451	1151	11519	11523	115		711558	116			1635
[41534	116	11617	1169	11641	111632		4117	7117		
	11657	1179	11721	117	117		11810	118	2311836		
$\left[\begin{array}{l} 20 \\ 27 \\ 27 \end{array}\right.$	118	18	118	11838	11851		911916	111929	$9{ }^{11943}$		
		11916	119	119	11955		812022	120	3120		21
$\left[\begin{array}{l} 28 \\ 20 \\ 20 \end{array}\right]$		20		120	$120 \quad 59$	121		121			88
	1219	12182	1213	12150		312918	818294	¢ 122			23
	122 12		122	122 b :		712382	37				

TABLES

01

RIGHT ASCENSION.

South Latitude.

	0			3	4	5	6	7		
gr	D. M. D	D. M .	D. M.	D. M	D. M.	i. M.	D. M	D. M	1). M	D. M.
0	90	910	90	90	90	90)	90	90	$90 \quad 0$	$90 \quad 0$
1	91.5	91	91.5			91	91	91	91.2	912
3	31 92 11 39 16	92 93 93 10	9210	928 8	92	94	92	98	92	92
4	94.22	94.20	94-19	9416		94.12	9411	94	94	
6	b. 9527	9525	9523	9580	9518	9515	$95 \quad 13$	9510	95	95
	$6{ }^{6} 9037$	9630	963	96	9621	$96 \quad 18$	$\begin{array}{lll}96 & 15\end{array}$	9612	9610	96
	79793	9735	9731	9728	972.5	9721	9718	9714	9712	97
	8 9848	9899	$98 \quad 35$	9832	9828	9824	9820	9810	Y8 13	9810
	9948	9949	9939	9935	9931	9926	9922	99 LB	9914	9911
10	10059	10048	100.43	10050	10094	10029	10025	10020	10010	10016
11	101 58	101581	10147	10142	10198	10192	10187	10122	10117	10112
18	8103	$10 \% 57$	10251	10246	10240	10234	10289	10223	10918	10818
	104	104	10355	10949	10343	10397	10351	10325	10320	103
	10513	105	$10 \% 59$	10 ± 52	10443	10440	10433	10427	11421	10415
	10617	10610	1069	10556	10549	10542	10535	10.528	10528	10515
	107.82	10714	107	106 b9	10659	10646	100 37	10630	10628	10615
	10826	10818	10811	108	10753	10747	10739	10732	10721	107
	810y 81	109 \%2	109.11	1095	1085	10849	10841	10835	10826	10816
19	11035	11026	1101.7	110 - 8	1100	10951	10943	10934	10926	109
	2011139	111	1112	11111	1118	11053	11044	11035	1102	11016
21	2111243	11233	11929	11218	112	11154	411145	11196	11127	11116
	22.11347	11397	11320	11316	113	11236	11247	11237	11287	11217
	39114	11440	11429	11419	1148	11358	113 48	11338	11828	113
	2411554	11545	11332	11521	11510	11459	9114 49	11498	11428	11417
	2.) $116 \quad 57$	11646	11635	11623	11612	116	11550	11599	115	11517
	20118	11749	117 3i	11725	11714	117	2116 61	11639	11628	116
	119		11839	11827	1181	118	8117 59	11789	11728	11716
	28180	11954	11941	11989	119 In	119	4118.5	11840	118	11816
	121	12056	12043	12030	12017	120	5111933	11940	119	11916
	3012212	1215	12145	12131	12118	121	1205	12040	120	12016

TABLES

07

RIGHT ASCENSION.

North Latitede.

	0	1	2	3	4	5	6	7	8	9
3	D. M.	D. M.	U. M.	D. M.	D. M	D. M.	D. M.	D. M.	1.	D.
0	12212	18245	14930	18258	1237	12322	153	12959	124	712492
1	12314	19398	12342	12357	12411	12426	12442	19457	125	125
9	12616	18491	$\underline{18445}$	1250	19515	1.2590	18546	128	126	7126
9	12518	12538	12548	126 3	18618	12694	19650	1876	198	
4	12620	12696	18651	1276	18789	18738	18754	12811	128	7 128
5	$3127 \quad 22$	18788	12754	$128 \quad 9$	18895	19848	18858	18915	129	
6	128 24	198 40	18860	12912	18928	18945		19019	10	
7	718925	12942	18958	19014	13081	13048	$181 \quad 8$	13198	1	
8	8180	19048	151	19116	13139	13151	1988	13826	192	
9	918127	18144	1981	13818	13235	19853	13311	138.29	193	
10	-19828	13445	1392	18920	18337	13955	19414	19488	134	0133
11	119388	13946	1349	13421	43439	19457	13516	13595	135	136
12	19+ 29	13441	185	13022	13540	13559	13618	13637	136	36137
13	313589	19547	136	15623	19641	$137 \quad 0$	13720	13739	1975	3818817
14	41569	13647	1376	18724	13742	188	15321	13841	139	0139
15	518729	13747	1986	19824	1884	1302	13922	19942	140	d
16	[158 99	19847	1396	19985	1394	1413	14084	14044	141	414184
17	713928	15947	$140 \quad 6$	14025	14045	141	14125	14145	148	6142
18	$1 \begin{array}{ll}140 & 88 \\ 141\end{array}$	14046	1416	14125	14145	$1+3$	14826	14946	143	14487
19	914187	14146	1486	14825	14245	1436	143 2\%	14347	144	144
	14486	14945	1435	14325	14345	1446	144 27	14448	145	145
21	114325	14944	144	14424	1.4445	1456	1.4527	14548	146	1.46
2	2983	$14+49$	$1+53$	14598	14545		14627	14648	$1+7$	7
23	314582	14.342	$146 \quad 2$	14698	116.44	$117 \quad 5$	14727	14746	1.18	148
94	414680	14640	147	14789	14743	148	14820	148 50		
25	5514718	147.39	1481	14821	14842	$149 \quad 3$	14995	14947	150	
		14837	14888	14919	14941	150	15024	16040	131	9.151 18
47	714914	14995	14986	15017	1.5039	$151 \quad 1$	16123	15145	15:	S] 12938
28 29 29	$\begin{array}{rr} 150 & 11 \\ 151 & 9 \end{array}$	150 151 151	$\begin{aligned} & 15054 \\ & 1151521 \end{aligned}$	151 15 152 13	151 97 152 3.5	15159 152 158	15292 153 20	15世゙ +	155 154	$\begin{array}{l\|l\|} \hline 7 \mid 135 & 99 \\ C & 15428 \end{array}$
8	0152	152 27	15249	18311	153.33	15355	15418	134+1	135	416597

TABLES

or

RIGHT ASCENSION.

South Latitude.

	0		2	3	4	5		7	8	9
Ω	D. M.	D. N	D. M	i). M	D. M	13. M	D. M	D. M.	D. M	
0	12212	12158	18145	12191	12118	121 b	12059	(21) 40	18088	12015
1	18514	129 O	12247	12839	12219	122	12159	12140	12189	121
8	12416	124	12948	12934	12920	123 6	18263	$12 \% 40$	12987	128
3	12519	125	12449	12.43 .51	184211	$124 \quad 7$	125 bs 123	18399	19926	49
	12680	126	12551	12530	2522	126	12453	19439		12
b 1	12722	$127 \quad 71$	12658	126961	12682	126	12559	125	19524	125
6	128 24	188	12753	12737	12788	187	12652	12637	18683	126
71	18925	129	12857	12837	18828	128	18751	18736	12782	187
	13026	130	18954	18937	88988	129	128 b0	12835	188	188
9	13127	13110	13054	190871	13021	130	12949	12933	12918	189
	13928	13211	13154	1313 ?	13121	191	19048	19092	190	-
11]	19388	139111	13254	19237	15820	$138 \quad 3$	13147	13131	131	180
12	13499	13411	19354	13397	19319	1932	13246	13289	19219	131
13	13.39	13.511	13454	19436	134181	13	13345	13387	133	132
	13689	13611	13558	19595	19517	1950	13443	134 25	134.	13351
	13729	137101	196.32	19684	19676	19558	19.541	13598	135	19
16	13889	13810	19751	137387	7871.5	19657	13699	13621	15	13545
17	13928	149	188.50	13884	198 14	137.55	13797	19719	197	136
18	14027	1408	18949	19980	13913	18858	138	18817	13759	197.99
19	14127	141. 71	140481	14029	140101	18951	139	159	19886	198
20	$1+220$	172	$\overline{14147}$	14127	141	14049	14031	14012	13953	19938
21	14394	48	14945	142 2:	$1+8$	14147	14128			14090
22	14423	144	14833	143.89	143	14245	14295			141
29	14582	145	14441	14421	144	14912	14322	143		
21	14620	$145 \quad 59$	14539	14519	$144 \quad 59$	14439	14419	14959		14920
2.5	14718	146571	14637	14617	14556	14536	14516	14456		14416
20	14816	14755	1473	14714	146	14683	14619	145.59	145	14512
27	714914	178531	148 32	14811	$147 \quad 60$	14729	1179	14649	14689	146
28	15011	149.50	74989	1498	14847	1.1896	148		14725	
29	(151-9	150471	115026	150	114941			148 ¢2	14821	148 0 188
	152	1.514	15123	151	15041	18020	14959	14938	14917	14856

22

TABLES

OF.

RIGHT ASCENSION.

North Latitude.

	0	1	2		4	5		7	8	
\%	D. M.	D.								
¢	152	1.5297	15249	15311	153 33	1535	15419	154	55	15
	1.53	15925	1.5347	1549	15431	$15+53$	1.5516	155	56	15626
2	154	15422	15444	155	15599	15531	15611	15637		15795
5	15858	15519	1.5541	$\begin{array}{lll}156 & 3\end{array}$	15626	1.2649	15712	15795	5759	15893
	15551	1.5616	1.5699	157	15724	15747	15810	158	15857	151
	1.6651	157131	15736	1.2758	1.5821	15844	1.598	15931	1.5955	160
6	61.5748	15810	1.5838	15855	15918	15941	160	16028	16059	16116
	15814	15971	15930	1.5951	16015	16098	161 \&	161 25	16149	162 IS
8	815940	160	16027	16049	16112	1613.	16159	16292	16246	16910
9	16037	1610	16129	16146	162	16232	16256	16319	16348	164
10	16193	16156	16219	16242	163	6939	16353	16416	16440	165
11	16229	16852	16315	16338	164	16425	$16+49$	165 1s	16537	166
12	16325	16350	16411	16434	16458	16521	16545	166	16638	16658
13	1642	16441	1657	16530	$165 \quad 54$	$1 \in 618$	16642	167	16730	167
14	416516	16.540	166	16626	16650	16714	16738	168	16846	168
15	16612	16635	166591	16792	16746	16810	16834	16858	$169 \mathrm{~g} \mathrm{\%}$	169
16	167	16731	16753	16818	16842	169	16950	169	170 18	17042
t	168	168 27	16851	16914	16938	170	17096	170	17114	17138
18	168 58	16923	16946	170	17093	17057	17121	17145	72	77294
19	16951	$170 \quad 18$	17042	$171 \quad 5$	17129	17153	17217	17241	179	173 90
20	017049	17113	17137	1721	17225	17849	17315	17937	174	17423
21	17144	1728	17232	17256	17920	17944	1748	17432	17456	17591
$\overline{82}$	717839	1793	17397	17551	1741.	17439	175	17587	17551	17616
23	3173	17858	17482	17446	17510	17534	17558	17692	17646	17719
24	17430	17453	17517	17541	176	17689	17638	17717	17741	178
25	517595	17548	17 il 12	17696	$177 \quad 0$	17724	17748	17812	17856	179
26	617620	17648	177	177	17756	$178 \quad 19$	17843	1797	17931	1.7950
27	717715	17738	1782	17826	178 50	17914	17938	180 \&	18026	18052
28	817810	178.93	17857	17981	$\overline{17945}$	180	18039	18057	8192	18147
29	9179	17928	179.52	18016	18040	1814	18198	18159	16217	18942
	어180 0	18093	18047	18111	18135	18159	18293	18847	18312	18337

TABLES
OF

RIGHT ASCENSION.

South Latitude.

	0	1	2	3		5		7	8	
W	D. M.	D. M.	D. M.	D. M.	D.	D. M.	D. M	D. M.	D. M.	U.
	158	15144	15123	151	15041	16020	14951	14998	14917	14856
1	153	15241	15220	15159	15138	15116	15055	15034	15013	14952
	154	15398	15317	15% b5	15834	15218	2151	15130	1519	15048
3	1.5458	15435	15413	15951	15390	1538	182471	15225	152	15143
4	S6	15532	15510	15448	15426	154	15348	16381	153	15238
5	15651	15629	156	1.5544	15622	155	154391	15417	15353	15938
6	15748	15745	157	16640	15618	15356	15534	5512	15450	15428
7	15844	15822	15759	157 961	157141	15652	156901	568	15546	15529
8	15940	15918	15855	15832	15810	15748	15726	157	$156^{\circ} 41$	15618
9	160971	16014	15951	15988	1696	15843	15821	$157 \quad 68$	15736	15713
10	161 933	16110	16047	16024	1602	15939	15917	15854	15831	158
11	162.29	1626	16143	16120	160581	16095	16012	15949	15926	159
12	16325	163 2	16239	16216	161531	16130	161	16044	21	15958
13	16420	16358	16395	16312	16849	16225	$162 \quad 2$	6199	16116	0
14	16516	16453	16430	164	16944	16320	$162 \quad 67$	16234	16211	16148
15	16612	14548	16525	1658	16439	16415	16358	16329	1636	16249
16	167	16644	16021	165 57	165	16510	16447	16424		16338
17	168	16740	$167 \quad 17$	$166 \quad 62$	166	166 B	16548	16519	164	16498
18	16858	16835	16812	16747	16724	1670	16697	16613	16561	165%
19	1695.1	16931	$169 \quad 7$	16843	168191	16755	16732	1678	166	16623
20	7049	17026	170	16938	16914	16850	16827	168	16741	$167 \quad 17$
21	17144	17121	17057	17033	170	16945	16922	16858	168	16812
22	17230	17216	17152	17128	171	17040	17017	16953		69
23	17335	17311	17847	172	17159	17135	171121	17048	17025	10
24	174.30	174	17342	17318	17254	17230	1787	17148	172	$170 \quad 56$
25	1752.5	175	17438	17414	17350	17926		17238	17215	17151
26	-176 20	17557	17593	175	17445	17481	17357	17333	173	7245
27	17715	17682	17628	176	17540	17516	17452	17428	174	73 40)
	17810	17747	17723	17659	17655	17611	17547	17593		
29	1179	17842	17818	17754	17730	177	17648	17618	175	75
80	180	17997	17913	17849	17825	178	17737	17713	17648	17624

348

TABLES

OF

RIGHT ASCENSION.

Morth Latitude.

			2							,
	D. M.	D. M. D	D. M.	D M	D. M. D	D. M	D. M.	D. M.	D. M.	D. M.
0	180	18023	18047	18111	18135	18159	18223	$\overline{10247}$	13312	18357
1	18055	$\begin{array}{lllll}181 & 18 \\ 181\end{array}$	18142	182	18230	18254	18318	18342	184	184
	18150	18213	18237	183	18925	183 49	18415	184.37		185
3	182451	1838	183 32	1835 c	184201	184441	185.8	18592	18556	18620
	18340	184	184271	18451	8515	18599	T86	8627	18650	18714
5	18425	184581	18522	18540	$186^{\prime} 10$	186, 94	18658	18728	187	88
6	18530	18.5 54	186	18642	187	18730	18759	18817		
-	1862.51	186491	18713	18737	188	188251	188	189.12	189	89
8	18721	18744	188	188.32	18856	18980	189	190	19030	19052
9	918816	18859	189	18927	189511	1901519	19098	11912	19125	191
10	-189 11	1893	18958	190.22	19046	19110	19138	$\overline{19157}$	10919	19241
11	$1190 \quad 6$	19099	$190 \quad 53$	19117	19141	$192 \quad 5$	19298	$192 \quad 52$	19914	193
12	191	19125		192.18	19236	193			,	
18	319157	19220	19248	1988	19381	193.55	19418	19441	1	19526
	4192.53	198.16	19339	194	194.26	19450	19515	19536	19559	196
15	519848	119412	19435	19458	19521	190	1968	196.31	196	197
16	6194.44	$195-7$	19530	19559	$\overline{19616}$	19640	197	26	49	198
17	719540	$196 \quad 2$	19625	19648	19711	19735	$197 \quad 58$	19821	198	199
18	819635	19658	19, 21	19744	198	19830	$\overline{19853}$	$3 \longdiv { 1 9 9 1 6 }$	19	200
19	19731	$197 \quad 54$	19817	19840	1992	19925	19948	20011	200	200
20	0198.27	19850	19915	19936	19958	200.21	200	20	20129	201
21	1199	19946	2009	20032	20054	20116	20139	202	20221	202
	20020	20042	201	20198	20150	20212	202	20157		
23	$3201: 16$	20138	202	20294	29246	2038	20350	20352	9	204 S6
	202.12	20235	202.57	203	203	204		20448	205	
2.5	203	203	203	20416	20438	$205 \quad 0$	20521	20543		
	6204	20429	20450	20522	20534	20556	20617	20639	207	20
27	$7205 \quad 2$	220525	20547	$206 \quad 9$	20630	20652	20713	320755	207	203
	820559	20622	20643	2075	20726	20748	208	20850	20851	209
29	906 57	20719	20740	2081	20822	20844		20926	20947	910
30	2075	20816	20837	20858	20919	20940	210	210 22	91043	211

TABLES

OF

RIGHT ASCENSION.

South Latitude.

	0			3						
2	D. M.	D. M. ${ }^{\text {U }}$	D.	D. M.	D. M	D. M.	D. M.	D.	D. M	
0	80	1.937	179131	17849	17825	178	17797	7715	17648	1010
1	18085	18082		17944	$1: 920$	17856	178381	178	17743	析
	0		1819	8099	180	179 b1	17927	179	17838	-
9	182	18224	18158	18134	18120	18040	18028	17968	179	
	13340	1837	18258	18229	182	18141	181171	18059	180	10
5	185	184	18348	18324	189	18296	18212	18148	181	1
6		185	186	18419	189	18331	183	18243		18153
71	18625	186	18595	18.514	18450	18426	184	18938	189	18850
8		$1865{ }^{\frac{1}{4}}$	18639	186	18.545	18521	18457	18438	18	18348
9	18810	18754	18798	187	18640	18616	185.52	18		
10	18911		18893	$\overline{18759}$	18753	18711	18647			の5 36
11	190	18942	18918	18855	18831	188	187481	18718	$1865:$	18699
18	191	19038	19014	18951	189	189	18839	18814	18751	787
13	19157	191331	91.9	19046	19022	18958	189341	18910	18846	38
	192	19229	192	19142	19118	19054	19030	190		18918
15	19	1932.	193	19238	19214		191	19	19038	90
16			19367	19334	19310					19110
17	19540	19510	194	19430	194	19	193181	19254		192.6
18	196 35	19018	19549	19526	195				199	1938
19	19731	197	19645	19622	19558	19.5 35	195111	19447		193
20	198	198	197	19718	196		196			
2	19923	199	19837	19814	197		7	1	19	19552
22	2	19956	19935	19911	19848	19825	1981	19738		
23	201	200	20030	2008	19945	19922	$198 \quad 68$	19835	19811	197
	20212	201	201	201	200	20	199	19932	199	
	203	20247	2022	202	801	20116	20052	200	200	9
	04	209	20321	20259	20236	20219			201	20099
27	20.)	20441	20419	903 57	208	20311	20248	20225	$202 \quad 1$	201
	30.5	20.5	205	2045	20431	204		209	202	
	206	206	20619	20561	20529	905	20	20421	¢03 57	203
	20754	20733	20711	90049	20627	200	20542	20519	20.45	20433

TABLES

or

RIGHT ASCENSION.

North Latitude.

	1	2	3		5	6		7	8		9
M. D. M.	D. M.	D. M.	D. M	D. M	D. M.		M. ${ }^{\text {D }}$	D. M.	D. M.		
0.20754	90816	20897	20858	20919	20948	a 10		21082	210		
120851	20919	20934	20955	21016	21097	10	5781	1118			159
280949	21010	$\overline{21031}$	$210{ }^{51}$	211 13	211 34	211	5421	212	21236		
321046	21118	21128	21149	21210	212	212	5121	213	91391		
4412	218	21295	2124	213	213 $2 i$	218	4721	214	2148		447
591242		21323	213	214	21+24	4214	4421	21			15
621340	214	21421	21441	215	21591	1215	41		121020		6
7214	21459	21519	21599	21558	-216 18	8216	9821	21657	217		
8215	215	71617	216	21656	21715	5	351	217	218		
921696	21656	21715	21735	21754	421813	3218	9221	218 b	121910		929
10	2175	218	21898	21852	21911	$1 \longdiv { 4 1 9 }$	99	219			
1121839	21853	21912	21931	21950	220	9480	22	2204			
1221938	21952	22011	22030	220	221	221	25	221	228		
13220	22051	22110	22128	22146		3228	2929	29841	1298		17
14281	22150	222	22927	28245	293	223		24339	229		+ 14
15222	229 b0	229	22926	22,3 44	224	2224		22437	7224		
$1 6 \longdiv { 2 2 3 }$	22349		$\overline{29425}$	$22_{4} 4$	245	293	172	22536	$5 \longdiv { 2 9 5 3 1 }$		
1722431	22449		24524	22542	22559	226	1582	29639			
$\overline{18} 725$	22549		226 23	22641	226 58	8227		22731	122747		
1922632	22649		22723	22740	22757	428	$18 \mid 22$	228	289		
20.22732	22749		92829	22839	2286	629	12	229	229		
21,2283	22850		22923	24939	22995.)	230	1123	230	290		
221229 34	22950		23083	23038	2:0 31	231	10	23125	5231		
291230	$230 \quad 61$		23123	23138	231 53	232		29224	232		
24.23136	23152		29229	29898	239	233		235			
2323438	23253	2938	1233 24	23338	23385	5234		23422	229436		34
$2 6 \longdiv { 2 3 8 }$	233		2342	23438	294 53	3235		23521			
2729441	23457	23511	235 2.)	23539	293	236		236	1236		
28.23549	23; 38	23612	29626	$2: 3640$	23654	4237		29720	233738		
2923646	297	2971	2372	33711	12375	+		238	-238		
30.33748	238	29815	2989	23812	2385	5239		23920	2999 98		

TABLES

OF

RIGHT ASCENSION.

South Latitude.

		1	2	3	4			7	8	9
m	D. M.	D. M.	D. M.	D. M.	D. M	D.	M	U. M	D. M.	D. M.
	80764	20738	807112	20049	20627	206	0 j 42	20519	20450	2
	20851	20890	208	20747	20725	207 3,	20; 40	20617	20534	531
2	20949	20927	2096	$208+5$	408 \% 4	208	20738	207	20653	$\overline{20630}$
3	21046	21025	21042	20943	20921	50859	,208 3i	20815	20732	29
	21144	21125	2112	21041	210.18	2095	20930	20911	20851	20898
5	21842	21281	2120	21139	211192	21057	21035	21013	209.50	209
6	213 30	213 20	21859	212 38	21817	21166	211	21112	21050	1024
7	21438	21418	21358	21337	21316	21255	2123.3	21212	21150	1128
	21697	215	57	21436	21415	213	21393	21312	412.30	21228
9	21696	21616	21556	21536	215	214	21439	214	21951	21329
	21734	21715	$216{ }^{216}$	21635	21615	$215{ }^{515}$	21533	21:3 19	214 bl	21490
	21893	21814	217 5is	2173.5	21715	216	21633	216	21552	15
	21933	21914	21854	24835	21815	21755	21734	217	21653	1632
15	22092	22013	21954	21935	21915	21856	21835	218	21751	7
	22131	22119	220 54	22035	22016	21957	21936	219	918 b6	918
15	22251	22213	22154	22136	22117	29058	22038	82	21958	21936
10	22331	22313	29264	22996	22218	28159	22139	221	221	22040
17	22431	22413	22955	293 37	22319	2230	29240	22921	298	22143
	29531	225	22456	22498	22480	224	22342	22383	223	2246
19	22632	22614	22567	22539	22521	225	2944.1	22425	224	23
	22732	22715	22658	22640	226 29	226	22.546	22598	22510	52
21	22833	22816	22759	22742	22725	227	22649	22631	122619	5
	22934	22917	229	22844	22927	228	22752	22794	22716	22659
29	29035	29018	290	26946	22929	$229 \quad 12$	22835	22837	722820	88
	23136	23120	231	23048	29032	23015	22958	$229+1$		489
	1232 38	23222	2926	23151	2313.	23118	$231 \quad 2$	29045	23028	29012
	29340	23924	233 9	25254	23238	83222	2326	629149	925153	23117
27	29441	233427	234.12	29357	25342	29326	23910	023254	429238	23228
	2354	23599	23515	2950	Q3.4 4	23430	23^{3414}	83358	23349	$233-27$
29	23646	23692	23618	236	23549	23534	235	235	23448	294. 32
	23748	23796	23721	237	23654	23638	236	3236	82356	3538

TABLES
© \mathbf{F}
RIGHT ASCENSION.
North Latitude.

	0	1	2	3	4		0	7			9
1	D. M.	D. M D	D. M	D. M.	D. M	D. M.	U. M.			D. M.	
	29748	238 2	23815	23829.9	23842	29855	2397	83981			
1	23851	$239+2$	23917	29930	29943	23955	2407	24090		240	
	839532		24019	240	44	24056	$2+1$	24120		2+1 32	2415
	24056	$241 \quad 98$	24121	24138	24145	24157	$442 \quad 9$	2482		24892	
	24159		24482	24235	24240	24858	843	249			
5	243	243112	$2+385$	24837	2434812	24.559	24410	244	212		
	244	244172	24420	24499	24450	245	24511	245		24352	
7	245	24590	24531	245412	$2+552$	246	-246 12	246		$2+6$	
	$8{ }^{2+619}$	24623	24034	24644	246.54	$2+7$ 4 248	24713	2478		24738	247
9	24717	24727	24737	24747	24756	2486	24815	2482	212	24833	248
	948 21	24830	24841	24849	24868	$2+9$	249	249		24933	24949
11	24985	24931	24943	24952	250	2509	25017	7250		250	
	25020	25038	25046	25055	251	251	25119	251		251	
13	375134	25145	2.:1 49	25168	258	25813	25	252		258	
	425818	25246	25259	2351	2538	$2531:$	26393	3253		25397	
	525349	25350	25357	2544	25411	25418	8254 25	5254		25438	2.5443
	69547	35451	255	255	725.514	25520	2955	7255	392	25599	25546
17	725.518	5.518	956	25611	125617	2.3682	25629	9856		93640	95647
	8256	257	2.79	25715	25780	25723	25731	1257	972	25742	23748
19	92582	258	25813	25818	25423	25828	825839	9258	38	258	1258
	0859	25912	25917	72.5921	25926	25931	185935	5259	40	25944	2.950
21	126012	26017	26021	126025	26089	26034	46098	260	422	26046	26051
	26117	26181	261	26126	26132	26136	626140	0261	442	26147	86152
29	26828	26825	262	26239	26835	26239	26242	2262		26248	962 . 54
	248488	26330	26359	263 36	263 99	26342	226345	$5{ }^{203}$	48	263 60	86354
25	526439	26433	26497	726440	26442	2644.5	20.4 47	7264		264 61	26455
	626538	26540	26541	26.) 41	$1 \longdiv { 2 i 5 4 5 }$	26548	826549	265	59	465	26556
27	72664	26645	26646	626648	82664	26651	126652	9266)	2665.5	266
	826749	26750	26750	207 52	26759	20754	426764		56		26758
29	96268.55	26856	2685.3	268 56	626856	26857	786867	7968		26838	26859
30	0870	270	270	0270	270	270	270	270		270	0

TABLES

OF

RIGHT ASCENSION.

South Latitude.

	0	1	2		141				8	
$\underline{1}$	D. M.	D. M	D. M	D. M	D. M	D. M	D. M.	U. M.		
	29748	23735	237 21	237	723653	230 36	23089		235	
	29851	23398	29884	3810	\|297 57	29742	29728	23719	236	29645
	2395	$239+1$	239 26	123914	14839	$2984 i$	$253{ }^{33}$	23814	239	287
	2+0 56	24044	42431	24016	240 5	23935	23938	239	23911	298
4	24159	$2+14$	241	$4{ }^{4}+12$	24110	240	4044	20	240	
	213	$2+251$	124299	242 צ7	244215	442			2112	
	2+4	24350	$5{ }^{2+3} 43$	2ty 3:	$4{ }^{2+3}$	24	24230	$2+2$	+12 91	
7	$2+5$	$24+54$	$54 \mid 24+47$	124431	24423	$2441=$	2444	2b3 51	24998	
	\%i6	246	9 245	245	$2+5$	245 19	445	$2+4$	2 t	24
9.	26717	2477	7240 bi	2464.	. 24036	276	24614		24.5	245
10	$2+8 \times 1$	24811	1248	2475	24742	247 31	2472	+7	24	210
11	24925	24910	6249	248	2484	24838	218	218	248	8.7
18	2.509	25021	125012	250	24954	2,9	2\%9 3:	$2{ }^{2+9} y_{1}$	2+9 16	
13	25134	25120	62.1	251	2.1	025051	25042	250	23021	50
14	$\overline{259} 38$	25231	125222	\#j2 15	5252	2015	2.5149	5141	25138	25123
1.5	25343	25396	6253	258	25319		25257	5:	262	25\%
	$254+7$	254	125434	25427	25419	254		20.2	25349	
17	255	25.5 16	625	25533	325.526	625519	25514		254	25451
	256	25031	125045	256 99		250 27	250	25		
19	258	2575	362.571	1257.45	585740	0,25734	25728	$27^{2} 7$	25710	0
	259	259	2989	725862	62 25847	285	25396	2\%	5895	
	26012	2 nO	8960	Y 285959	49859	42.1	259	259	2593.	930
	26117	2011	201	9261	201	2005	2i0 54	20046	20	2,040
	1262 22	26218	1202 15	520211	1262	2t2	2,2 0	2615	26152	$2 \cdot 201$
	26i 28	20.3	20.3 21	1203	1826315	520312	2639		20	
2.	252649	2643	30:26+2.	, 26425	25×6422	$2220+20$	266 17	264		1204
	2,5 38	265	30265	26.5	$32 \bigcirc 80$	205		20.2	(i) 21	205
	726644	2064	4226040	0,266	3: 20697	372186	$2+6$	$4260{ }^{4}$	2 nc	216 30
	8207	267	482 C 70	20746	$4 6 \longdiv { 2 0 7 4 }$	42		2×742	2	-7
	9688	2.85	$5+26858$	3268	268	208	24852	283	208	4×8
			270	127270	0270		112	0271		270

TABLES

0%

RIGHT ASCENSION.

North Latitude.

		1	2	3	4					9
bf	. \quad M.	D. M.	D. M.	D. M.	D. Mi	D. M	D. M:	D. M	D. M.	D.
0	270	270	270	270	270 -0	270	0270	270	270	270
1	231	271	271	271	271	271	$3271 \quad 3$	271	2718	271
2	278112	27210	27210	2728	2728	872	68.26	272	278	
3	$273 \cdot 16$	27315	27314	27312	27911	273	92738	873	623	73
4	$27+x^{2} 2$	27480	27419	27416	27415	27412	227411	2748	274	
5	275272	275.25	27529	27520	27518	97515	$5 \mid 27519$	27510	275	27.5 T
6	27632	27030	27027	2.6 z+	27621	27618	8827.15	27612	27610	2768
7	277 48	$\underline{.77} 9.5$	277 Y1	27788	27725	27721	127718	277	8771.2	7710
8	$\bigcirc 7848$	273 39	27835	27892	27828	27894	$4{ }^{278}$	278	27814	27811
9	279482	2794.5	27939	27935	27931	27926	627922	27918	279	7912
10	280532	28048	28048	28039	280	28029	9280	88090	28016	88015
11	281.5828	28153	28147	28142	98137	48192	2) 381.27	28129	28117	881
12	283	284. 37	28251	28245	2c2 40	28231	788229	28989	98919	28215
13	284	2842	28955	28349	28343	28397	78883131	28329	28320	283114
14	28515	:85	2845	24463	284 +6	284	088435	28487	7884	28416
15	285172	23610	286	28556	28549	28542	228536	28528	28588	
10	287 92	98714	287	28059	28659	286 45	45828637	28630	886	
17.	983 963	28818	28811	988	28755	28747	798799	28732	287.24	
18	289	9289 22	28914	Y89	27885	28849	998881	988 38	88825	28817
19	290	29026	29017	290	290	I89 51	31 289 48	28934	28929	28917
$\bigcirc 0$	291 39	991-4	29120	29111	291	29059	5829044	890 35	29027	29017
21	20949	Q92	29923	29819	292	29155	55,99145	39136	79128	29117
2	2934	2933	29.520	29315	293	29266	6699247	292 3i	29288	29217
29	29451	29440	21429	29+19	294	29958	5899348	293	29328	29317
$2+$	29554	23.543	95 32	295 21	29.10	294 59	59.294 .49	294:38	29+28	29417
25	29517	29616	29635	29623	89; 12	9961	1!295 50	29589	29528	3517
20	298	29749	$\stackrel{97}{ }$	29725	29714	297	\% 2.1651	$296 \quad 39$	29688	29617
27	299	29851	29834	29827	29815	298	329751	29739	29788	29716
223:	3007	29954	29941	29989	29916	$2: 9$	429832	89840	29888	
29	301	30056	30043	30080	30017	00	529953	89940	-2!9	E
90	30212	3015	30145	301	0115	11	530053	3004	0088	116

TABLES

01

RIGHT ASCENSION,

South Latitude.

	0	1	2	3	4					
\%	D. M.	D. M.	D. M.	D. M.	D. M	D. M	U. M.	D. M.	D. M .	
0	270 6	970	270	270	270	270	270	270	270	870
1	271	271	271	271	271	2718	971	271	87110	27110
	27\%	872 18 2	27214	27815	27216	627216	27218	27818	27820	1820
8	87416	27318	27380	27323	273 23	2367324	27320	273 2i	27829	73 90,
4	474	87424	27486	27431	274	274 38	27434	274	274	27440
6	27527	27530	27.) 38	275.38	27538	3827540	27543	27546	27648	275
6	276 82 2	27636	27639	87645	276	27648	27651	47654	27658	377
7	277 38	277412	2774.5	27752	27752	5227754	2780	2783	978	278
8	878 43	27817	27851	2785	27859	$59.2 y^{4}$	$279^{\circ} 8$	87912	27917	27920
9	27948	27952	27957	880	280	-80 11	28016	28021	28026	28030
10	28053	28058	281	28113	28.113	988119	48124	28150	20195	140
11	28168	282	482	28220	28820	$20282 \quad 46$	28232	$28 y 38$	282 44	282
18	283	8839	889	28327	28927	37883	$\bigcirc 8540$	28846	285 63	28359
19	284	88414	28421	28434	284	28441	28448	2845 5:	2852	6
14	285 13	28619	28597	28641	$285+1$	1 28, 48	280	286	280.11	28619
15	28617	28684	28632	29647	28647	4728655	$287 \quad 3$	28711	28719	287
16	28722	28799	28798	28754	$287{ }^{3}$	37288	28811	$288 \quad 19$	28848	28837
17	28826	98894	28843	2890	289	289	28918	28927	289 3:	289
18		289	88948	290	290	29015	290×5	29634		0
19	290 Y	29044	290.53	29112	29112	289182	29132	29142	29152	292
20	29189	29149	29158	29818	29218	1829299	292	29250	2980	295
21	2924	29853	293	29384	293	993 9;	29346	29357	29	29419
	993	29357	294	29430				295	15	7
23	294	2951	295	29535	295	29547	$2 \div 58$	896		6
	29564	296	29617	290		2:16 6:3	297			742
25	29657	297	29721	,	52974	29168	-298	2982	-	898
	298	29815	998	49860	2988	50899	299	29989	299	9967
	299	29916	29929	29955	29053	53500	30022	30095	900	301
	300	30019	50033	. 01005	3300	$30!$	301	901 41	30155	30.210
29	501	30122	30136	3013	3302	30218	30232	290247	303	303
	30812	302 2!	$302=$	308	908	30 ± 22	230397	903.52	9304	730422

TABLES

or

RIGHTASCENSION.

North Latitude.

TABLES

OF

RIGHT ASCENSION.

South Latitude.

	0	1	2	3	41	0			8			
m	D. M	1,. ni. $1 . \quad \mathrm{M}$		D. M.	D. \mathbf{M}	D. M.	D. W $11 \times \mathrm{M}$		D. M		D. M.	
	30212	302853	30239	3.25303	303 7							
	303 143	313 283	30942	9035713	304113	3042630	30+					
	$30+1030$	304313	$30+45$		$30511 \mid$	30530	. 0546	06	2300			
313	305 1830	3053338	30.) 48	30619	306	306 94.106	. 306 50	71	7307	29		
4	3002013	301630	30021	$30 i$	307%	30738	Ju, 5.4	308 11	1308	Yi		
	30782	307 38 3	307.54	508	30825	30842	30858	309 15	53093	32		
	308 24 3	308 40 3	30850	30912	30928	30945	310	310 19	1.10	96		
7	30925	30942	30958	31014	1310 31	31048	31185	31193	311	40		
	3108	31043		31110	51135	311.51	312 b	31420	0312	4.	13	
9	31127	31144		31218	31295	91253	\|19 111	213 29	9313	47	314	
10	312	3124.5	313	31320	31331	31305	31414	31436				
111	$1 \cdot 38$	1346	$314 \quad 9$	31421	1814.39	31467	31510	.315 35		5		
	231429	$31+40$	315	.11522	515 40	31.59 9	31.10	1316 37		50		
$\{18:$	$3: 31 \div 24$	1547	$316 \quad 5$	3162)	316 41	817	01720	31799	9317			
17	770	31047	317	17 24 -18	431742	Y18	3:8 21	91841	1319			
15	5.31729	317473	318	318 24	31843	319	31922	31942	2320	2	392	
16	31829	31848	319	919 25	319 44	320	38044	32047	$13 \% 1$			
17	731928	31947	320 i	32025	51920 4i)	321	32125	593143):392			
18	83	32040	S21 0	321 25	13214:	322 5	32280	7.728 40	b) 323		7323	
19	932187.	3214	322 6	, 32225	532845	3236	632327	732347	7924		8324	
20	20982 20.	. 328 +.)	323	32325	3538		124 27	72448	8326		9325	
21	132325	32344	324	924. 24	432445	53256	6:38: 27	$7: ; 2548$	8996		9396	
22	23824	33	325	4) 32,24	432545	36	6386	732648	8.327	10	0.327	
23	338522	232542	32- 2	2.32623	33264.4	4927	5152727	732748	48328			
24	432 t	320 40	327	0). 32722	$2{ }^{327}$	31.3484	432826	632848	88329	0	0) 389	
25	532718	832739	328 1	142821	132842	329 3	3,929 25	5329	330	10	0380	
26	2632811	328 37	38858	$8 \longdiv { 3 2 9 \quad 1 9 }$	$9{ }^{929+1}$	1380	23,3024	433046	46391		9331	
27	2732914	432935	532956	6	7333039	93311	193123	$3 \mid 33145$	451392		8.332	
28	883011	133038	$3{ }^{330.2 t}$	$7 \longdiv { 3 . 3 1 1 5 }$	53513	335159	933229	238244	44393		393	
29	$29331 \quad 9$	933130	33152	$2 \cdot 3: 213$	3 482 85	5952.77	733320	033384	43336		6934	
8	31.332	¢ 3327	733249	93.1911	193389	93836	53418	888441	41335		4985	5

TABLES

05

RIGHT ASCENSION.

North Latitude.

	0	1	2								
*	D. M	D	D. M	D. M	D. M.	D. M.	D. M.	D. M	D. M		D.
1	332	3814	38125	331	35041	38020	82959	32938	329		32836
1	333	5921	33220	35159	33138	35116	33055	$330 \$ 4$	30		29
2	3341	333 S8	335	33255	33234	332 12	331	331			, 4
9	3345	33635	33413	38851	333 So	388	33247	332	332		33142
4	33.	38532	38510	33448	33426	354	333.43	1			12
	396.51	3362	336	33544	33522	385	33439	33417	333		33
	$3>748$	337	937	33640	39618	$\overline{38556}$	33534	35	334	0	27
7	33844	33822	33759	33736	337	39652	33630	336	335		38522
8	339	339	338	338. 32	33810	38748	33726	337	36		$336 \quad 17$
9	340.37	3401	38951	33928	3396	33843	33821	33758	3373		77
10	34138	34110	$340 \quad 47$	34024	3+0	$\overline{339} 39$	339 17	338	388		88
11	34229	342	34143	34120	34058	3403	34012	339	989		3392
12	343	343	342	31216	341	80	34				兂
15	34420	34358	34335	34312	34249	34225	342	341			H0 32
14	345.16	3445	34430	344	343	20	342		342		34148
15	34612	$345: 48$	34525	345	\$44		343				342
15	347	346	3462 !	34557	345	34510	344 47				338
1	348	34740	347173	$346 \quad 52$	346.29	946	34542	345	44		34438
18	348	34835	3+8 12	34747	,	347	34637	34	345	51	34528
19	349	3498	349	34848	34819	34755	34732	34	446		346
20	350	850	350	34938	34914	348	348				4719
21	351	351	35057	35033	330	349	349	348	348		48
22	352 39	33216	35152	35128	351	35040	35017	359			
2	\$53	35311	352475	35228	55159	35185	85112	35048	350		50
24	354	354	353	35318	352	362 S0	35				$50 \quad 59$
2.	355	S 5	354	35414	353	35326	353		52		51
26	356	35557	35533	355	33445	354 21	$\overline{35357}$		3531	10	35249
2	35715	3565	35628	356	9554	35516	354 52				35348
28	35811	35747	95723	35650	3668	35611	355 47	355			5436
29	359	35842	35818	357 54	35730	357	35642	356	835		355
5	360	35937	959135	35849	35825	3581	35737	$\overline{357 \quad 13}$	356		35624

TABLES

OF

RIGHT ASCENSION.

South Latitude.

		1	2					7			
\#	D. M.	D. M	D. M	D. M.	D.						
	958	33228	3.3249	33311	38348	333 bb	934	334	3354		9J
	39	3582	39347	33\% 9	38431	39454	38.5	33599	3963		33626
	334	39422	33444	335	33594	$385 \quad 51$	996	36	7		397
93	33458	33519	33541	396	39626	39649	33712	238795	35759		338
	3955	33616	33639	337	3177	. 33747	35810	. 388	938 il		39
	338651	39713	38736	39758	38321	398	3398	833931	1399		910
	\%337 48	33810	498 93	34855	39918	32941	340	34028	34		1
7	3384	$389 \quad 7$	389 お	33952	34013	34038	3412	294125	5; $3+149$		$3+2$ is
	$339+0$	3-10	34027	34049	34112	341	41	428	24846		34810
9	34037	341	$3412 ?$	34146	$3+2$	34932	3425	34319	34		+
10	34133	34156	34819	34842	$3+4$	34324	3 +3 5	34416	344		3+b
113	34229	34252	34915	34398	344	34425	54449	94519	94		6
12	1343	34348	3t+11	34431	31425	31591	11345 45	346	+7		$346 \quad 68$
19	314 20	34441	34.57	34530	34554	34618	1944i 42	9476	34750	34	34754
	31516	34540	316	34026	$3+6$ 50	\% 374	34798	3.18 2	294820	34	348
15	34612	31635	$346 \quad 39$	34722	34746	34810	134834	343 58	834922		319
16	341	34731	3475	31818	34842	3.49	34930	3495	35018		35042
178	848	34887	$348 \quad 51$	31911	34938	150 2	3:3 26	35050	35114		35188
18	948 58	94922	\$49 40	9.50	350 3::	$30^{3.7}$	7\%31 21	3514.5	\|352		36838
19	3495	35018	35042	351	3 il 29	,51 68	352 17	35241	1353		35989
20	350 49	35119	35137	952	35295	35249	35313	353	$7{ }^{\text {\| }} 354$		3.54 .94
21	35144	3528	35892	$358 \quad 66$	35320	3.341	413.54	835432	23.5456		35520
	3529	353 9	95327	35351	354 15	364, 39	$\overline{355} 3$	313.5	355.51		45615
2:3	35836	35358	954 22	35446	35510	35534	35558	135629	35646		35710
	354 30,	354.5.3	35517	45541	356	356 29	$9 \longdiv { 3 5 6 \quad 5 3 }$	$\widehat{357 \quad 17}$			3.58
2.)	35525	35548	35612	35636	357	35724	435748	35812	35836		359
26	35620	3.56	857	35731	$\overline{357} 5$	35819	35\% 43	359	35931		3,956
27	35715	$3: 798$	$558 \quad 2$	35826	35850	$3591+$	$1+35938$	$360 \quad 2$	286096		35952
	35810	35833	35857	35921	359 45	360	9,360 38	3057	730122		361
29	359	95928	35952	36016	36040	361	4:36128	36152	3×1217		S62
	96,0	36023	36	36111	3t1 35	35159	9	362 47	736		363

TABLES

OF
 ASCENSIONAL DIFFERENCE

For finding the Oblique Ascension or Descension, Semidiurnal or Nocturnal Arcs or Horary Times, for any Degree of Latitude.

TABLES

or
 ASCENSIONAL DIFFERENCE

For finding the Oblique Ascension or Descension, Semidiurnal or Nocturnal Arcs or Horary Times, for any Degree of Latitude.

TABLES

OF

ASCENSIONAL DIFFERENCE

For fudding the Oblique Ascension or Descension, Semidiurnal or Nocturnal Arcs or Horary Times, for any

Degree of Latitude.

TABLES

ASCENSIONAL DIFFERENCE
For finding the Oblique Ascension or Descension, Semidiurnal or Nocturnal Arcs or Horary Times, for any Degree of Latitude.

릴	11	12	13	14	15	16	17		18	19		
D	D.	D.	0	D	D.	D. M. ${ }^{\text {D }}$	D. M.	D.				
2	$0 \quad 23$	$0 \quad 25$	$0 \quad 28$		0					0		2
9	04	$\begin{array}{ll} 0 & 38 \\ 0 & 31 \end{array}$	$\begin{array}{ll} \hline 0 & 48 \\ 0 & 56 \end{array}$	0		$\begin{array}{cc} 0 & 52 \\ 1 & 9 \end{array}$	$1 \quad 14$			123		6
5	10	${ }^{1} \cdot 417$	$1 \begin{array}{ll}1 & 23\end{array}$	30	3	44	50			2		2
7	13	1	152	20	2	$\begin{array}{ll} 2 & 19 \end{array}$	28	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	37	$\begin{array}{ll\|} \hline 2 & 2: \\ \boldsymbol{q} & 46 \\ \hline \end{array}$	2	34 56
10	158	$2 \quad 9$	$\begin{array}{lr\|} \hline 2 & 6 \\ 2 & 20 \\ \hline \end{array}$	$\begin{array}{ll} 2 & 16 \\ 2 & 31 \end{array}$	$2 \quad 42$	$2 \quad 54$	$\left\lvert\, \begin{array}{rr} 2 & 47 \\ 9 & 5 \end{array}\right.$	3	17	$\begin{array}{rr\|} \hline 3 & 8 \\ 3 & 20 \end{array}$		1
$\left[\begin{array}{l} 11 \\ 12 \end{array}\right.$	$\begin{array}{ll} \boldsymbol{y} & 10 \\ \boldsymbol{2} & 22 \end{array}$	$\begin{array}{ll} \hline 8 & 22 \\ 2 & 35 \end{array}$	$\begin{array}{ll} \hline 2 & 34 \\ 8 & 49 \end{array}$	$\begin{array}{rr} 8 & 47 \\ 3 & 2 \\ \hline \end{array}$	$\begin{array}{ll} 8 & b 9 \\ 3 & 16 \end{array}$	$\begin{array}{ll} \hline 9 & 12 \\ 3 & 90 \end{array}$	$\begin{array}{ll} \hline 3 & 24 \\ 3 & 44 \end{array}$	$\begin{aligned} & \hline 3 \\ & 9 \end{aligned}$	58	$\begin{array}{ll} 3 & 50 \\ 4 & 12 \end{array}$	4	9 26
$1 \begin{aligned} & 14 \\ & 14 \end{aligned}$	$\begin{array}{ll} \hline 2 & 34 \\ 2 & 47 \\ \hline \end{array}$	$\begin{array}{rr} 2 & 49 \\ 3 & 2 \end{array}$		$\begin{array}{ll} \hline 3 & 18 \\ 9 & 94 \\ \hline \end{array}$	$\begin{array}{ll} \hline 9 & 33 \\ 5 & 50 \\ \hline \end{array}$	46	$4 \quad 22$	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	$39 .$	$4 \quad 56$		9
$\begin{aligned} & \overline{15} \\ & 16 \end{aligned}$	$\begin{array}{ll\|} \hline 2 & 59 \\ 3 & 12 \\ \hline \end{array}$	$\begin{array}{ll} 3 & 16 \\ 3 & 30 \\ \hline \end{array}$	$\begin{array}{ll} \hline 3 & 38 \\ 9 & 48 \end{array}$	$\begin{array}{rr} 3 & 50 \\ 4 & 6 \end{array}$	$4 \quad 24$	449	$\begin{array}{rr} 4 & 42 \\ 5 & 2 \end{array}$	5	21	$\begin{array}{ll} 5 & 40 \\ \hline \end{array}$	5 5	9
$\begin{aligned} & 18 \\ & 18 \end{aligned}$	$\begin{array}{ll} 3 & 24 \\ 3 & 37 \end{array}$	$\begin{array}{ll} \hline 3 & 44 \\ 3 & 58 \end{array}$	$\begin{array}{rr} 4 & 9 \\ 4 & 18 \\ \hline \end{array}$	$\begin{array}{ll} 4 & 92 \\ 4 & 39 \end{array}$	$\begin{array}{ll} 5 & 0 \\ \hline \end{array}$	$\begin{array}{ll} 5 & 21 \end{array}$	5 22 5 42	6	4	$6 \quad 25$	6	83
20	3 50 4 3	426	$\begin{array}{ll} \hline 4 & 34 \\ 4 & 49 \end{array}$	$\begin{array}{ll} \hline 4 & 55 \\ 5 & 12 \end{array}$	5 5	59	$\begin{array}{ll} 6 & 24 \\ \hline \end{array}$	6	48	12		37
22	$\begin{array}{ll} 4 & 17 \\ 4 & 90 \end{array}$	4.56	521	$\begin{array}{ll} 5 & 47 \end{array}$	$\begin{array}{ll} 6 & 18 \\ \hline \end{array}$	$6 \quad 99$	7	7	33	$\begin{array}{\|rr\|} \hline 7 & 96 \\ 8 & 0 \\ \hline \end{array}$	8	8
24	$\begin{array}{ll} 4 & 44 \\ 4 & 58 \end{array}$	$\begin{array}{ll} 5 & 11 \\ 5 & 26 \end{array}$	$\begin{array}{ll} \hline 5 & 37 \\ 5 & 54 \end{array}$	$6 \quad 23$	$\left.\begin{array}{ll} 6 & 32 \\ 6 & 51 \end{array} \right\rvert\,$	$7 \quad 20$	$\begin{array}{ll} 7 & 27 \\ 7 & 49 \\ \hline \end{array}$	8	$\begin{aligned} & 20 \\ & 19 \end{aligned}$	$\begin{array}{ll} 8 & 24 \\ 8 & 49 \end{array}$	8 9	9
26	$\begin{array}{ll} 5 & 12 \\ 5 & 26 \end{array}$	$\begin{array}{ll} 5 & 41 \\ 5 & 57 \end{array}$	$\begin{array}{ll\|} \hline 6 & 11 \\ 6 & 28 \end{array}$	$\begin{array}{ll} 0 & 41 \\ 6 & 69 \end{array}$	$\begin{array}{ll} 11 \\ 7 & 31 \end{array}$	8	$\begin{aligned} & 8 \\ & 8 \end{aligned}$	9		940	10	14
	$\begin{array}{ll} 5 & 41 \\ 5 & 56 \\ \hline \end{array}$	$\begin{array}{ll\|} 6 & 13 \\ 6 & 29 \end{array}$		$\begin{array}{ll} \hline 7 & 18 \\ 7 & 37 \end{array}$	$\begin{array}{lll} 8 & 11 \end{array}$	$\begin{array}{ll} 8 & 46 \\ 8 \end{array}$	21	9	$\begin{aligned} & 39 \\ & 57 \\ & \hline 1 \end{aligned}$	$\begin{array}{lr} 10 & 6 \\ 10 & 99 \end{array}$	1	1
30	$\begin{array}{ll\|} \hline 6 & 11 \\ 6 & 27 \end{array}$	6	$\begin{array}{ll} 7 & 21 \\ 7 & 40 \end{array}$	$\begin{array}{ll} 7 & 57 \\ 8 & 17 \end{array}$	$\begin{array}{ll} 8 & 39 \\ 8 & 54 \end{array}$	$\begin{array}{lr} 9 & 9 \\ 9 & 92 \\ \hline \end{array}$	$\begin{array}{\|cc\|} \hline 9 & 45 \\ 10 & 10 \end{array}$	$5 \begin{aligned} & 50 \\ & 0 \\ & 10 \end{aligned}$	23	11 1111 11 28 1	12	8888888
32	$\begin{array}{ll}6 & 42 \\ 6 & 59\end{array}$	738	$8 \quad 18$	$\begin{array}{ll}8 & 37 \\ 8 & 58\end{array}$	9 16 9 38	$\begin{array}{cc} 6 & 9 \\ 8 & 58 \\ 10 & 19 \end{array}$	$\begin{array}{cc} 5 & 10 \\ 9 l l & 35 \\ 11 & 1 \end{array}$	$\begin{aligned} & 5 \\ & 111 \\ & 11 \end{aligned}$	$\begin{aligned} & 16 \\ & 48 \end{aligned}$	$\begin{array}{ll} 11 & 56 \\ 12 & 25 \\ \hline \end{array}$	13	

TABLES
OF

ASCENSIONAL DIFFERENCE

Far.finding the Oblique Ascension or Descensian, Semidiumal ar Nocturnal Arcs or Horary Tinues, for any Degree of Latitude.

TABLES
or

ASCENSIONAL DIFFERENCE

For finding the Oblique Ascension or Descension, Semidiurnal on Nocturnal Arcs or Horary Times, for any Degree of Latitude.

	(11	12	13	14.	15	16	17	18	19	20	0
	D.	D. M.	D. M,	D. M. D	D. M.	D. M.						
	65	$24^{1} 38$	27 7	29 413	$32 \quad 10$	35 4	$97 \quad 56$	$40 \quad 58$	$44 \quad 10$	47.36	51	19
	66	$\begin{array}{ll}25 & 53\end{array}$	$28 \quad 31$	$31 \quad 143$	$34 \quad 3$	37. 04		$43 \quad 224$	$46 \cdot 525$	$50 \quad 39$	54	50
	67	27.15	$30 \quad 8$	32.578	35 58	39 8 8	42, 30	$46 \quad 4$	49.56	54.13	59	2
	68.	28-45	$31 \quad 45$	$34 \quad 513$	$38 \quad 6$	$41 \quad 934$	45.13	$49 \quad 105$	53.525	$58 \quad 76$	64	16
	$\overline{69} 3$	30	33 37 35 14	36_58 4	$40 \quad 90$	44 16	$48 \quad 20$	52 48 5	57.50	63 47	71.	28
	70	32, 18	$35 \quad 44$	$\begin{array}{llll}39 & 22\end{array}$	$43 \quad 14$	47.24 .5	$51 \quad 59$	$57 \quad 86$	63.13	73 : 5	90	0
	$\begin{aligned} & \overline{71} \\ & 72 \end{aligned}$	34 36 36	58 7 40 51	$\begin{array}{\|cc} 42 & 6 \\ 45 & 17 \end{array}$	$\begin{array}{rr} 46 & 23 \\ 50 & 7 \end{array}$	51 6 55 39 61	$\begin{array}{ll} 56 & 23 \\ 61 & 57 \end{array}$	$\begin{array}{\|cc\|} \hline 62 & 97 \\ 70 & 129 \end{array}$	70 40 90 0	$90 \quad 0$		
	73	$\begin{array}{ll}39 & 29 \\ 42 & 41\end{array}$	44 3 17 50	$\begin{array}{\|rr} 49 & 2 \\ 53 & 37 \end{array}$	64 60 60	$\begin{array}{rr} \hline 61 & 18 \\ 69 & 8 \end{array}$	$\begin{array}{rr} 69 & 42 \\ 90 & 0 \end{array}$	$90 \quad 0$				
-	$\begin{aligned} & \overline{75} \\ & 76 \end{aligned}$	$\begin{array}{ll} \hline 46 & 30 \\ 51 & 14 \end{array}$	(1)32 58 58	$\begin{array}{\|cc\|} \hline 59 & 90 \\ 67 & 49 \end{array}$	$\begin{array}{rr} 68 & 31 \\ 90 & 0 \end{array}$	$\overline{90 \quad 0}$		-	4			
\%	$\begin{aligned} & \overline{77} \\ & 78 \\ & 78 \\ & 78 \end{aligned}$	$\begin{array}{\|cc\|} \hline 57 & 21 \\ 66 & 8 \end{array}$	$\begin{array}{\|ll} \hline 67 & 9 \\ 90 & 0 \end{array}$	$90 \quad 0$	-2						1	
言		$90 \quad 0$			18			c				
?	$\begin{aligned} & 81 \\ & 82 \\ & \hline \end{aligned}$								$\stackrel{1}{1}$			
	$\begin{array}{\|} \hline 83 \\ 84 \\ \hline \end{array}$!		1	-	\%		9			
	$\begin{array}{\|l\|} 85 \\ 86 \\ \hline \end{array}$				8							
	$\begin{aligned} & 87 \\ & 88 \\ & \hline \end{aligned}$		44				c					
1	$\begin{aligned} & 89 \\ & 90 \end{aligned}$									$4 t$		
									D6	8 1		

TABLES
 or

ASCENSIONAL DIFFERENCE

For finding the Oblique Ascension or Descension, Semidiumal or Nocturnal Arcs or Horary Times, for any Degree of Latitude.

TABLES

OF
 ASCENSIONAL DIFFERENCE

For finding the Oblique Ascension or Descension, Semidiurnal or Nocturnal Arcs or Horary Times, for any Degree of Latitude.

$\left\|\begin{array}{c} 0,1 \\ \vdots \\ \vdots \\ \vdots \\ \bar{D} \end{array}\right\|$		21		22		23		24		25		2			27		28			29		3	
		D. M					D	D. M	M	D. ${ }^{1}$			M		D. 1	M.		M.	D.		1.	D.	M
3 3 3 3 3 3	301	149	26	15			$0 ; 10$	10	48	17	98	18	27	19	92	20	20	12	21				
	341	15	01.	1.5	491	16	3817	17	291	18	201	19	12	220	0		21		21			2	5
		15	3616	16		17	1718	18	10	19	3	19	58	80	0	542	21	51	22		50	3	31
	3n 1	16	121	17	41		5818	18	551	19	492	20	4.5	; 1	14	442	22	44	23		4.5	9	48
	371	164	49	17	41	18	8919	193	36	20	319	21	3.	124	42	25	23	37	24	4	412	25	47
	381	$17 \quad 2$	271	18	$44^{1} 1$	19	22.20	20	21.	21	229	92	2.	123	32	28	24	332	2.5		40	26	49
		$13-$			62	20	6	21	8	22	11	23			42	$2^{22}{ }^{1}$	2.5	90	26				52
	40	184	471	19			522	21	$5 t$	23	2	24			51	192	26	30	27		43	8	39
	41	193		20	94.		39		40	$\sqrt{3}$	55	93			6	172	27	52	28		48	30	7
	42	$20 \quad 1$	132	21		23	28	23	38	24	50	26			7	18	28	30	29	9	56	31.	9
	43	$20 \quad 5$	59	22		23	192	26	32	25	46	27		38	8	22	29	43	31			38	4
	4	$21 \quad 4$	452	22		24	12	2.$)$	21	36	45	28			9	28	30	54	438	82	22	3	3
	45	22	94	23	50			26	20	27	48	29	11	130	30	38	32	\%	7.33			35	16
	16	23	26	24	44			27	27	28	52	30		0 01	31	51	33	24	435			36	
	47	72	18	25	41			28	91	30		31		$\overline{3}$	33		$3 \cdot 4$	46	. 36		28	38	15
	48	25	14	26	40			29	38	31	11	38	47	73	34	28	36	11	138	8		39	53
	49	26		27		29		30	49	38	26	34			35	5	37	53					37
	50	27	13	28	47	30		32		38	46	35		339	37	23	39	19	941		21		29
		128	17	29	56	31		33	21	$\overline{35}$		37			38	$5:$	1.			4	12	15	29
	52	289	26	31		32	5.4	34	1	136	39	38		384	40	42	42	59	945	5	12	47	
	53	330	97	S2				36	13	38	14	40		$9{ }^{0}$	12	33	14	53	37	7	21		1
		431	54	33	47	35		37	48	39	16	12		10	44	32	17				43		37
	55	539		35				99	$2 ?$	11	45	14			46	4.1	19	35	552				\%
	56	634	11	136		38	59	41	18	43	44	46		19	49		452		255	5	16		
		736		48		10		13			53	18											45
	58	897	54	40	17	42		45	2:	74	16	51			54		758		1962		30		析
	59	99			16	14		17	49	95	54	54			78		06		$4{ }^{67}$				3
	60	041		0.44	25	47		50	27	753	5.	5.57	7 S	596	61	57			2479				
		19						53)	
	62	6246	12	219	27	72		8.56	52	961	17				73	23	39						
	$\sqrt{69}$	69488		535		360		6 60	$\begin{aligned} & 54 \\ & 54 \end{aligned}$	$\begin{aligned} & 746 \\ & 3,72 \\ & \hline \end{aligned}$		$\begin{array}{c\|c} 49 \\ 7 & 90 \end{array}$			90		0						

TABLES
OF

ASCENSIONAL DIFFERENCE

For finding the Oblique Ascension or Descension, Semidiurnal or Nocturnal Arcs or Horary Times, for any Degree of Latitude:

\|	21	22	23	24	25	26	27	28	29	30
D. D	D. M.									
65 5 66 5	55 28 59 34 64	60 9 65 9	$\begin{array}{ll} \hline 6.5 & 21 \\ 72 & 26 \end{array}$	$\begin{array}{\|rr\|} \hline 72 & 42 \\ 90 & 0 \\ \hline \end{array}$	$90 \quad 0$					
$\begin{aligned} & 67 \\ & 68 \\ & 7 \end{aligned}$	$\begin{array}{ll} 64 & 44 \\ 71 & 49 \\ \hline \end{array}$	72 8 90 0	90							
$\left[\begin{array}{l\|} \hline 99 \\ 70 \end{array}\right.$										
$\begin{array}{\|l\|} 733 \\ 74 \end{array}$										
皆: 75		-								
$\begin{array}{\|c\|c} \hline & 77 \\ 3 \\ \hline & 78 \\ \hline \end{array}$		1		.						.
									.	.
? 81										
[88										
85 86										-
87 88								-	-.	
89 90	9								-	
-										
			1							

TABLES

or
 ASCENSIONAL DHPFERENCE

For finding the Oblique Ascension or Descension，Semidiurnal or Nocturnal Arcs or Horary Times，for any Degree of Latitude．

	＋${ }_{2}^{2}$	31	32		33		34.		35		86					38＇		39			
	D．D．	D．M．D	D． M		．			D	2，			M．				D． 11			，		
	1 0 2 1	$\begin{array}{ll}0 & 96 \\ 1 & 12\end{array}$	$\begin{array}{ll}0 & 37 \\ 1 & 15\end{array}$	 5 1				$\begin{aligned} & 40 \\ & 21 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	42 24	0	41		4i 1 10		$\begin{array}{ll} 0 & 47 \\ 1 & 94 \end{array}$	74		$\begin{aligned} & 49 \\ & 37 \end{aligned}$	$1 \begin{aligned} & 0 \\ & 1 \end{aligned}$	40
	$\begin{aligned} & 3 \\ & 4 \\ & 4 \end{aligned}$	$\begin{array}{ll} \hline 1 & 48 \\ 9 & 24 \\ \hline \end{array}$	$\begin{array}{ll}1 & 59 \\ 2 & 90\end{array}$	1	$\begin{array}{ll} 1 & 67 \\ 2 & 36 \end{array}$			$\begin{array}{r} 2 \\ 42 \\ \hline \end{array}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$		2	$\begin{aligned} & 11 \\ & 55 \end{aligned}$	$\begin{aligned} & 2 \\ & 3 \end{aligned}$			$\begin{array}{rr} 21 \\ 3 & 8 \end{array}$	01	$\begin{aligned} & 2 \\ & 5 \end{aligned}$	26	2	31 22
	$\begin{array}{l\|l} \hline 6 & 3 \\ 6 & 3 \end{array}$	$\begin{array}{lr} \hline 3 & 1 \\ 3 & 37 \end{array}$	$\begin{array}{rrr}3 & 8 \\ 3 & 46\end{array}$	8 6 3	3 15 3 55	5	4	99	3 4	31 19	3	$\begin{aligned} & 99 \\ & 29 \end{aligned}$	3	3 47 38		3		4	53	－4	13 4
		4 14 4 51 5			4	4		45 26	$\begin{aligned} & 4 \\ & 5 \end{aligned}$	$\begin{aligned} & 56 \\ & 99 \end{aligned}$	5	52	5			$\begin{array}{ll} 6 & 30 \\ 6 & 18 \end{array}$		$\begin{aligned} & 3 \\ & 8 \end{aligned}$	$\begin{aligned} & 48 \\ & 38 \end{aligned}$	5 6	55
	$\begin{array}{r\|r} 9 & 5 \\ 10 & 6 \\ \hline \end{array}$	$\begin{array}{cc} \hline 5 & 88 \\ 6 & 5 \end{array}$	$\begin{array}{ll}5 & 41 \\ 6 & 20\end{array}$	6	$\begin{array}{ll}5 & 54 \\ 6 & 35\end{array}$			$\begin{array}{r} 8 \\ 50 \end{array}$	$\begin{aligned} & 6 \\ & 7 \end{aligned}$	$\begin{array}{r} 22 \\ 9 \end{array}$	6 7	$\begin{aligned} & 37 \\ & 22 \end{aligned}$				$\begin{aligned} & 7 \\ & 7 \end{aligned}$		$\begin{aligned} & 7 \\ & 8 \end{aligned}$	$\begin{aligned} & 22 \\ & 13 \end{aligned}$	7 8	38 90
$\begin{aligned} & \overline{11} \\ & 18 \end{aligned}$	$\begin{array}{ll} 11 & 6 \\ 12 & 7 \end{array}$	$\begin{array}{ll} \hline 6 & 48 \\ 7 & 20 \end{array}$	$\begin{array}{ll}6 & 59 \\ 7 & 38\end{array}$	987	7 15 7 56	$5{ }^{5} 78$		$\begin{aligned} & 39 \\ & 15 \end{aligned}$	$\begin{aligned} & 7 \\ & 8 \end{aligned}$	49 34	8	$\begin{array}{r} 7 \\ 58 \end{array}$	78			$\begin{aligned} & 8 \\ & 9 \end{aligned}$	34	9	$\begin{array}{r} 3 \\ 55 \end{array}$	9 10	23 16
$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned} 1$	$\begin{array}{r\|r} \hline 13 & 7 \\ 14 & 8 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 7 \end{array} 58,18 .$	$\begin{array}{ll} \hline 8 & 18 \\ 8 & 58 \end{array}$		$\begin{aligned} & 8 \\ & 9 \end{aligned}$	9			$\begin{gathered} 9 \\ 10 \\ \hline \end{gathered}$	$\begin{array}{r} 18 \\ 9 \end{array}$	9 10 18	$\begin{aligned} & 39 \\ & 26 \end{aligned}$	$\begin{array}{c\|c} 10 \\ 6 & 10 \end{array}$		$\begin{aligned} & 1.10 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{ll} 10 & 24 \\ 11 & 14 \end{array}$		$\begin{aligned} & 10 \\ & 11 \end{aligned}$	$\begin{aligned} & 46 \\ & 39 \end{aligned}$	$\begin{aligned} & 11 \\ & 12 \end{aligned}$	10 4
$\begin{array}{ll} \frac{⿳ 亠 二 口}{15} \\ \frac{15}{5} \\ 16 \end{array}$	15 9 16 9	$\begin{array}{ll} \hline 9 & 16 \\ 9 & 55 \\ \hline \end{array}$	5	19810	10	110			$\begin{aligned} & 10 \\ & 11 \end{aligned}$	49 35	12	$\begin{array}{r} 14 \\ 2 \end{array}$				$\begin{array}{ll} 12 & 5 \\ 12 & 57 \end{array}$		$\begin{aligned} & 18 \\ & 18 \end{aligned}$	$\begin{aligned} & 32 \\ & 26 \end{aligned}$	$\begin{aligned} & 13 \\ & 13 \end{aligned}$	${ }^{0}$
\bigcirc	$\begin{array}{l\|l} 17 & 10 \\ 18 & 11 \end{array}$	$\begin{array}{ll} 10 & 35 \\ 11 & 16 \end{array}$	11			11		$\begin{aligned} & 54 \\ & 40 \end{aligned}$	$\begin{aligned} & 12 \\ & 13 \end{aligned}$	28 9	12	$\begin{aligned} & 54 \\ & 39 \end{aligned}$	$\begin{aligned} & 419 \\ & 914 \end{aligned}$	9 19 4 10	$\begin{gathered} 19 \\ 0 \\ 0 \end{gathered}$	$\begin{array}{ll} 13 & 49 \\ 14 & 46 \end{array}$		$\begin{aligned} & 14 \\ & 15 \end{aligned}$	$\begin{aligned} & 20 \\ & 15 \end{aligned}$	$\begin{array}{l\|l} 0 & 14 \\ 5 & 15 \end{array}$	5981
	1911	$11 \begin{array}{ll}11 & 56\end{array}$	12	26	125	5519	19	26	13	57	14	29				1596	361	16	11	16	48
	2012	$12 \quad 38$	13		134	40.1		19	14	46	15	20	1.5	$5 \quad 55$	516	$16 \quad 31$	311	17		817	47
	$\begin{array}{\|c\|c} 213 \\ 29 & 14 \\ \hline \end{array}$	$\begin{array}{rr} 13 & 20 \\ 14 & 9 \end{array}$	$\begin{aligned} & 13 \\ & 14 \end{aligned}$	$\left.\begin{aligned} & 53 \\ & 37 \end{aligned} \right\rvert\,$	$\begin{array}{ll} 14 & 2 \\ 15 & 1 \end{array}$	$\begin{aligned} & 26 \\ & 15 \\ & 1! \end{aligned}$		$\begin{array}{r} 0 \\ 49 \end{array}$	$\begin{array}{l\|l} 0 & 15 \\ 0 & 16 \end{array}$	$\begin{aligned} & 36 \\ & 27 \end{aligned}$	17	$\begin{array}{r} 18 \\ 5 \end{array}$	$\begin{array}{cc} 2 & 16 \\ 5 & 17 \end{array}$	$\begin{array}{ll}6 & 49 \\ 7 & 44\end{array}$	$\begin{array}{l\|l} 49 \\ 4 & 1 \\ 18 \end{array}$	$\begin{aligned} & 17 \\ & 18 \\ & 2 \end{aligned}$		$\left\{\begin{array}{l} 18 \\ 19 \end{array}\right.$		$\begin{aligned} & 78 \\ & 6 \\ & \hline 19 \end{aligned}$	47 49
	$\begin{array}{l\|l} \hline 23 & 14 \\ 24 & 15 \end{array}$	14 47 15 51	15	23 916	16 16 16	016	16	$\begin{aligned} & 58 \\ & 29 \end{aligned}$	$\begin{array}{l\|l} 8 & 17 \\ 9 & 18 \end{array}$	17	18	58 52		$\begin{array}{ll} \hline 8 & 34 \\ 19 & 36 \end{array}$	$\begin{array}{l\|l} 39 \\ 36 & 19 \\ 36 \end{array}$	$\begin{array}{ll} \hline 19 & 2 \\ 20 & 2 \end{array}$		$\begin{aligned} & 20 \\ & 21 \end{aligned}$		$\begin{aligned} & 620 \\ & 821 \end{aligned}$	52 56
	$\begin{array}{l\|l} 25 & 16 \\ 26 & 17 \end{array}$	$\left.\begin{array}{rr} 16 & 16 \\ 17 & 2 \end{array} \right\rvert\,$	$\begin{array}{ll} 16 & 5 \\ 17 & 4 \end{array}$	461	17 3 18 2	3818	18	$\begin{aligned} & 20 \\ & 12 \end{aligned}$	$\begin{array}{l\|l} 0 & 19 \\ 2 & 19 \\ \hline \end{array}$	58	19 80	$\begin{aligned} & 48 \\ & 45 \end{aligned}$		10 94 1 34	${ }^{34}{ }^{4} 9$	$\begin{array}{ll} \hline 91 & 2 \\ 92 & 2 \end{array}$	$\begin{array}{l\|l} 21 \\ 24 & 9 \end{array}$	$\begin{aligned} & 28 \\ & 93 \end{aligned}$		$\begin{array}{r} 129 \\ 624 \end{array}$	10
	2717	$17 \quad 50$	18				20		630	$5 \cdot 4$	21	44	492	235	35	$93 \quad 28$	28	24		295	19
	2818	$18 \quad 38$	19			122	21		181	51	22	44	423	$3 \quad 37$	372	24	2	25		026	30
	2919	$19 \quad 27$	20	16，2	21		21	57	72	50	29	4.5	59	34.41	41	\％．） 40	408	26		10， 27	4
	3020	$20 \quad 18$	21		22		22	55	523	51	124	48	82.5	2547	472	$26 \quad 4$	49	97	59	28	59
	312 32｜29	21 10 22 3	22		129				${ }_{6}{ }^{24}$		88		0.28	38 5		28 29		$\begin{aligned} & 99 \\ & 90 \end{aligned}$		$\begin{aligned} & 7130 \\ & 4 \mid 51 \end{aligned}$	17

TABLES

OF

ASCENSIONAL DIFFERENCE

For finding the Oblique Ascension or Descension, Semidiarnal or Nocturnal Arcs or.Horary Times, for any Degree of Latitude.

TABLES
OP

ASCENSIONAL DIFFERENCE

For finding the Oblique Ascension or Descension, Semidiurnal or Nocturnal Arcs or Horary Times, for amy Degree of Latitude.

			41		42		43		44			5						48		49			50
	D.	D.	M.	D	M.	D.	M	D.	M.		D.	M	D.	M.	D.	M.	V.	M.				D.	M.
	$\underline{2}$	0 1	52	0	54	0	56 52	1	- 58	58	1	0	1		2	9		17			18	2	12 23
	4	2 8	37	2 3	42 57	2 3	48	2 3	 54	4	3 4	0	3 4	7	4	13	3	3			27 57	3	35 47
	6	4	$\begin{aligned} & 22 \\ & 1.5 \end{aligned}$		31 26	5	41 37	4	51 5 50	1	5	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	5 6	12	5	23 28	5 6	$\begin{aligned} & 35 \\ & 42 \end{aligned}$				5 7	39 12
	7	6	$\begin{aligned} & 8 \\ & 1 \end{aligned}$	7	91 16	7	34	7	49	8	8	5	7 7	18	7	34 40	8	$\begin{aligned} & 50 \\ & 59 \end{aligned}$			18	8 9	$\begin{aligned} & 26 \\ & 38 \end{aligned}$
	(19	7	55	8	$\begin{array}{r} 18 \\ 8 \end{array}$	8	30 28	8	48	88	9 10		(10	26	9 10	47 54	10	8			$\begin{aligned} & 30 \\ & 42 \end{aligned}$	$\begin{aligned} & 10 \\ & 18 \end{aligned}$	[38
	$\begin{array}{\|c} 12 \\ 12 \end{array}$	10	$\begin{aligned} & 44 \\ & 39 \end{aligned}$			$\begin{aligned} & 10 \\ & 11 \end{aligned}$	$\begin{aligned} & 27 \\ & 26 \end{aligned}$	$\begin{aligned} & 10 \\ & 11 \end{aligned}$			11	$\begin{aligned} & 12 \\ & 16 \end{aligned}$	11	$\begin{aligned} & 57 \\ & 49 \end{aligned}$	$\begin{aligned} & 18 \\ & 18 \end{aligned}$	$\begin{array}{r} 1 \\ 11 \end{array}$	$\begin{aligned} & 12 \\ & 13 \end{aligned}$	$\begin{aligned} & 28 \\ & 39 \end{aligned}$			$\begin{gathered} \hline 65 \\ 9 \end{gathered}$	$\begin{aligned} & 13 \\ & 14 \end{aligned}$	$\begin{aligned} & 94 \\ & 40 \end{aligned}$
	$\begin{cases}13 \\ 14 & 1 \\ 1\end{cases}$	$\begin{aligned} & 11 \\ & 18 \end{aligned}$	$\begin{aligned} & 95 \\ & 31 \end{aligned}$	$\begin{aligned} & 18 \\ & 18 \end{aligned}$	58	$\begin{aligned} & 12 \\ & 19 \end{aligned}$	$\begin{aligned} & 26 \\ & 27 \end{aligned}$	18			18	$\begin{aligned} & 21 \\ & 20 \end{aligned}$	$\begin{aligned} & 13 \\ & 14 \end{aligned}$	$\begin{aligned} & 50 \\ & 58 \end{aligned}$	14	20 30	$\begin{aligned} & 14 \\ & 16 \end{aligned}$	$\begin{array}{r} 51 \\ 5 \end{array}$			24	$1 \begin{aligned} & 15 \\ & 17 \end{aligned}$	58
	$\begin{array}{\|l\|} 15 \\ 16 \end{array}$	13	$\begin{aligned} & 28 \\ & 26 \end{aligned}$	18	$\begin{aligned} & 58 \\ & 58 \end{aligned}$		28 31	$\begin{aligned} & 14 \\ & 16 \end{aligned}$				$\begin{aligned} & 32 \\ & 40 \end{aligned}$	$\begin{aligned} & 16 \\ & 17 \end{aligned}$	17	$\begin{aligned} & 16 \\ & 17 \end{aligned}$	48 54	$\begin{aligned} & 17 \\ & 18 \end{aligned}$	$\begin{aligned} & 19 \\ & 94 \end{aligned}$			67 16	$\begin{aligned} & 18 \\ & 19 \end{aligned}$	$\begin{aligned} & 37 \\ & 89 \end{aligned}$
	$\left[\begin{array}{l} 17 \\ 18 \end{array}\right.$	$\begin{aligned} & 15 \\ & 16 \end{aligned}$	$\begin{aligned} & 25 \\ & 94 \end{aligned}$	15 17	$\begin{gathered} 59 \\ 1 \end{gathered}$	$\begin{aligned} & 16 \\ & 17 \end{aligned}$	$\begin{aligned} & 34 \\ & 38 \end{aligned}$	$\begin{aligned} & 17 \\ & 18 \end{aligned}$				$\begin{aligned} & 48 \\ & 58 \end{aligned}$	$\begin{aligned} & 18 \\ & 19 \end{aligned}$	$\begin{aligned} & 87 \\ & 40 \end{aligned}$	$\begin{aligned} & 19 \\ & 80 \end{aligned}$						$\begin{aligned} & 96 \\ & 67 \end{aligned}$	82	$\begin{aligned} & 29 \\ & 47 \end{aligned}$
	$\begin{aligned} & 19 \\ & 201 \\ & \hline \end{aligned}$		$\begin{aligned} & 95 \\ & 27 \end{aligned}$	$\begin{aligned} & 18 \\ & 19 \end{aligned}$		$\begin{array}{\|l\|} \hline 18 \\ 19 \end{array}$		$\begin{aligned} & 12 \\ & 20 \end{aligned}$				$\begin{array}{r} 9 \\ 21 \end{array}$	20		$\begin{aligned} & 21 \\ & 28 \end{aligned}$		$\begin{aligned} & 28 \\ & 23 \\ & \hline \end{aligned}$	$\begin{aligned} & 29 \\ & 51 \\ & \hline \end{aligned}$			18	$\begin{aligned} & 24 \\ & 25 \end{aligned}$	14
	$\begin{aligned} & 21 \\ & 22 \end{aligned}$	$\begin{aligned} & 19 \\ & 20 \end{aligned}$	$\begin{aligned} & 30 \\ & 34 \end{aligned}$	20 21	19	20		21		48	28	$\begin{aligned} & 34 \\ & 50 \end{aligned}$	$\begin{aligned} & 23 \\ & 24 \end{aligned}$	45	24 25						$\begin{aligned} & 12 \\ & 42 \end{aligned}$	$\begin{aligned} & 27 \\ & 28 \\ & \hline \end{aligned}$	$\begin{array}{l\|} 14 \\ 47 \\ \hline \end{array}$
	238	21	$\begin{array}{ll} 1 & 39 \\ 2 & 46 \end{array}$	28	981	23	19 32	24	- 28	12	26	26	$\begin{aligned} & 26 \\ & 27 \end{aligned}$	27	27		488	$\begin{array}{r} 8 \\ 38 \end{array}$			$\begin{aligned} & 14 \\ & 48 \end{aligned}$	$\begin{aligned} & 90 \\ & 38 \end{aligned}$	23
	$\begin{aligned} & 25 \\ & 26 \end{aligned}$	23	$\begin{array}{cr} 3 & 55 \\ 5 & 5 \\ \hline \end{array}$	24		$\begin{aligned} & 25 \\ & 27 \end{aligned}$	$\begin{array}{r} 47 \\ 9 \\ \hline \end{array}$	28		66	$\begin{aligned} & 27 \\ & 29 \end{aligned}$	$\begin{aligned} & 48 \\ & 11 \end{aligned}$	$\begin{aligned} & 28 \\ & 30 \\ & \hline \end{aligned}$	$\begin{aligned} & 52 \\ & 20 \end{aligned}$	30 31	0 32		$\begin{array}{r} 12 \\ 48 \\ \hline \end{array}$			96	$\begin{aligned} & 33 \\ & \$ 5 \end{aligned}$	46 98
	87	96			18	28	22	89		29	30	38	31	51	33		734	- 28	35		53	77	93
	28	27	731	28	36	29	44	30			32		33	25	34	46	636	12	97		48	39	19
			38	29	56	31		38	22	22	33		95	2	96		898	8			37	41	21
	30	30		31	19	98	95	95			35		36	48	38		639	$\underline{53}$			37	43	89
			$\begin{array}{ll} 1 & 29 \\ 2 & 54 \end{array}$			34	38	35 37	728	78	36		$\begin{aligned} & 698 \\ & 0.40 \end{aligned}$		\|48		$\begin{array}{rl} 7 & 41 \\ 4 & 48 \end{array}$	$\begin{array}{ll} 1 & 52 \\ 3 & 37 \\ \hline \end{array}$			$\begin{aligned} & 44 \\ & 57 \end{aligned}$	$\begin{aligned} & 145 \\ & 748 \end{aligned}$	44 8

TABLES
 OT
 \section*{ASCENSIONAL DIFFERENCE}

Far furding the Oblique Ascension or Descension, Semidiurnal or Nocturnal Arcs or Horary Times, for any Degree of Latitude.

	管 41	42		43	44		45		46	47		48	49		50
	D. D. M.	D. M	D.	M.	D. M	D.	M.	D.	M	D: M		D, M.	D. M		. M.
	53834 22				885	040	90		16						048
	3435 35	37.2		59	0	942	25	44	18	46		$18 \quad 31$			$3 \quad 40$
	35 30	39		46	2 3	$3{ }^{4-k}$	26		29			51			6 S4
	$36 / 39 \quad 10$	$40 \quad 5$	12	39	44.38	3,46	96	48	48	51		53.48	56		$9 \quad 39$
	$\overline{97} 74$	$42 \quad 4$	44	39	46.4	42	54		17			$56 \quad 49$			546
	3844247	44.4	46		48	5951	22		- 0	36		60.11			8 36
	$\begin{array}{\|cc\|} \hline 39 \\ 40 & 46 \quad 45 \\ 46 & 50 \end{array}$			$\begin{array}{r} 2 \\ 29 \end{array}$	$\begin{aligned} & 512 \\ & 54 \end{aligned}$				$\begin{aligned} & 5.57 \\ & 620 \\ & 620 \end{aligned}$			$\begin{array}{ll} \hline 64 & 4 \\ 68 & 44 \end{array}$			$\begin{array}{ll} \hline 74 & 49 \\ 90 & 0 \end{array}$
	$\begin{array}{\|r\|rr} \hline 51 & 49 & 5 \\ 42 & 51 & 31 \end{array}$	51	1057	59	57.	560 2464	$\begin{array}{r} 2.23 \\ -\quad 13 \end{array}$		410	74	579	$\begin{array}{\|cc} \hline 74 & 54 \\ 90 & 0 \end{array}$	90		
	$2 \begin{array}{lll} 43 & \overline{54} & 9 \\ 44 & 57 & 5 \end{array}$	$\begin{aligned} & 9 . \\ & 56 \\ & 560 \end{aligned}$	$\begin{array}{c\|c} 6 \\ \hline 460 \\ 464 \end{array}$	$\begin{array}{ll} 0 & 24 \\ 4 & 14 \\ \hline \end{array}$	$\begin{aligned} & 64 \\ & 68 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 4 \longdiv { 6 8 } \\ & 50774 \end{aligned}$	8.49		650		-				
		$\begin{aligned} & 384 \\ & 68 \\ & \hline \end{aligned}$	$5 \cdot 68$	$\begin{array}{ll} \hline 8 & 49 \\ 4 & 56 \end{array}$	$\begin{aligned} & \overline{74} 5 \\ & 90 \end{aligned}$	$\begin{gathered} 5790 \\ 0 \end{gathered}$	$\overline{0.0}$								
	$\begin{array}{c\|cc} \hline 47 & 68 & 47 \\ 0 & 48 & 74 \\ \hline \end{array}$	$\begin{aligned} & 7 \longdiv { 2 4 } \\ & 4 \longdiv { 9 0 } \\ & \hline \end{aligned}$	0^{90}	00											
	$\begin{aligned} & 9 \\ & \hline 90 \\ & 50 \\ & \hline 00 \end{aligned}$														
	$\left[\left.\begin{array}{l} 51 \\ 52 \end{array} \right\rvert\,\right.$														
									a			1			
	$\left.\begin{array}{\|l\|} \hline 55 \\ 56 \end{array} \right\rvert\,$								I 1						
	[57						1								
	659														
	$\begin{array}{\|c} 61 \\ 62 \end{array}$														
	$\begin{array}{\|c\|} \hline 63 \\ 64 \\ \hline \end{array}$														

TABLES

OR

ASCENSIONAL DIFPERENCE

For finding the Oblique Ascension or Descenoion, Semidiurnal or Nocturnal, Arcs or Hordary Times, for any Degree of Latitude.

TABLES

of

ÁSCENSIONAL DIFFERENCE

For finding the Oblique Ascension or Descension, Semidiurnal or Nocturnal Arcs or Horary. Times, for any Degree of Latitude.

TABLE

OF

THE POLES OF THE HOUSES,

According to Ptolbmy.

TABLE OF TWILIGHT,

Shewing the Crepusculine Circles for the Latitude of 44 Degreas.

TABLE OF TWILIGHT,

Shewing the Crepusculine Circles for the Latitude of 47 Degrees.

TABLE OF TWILIGHT,

Shewing the Crepusculine Circles for the Latitude of 50 Degrees.

A

TABLE OF TWILIGHT,

Shewing the Crepusculine Circles for the Latitude of

51 Degrees.

TABLE OF TWILIGHT,

Shewing the Crepusculine Circles for the Latitude of 52 Degrees.

A

TABLE OF TWILIGHT,

Shewing the Crepusculine Circles for the Latitude of 53 Degrees.

A

TABLE OF TWILIGHT,

Shewing the Crepusculine. Circles for the Latitude of 54 Degrees.

P1	2810	20		1Ω	10	20		0		10	20		
97	15	56		306	610					8			
4956	48			508	817	748				5		4	
518	1891	1187	111	1310	${ }^{28} 9$	9 b0		17	8	54	8	98	
61599	15941	1498		4012	2 4411				10	44	109	510	0
	18261			1415		14				95	12	1	
8182	214420	2089	185	5617	$\begin{array}{ll}7 & 2716\end{array}$	$16 \quad 15$			14	971	13	813	S
$925 \quad 89$	925			4619	$\begin{array}{ll}9 & 5718\end{array}$					91	15	5	5
	2925			4722						16		417	7
113595	9416		28	025	$5-1722$		721			14	19	418	85
1247	4099	3558	318	3828			523	9		14		17	
13				4131					24				
14			403	3134	4430						25	424	416
15			$46 \quad 5$	5938	$8{ }_{31}{ }^{3}$				28	26			
17					88740					51	30		
18					7344						33		
30	I 20	10	0		820	10		0		20	10		0
0	Δ	20	0	m	$\underline{10}$	20		0		10	20		30
8 5 4 6 4	$19 \mid 648$	$\begin{array}{lll}5 & 10 \\ 6 & 54\end{array}$		21 5 8 7	$\begin{array}{ll} \hline 5 & 34 \\ 7 & 20 \end{array}$	6				$\begin{array}{ll} \hline 0 & 90 \\ 8 & 26 \end{array}$			
58	30831				919				410	(26		4510	
61015	51010			3610		119	2711			226	18	18	8
7115	1135		418				7118			490		${ }^{45} 14$	
${ }_{8}^{8} 1515$	15		614	${ }_{47}^{4} 14$	14							4416	
10171	1170	179	917	2917	1759	18	419				420	3420	10
1118	1846	1850	019	1019		20				154	42	95182	28
1820	420	$2{ }^{2} 3$	4							45	594		
13,22	$30 / 2814$	9816	$6{ }^{28}$							534	496		
1424		$\left.\right\|_{85} ^{23}$											
$\begin{aligned} & 1596 \\ & 1697 \end{aligned}$		$\begin{array}{ll} 25 & 41 \\ 27 & 25 \end{array}$	5126	+026	26 38 18,29	89			889	(95	${ }_{9} 99$		
1729	5099316	29	829	25130	$30 \quad 0.9$	90 5	5132	347	798	241	139	1938	3
18914	44.31	30			31409					426	635		
30	$\times 20$	10	0			10		0		\bigcirc	10		0

A

TABLE OF TWILIGHT,

Shewing the Crepasculine Circles for the Latiturde of 55 Degrece.

A
 TABLE OF TWILIGHT,

Shewing the Crepusculine Circles for the Latitude of 56 Degrees.

A
 $\mathbb{T} \mathbb{A} \mathbb{I} \mathbb{E}$
 OF

Proportional Logarithms;

TO BE USED WITH
The Astronomical and Nautical
EPHEMERIS.

A

TABLE

OF

PROPORTIONAL LOGARITHMS.

'	10°	10	2°	3^{0}	4	50	00
0		8.25.53	1.9542	1.7782	1.6532	1.5563	1.4771
1	4.0994	2.2181	1.9506	1.7757	1.6514	15.548	1.4759
2	3.7324	2.2410	1.9470	1.7738	1.6496	1.5594	1.4747
3	3.5563	2.2341	1.9455	1.7710	1.6 .478	1.5520	1.4735
4	34313	2.2272	19100	1.7686	1.6450	1.5505	1.4723
5	39314	2.2205	1.9365	1.7662	16442	1.6191	1.4711
6	3.2553	22139	1.9381	1.7639	1.6425	1.5477	1.4699
7	9.1883	2.2573	1.9896	1.7616	1.6407	1.6463	1.4687
8	3.1803	2.2009	1.9268	1.7 .592	1.6390	1.5449	1.4676
9	3.0792	2.1946	1.9228	1.7.70	1.6372	1.513 .5	1.4664
10	3.033.4	2.1883	1.9195	1.7516	1.6355	1.6320	1.4658
11	2.9920	2.1821	1.9161	1.7524	1.6837	1.5406	1.4640
12	2.9542	2.1761	1.9128	1.7501	1.6320	1.6393	1.4689
13	2.9195	2.1701	1.9096	1.7478	1.6303	1.5379	1.4617
14	2.8873	21648	1.9063	1.7456	1.6286	1.5565	1.4605
15	2.8573	2.1584	1.9031	1.7484	1.6869	1.5351	1.4594
16	2.8293	2.1 .526	1.8999	1.7111	1.6852	1.5397	1.4582
17	2.80:30	2.146	1.8967	1.7989	16235	1.5329	1.4571
18	2.7782	$2.1+13$	1.8935	1.7368	1.6218	1.5310	1.4559
19	2.7546	2.1358	1.8304	1.7345	. 1.6201	1.5296	1.4548
20	9.7324	2.1303	1.8873	1.7324	1.6184	1.5283	1.4536
21	8.7118	2.1219	1.8842	1.7302	1.6168	1.5269	1.4525
22	2.6910	2.1196	1.8811	1.7281	1.6151	1.5255	1.4513
23	2.6717	2.1143	1.8781	1.7259	16154	1.5248	1.450%
24	2.6532	2.1091	1.8751	1.7238	1.6118	1.54299	1.4491
25	2.6355	2.1040	1.8720	1.7816	1.6102	1.5215	1.4479
26	2.6184	2.0989	1.8690	17195	1.6085	1.6202	1.4468
27	2.6021	2.0939	1.8661	1.7175	1.6069	1.5189	1.4457
28	2.5862	2.0889	1.8631	1.7153	1.6053	1.5175	1.4 .446
29	2.5710	2.0840	1.8608	1.7138	1.6097	1.5102	1.4435
20	2.5569	8.0792	1.8573	1.7112	1.6021	1.5149	1.4484

A
TABLE

OF
PROPORTIONAL LOGARITHMS:

,	0°	10	2°	3^{0}	$4{ }^{\circ}$	5°	6°
31	2.5480	2.0744	1.8544	1.7091	1.6004	1.5196	1.4412
32	2.5883	2.0696	1.8516	1.7071	1.5988	1.5129	1.4401
33	2.5149	2.0649	1.8487	1.70 .50	1.5973	1.5110	1.4390
34	2.5019	2.0603	1.8459	1.7030	1.5957	1.5097	1.4579
35	2.4893	2.0557	1.8431	1.7010	1.5941	1.5084	1.4368
36	2.4771	2.0512	1.8403	1.6990	1.5925	1.5071	1.4357
57	2.4659	2.0466	1.8375	1.6969	1.5909	1.5058	1.4346
98	2.4536	2.0428	1.8347	1.6949	1.3894	1.5045	1.4335
39	2.4424	2.0378	1.8320	1.6950	1.5878	1.5038	1.4325
40	2.4813	2.0334	1.8893	1.6910	1.5862	1.5019	1.4319
41	2.4206	2.0891	1.82066	1.6890	1.5847	$1 . .5006$	1.4909
42	2.4108	2.0248	1.8299	1.6871	1.5832	1.4994	1.4898
48	2.3999	2.0206	1.8212	1.6851	1.5816	1.4981	1.4281
44	2.3899	2.0164	1.8186	1.6888	1.6801	1.4968	1.4970
45	2.3802	2.0122	1.8159	1.6812	1.6786	1.4956	1.4260
46	2.9706	2.0081	1.8139	1.6793	1.5770	1.4943	1.4249
47	2.9613	2.1040	1.8107	1.6774	1.5755	1.4951	1.4838
48	2.3522	2.00,	1.8081	1.67.55	1.5740	1.4918	14298
49	2.34389	1.9960	1.8055	1.6786	1.5726	1.4906	1.4217
50	2.5844	1.9920	1.8030	1.6717	1.5710	1.4893	1.4806
51	2.3859	1.9881	1.8004	1.6698	1.5695	1.4881	1.4196
52.	2.3174	1.9842	1.7979	1.6679	1.6680	1.4869	1.4185
53	2.5091	1.9803.	1.7954	1.6660	1.5065	1.48 .56	1.4175
54	2.3010	1.9765	1.7929	1.6642	1.5651	$1.484 \cdot 4$	1.4166
55	2.2950	1.9787	1.7904	1.6683	1.5636	1.4892	1.4154
56	8.2858	1.9689	1.7879	1.6605	1.5621	1.4880	1.4143
57	2.2775	1.9652	1.7855	1.6587	$1 . .5607$	1.4808	1.4133
58	8.2700	1.9615	1.7830	1.6568	1.5592	1.4795	1.4128
59	2.8626	1.9579	1.7805	1.6550	1.5577	1.4789	1.4112
60	2.2553	1.9542.	1.7782	1.6582	1.5563	1.4771	1.4102

TABLE

	7°	8°	9°	10^{6}	1	12°	
0	- 1.4102	1.3589	13010	1.9553	1.8139	1.1761	1.1413
1	1.4091	1.3513	1.9002	1.2545	1.2192	1.1755	1.1408
2	1.4081	1.9504	1.2994	1.2538	1.2125	1.1749	1.1409
3	1.4071	1.3496	1.2986	1.2.531	1.8119	1.1749	1.1397
+ 4	1.4060	1.9486	1.2978	1.8584	1.2112	1.1i37	1.1391
5	1.4050	1.3477	1.2970	1.2517	1.2106	1.1731	1.1585
6	1.4040	13468	1.2968	1.2510	1.2099	1.1785	1.1380
7	1.4030	1.3459	1.2954	1.8508	1.8098	1.1719	1.1374
8	1.4020	$1.3+50$	1.9946	1.2495	1.2086	1.1713	1.1369
9	1.4010	1.3441	1.9939	1.2488	1.9080	1.1707	1.1963
10	1.3999	1.3432	1.2931	1.2481	1.8073	1.1701	1.1358
11	1.3989	1.3423	1.2923	1.2474	1.2067	1.1695	1.1952
12	1.3979	1.3415	1.2915	1.2167	1.8061	1.1689	1.1947
19	1.9969	1.3406	1.2907	1.2459	1.2054	1.1683	1.1941
14	1.3959	1.3897	1.2899	1.2468	1.2047	1.1677	1.1936
15	1.8919	1.9388	1.2891	1.2446	1.2041	1.1671	1.1831
16	1.3939	1.3379	1.2883	1.2438	1.2035		
17	1.3989	1.3370	1.2875	1.2488	1.2028	1.1665	$\begin{aligned} & 1.1325 \\ & 1.1519 \end{aligned}$
18	1.3919	1.3368	1.2868	1.2424	1.2028	1.1654	1.1314
19	1.3909	1.3853	1.2860	1.2417	1.2015	1.1648	1.1309
20	1.9899	1.9344	1.2862	1.2410	1.8009	1.1642	1.1309
21	1.3890	1.9396	1.2845	1.2403	1.2003	1.1696	
28	1.9880 1.3870	1.3327	1.2837	1.2996	1.1996	1.1680	1.12988
23	1.3870 1.3860	1.9318 1.9310	1.2889	1.2389	1.1990	1.1684	1.1987
24	1.3860 1.8850	1.3310 1.8301	1.2881	1.2388	1.1984	1.1619	1.1882
25	1.85	1.3301	1.2814	1.2376	1.1977	1.1613	1.1276
26	1.3841	1.9295	1.9806	1.2968	1.1971	1.1607	1.1871
27	1.9831	1.9884	1.8798	1.2568	1.196.5	1.1601	1.1871
28 29	1.3891 1.3819	1.9275 1.9967	1.2791	1.2355	1.1988	1.1595	1.1266 1.1260
29 30	1.3812 1.3808	1.9267 1.3259	1.2783	1.9948	1.1952	1.1589	1.1255
30	1.9808	1.3259	1.2775	1.9381	1.1946	1.1584	1. 1249

A
TABLE
OF
PROPORTIONAL LOGARITHMS.

,	7°	8°	9°	10°	11°	12°	13°
31	1.3792	1.3950	1.2768	1.2334	1.1999	1.1578	1.1244
92	1.3783	1.3241	1.2760	1.2927	1.1938	1.1572	1.1238
93	1.8773	1.9839	1.2753	1.2320	1.1927	1.1566	1.1293
94	1.9763	1.922.	1.2745	1.2819	1.1980	1.1560	1.1228
35	1.3754	1.5416	1.2797	1.2906	1.1914	1.1555	1.1282
36	1.3745	1.3208	1.27, 0	1.2300	1.1908	1.1549	1.1217
37	1.9785	1.3199	1.2728	1.2898	1.1902	1.1 .543	1.1212
98	1.3725	1.3191	12715	1.2986	1.1895	1.1537	$1.1206-$
39	1.3716	1.3183	1.2707	1.22i9	1.1899	1.1532	1.1201
40	1.3706	1.9174	1.2700	1.2272	1.1883	1.1596	1.1190
41	1.3697	1.3166	1.2692	1.2265	1.1877	1.1590	1.1191
42	1.3688	1.3158	1.2685	1,2259	1.1871	1.151 .5	1.1186
43	1.3678	1.3149	1.2577	1.22.3	1.1864	1.1509	1.1180
44	1.3669	1.3141	1.2670	1.2245	1.18 .58	1.1508	1.1175
45	1.3660	1.3183	1.2663	1.2239	1.1852	1.1498	1.1170
46	1.3650	1.3124	1.2655	1.9232	1.1846	1.1492	1.1164
47	1.9641	1.3116	1.2648	1.222.5	1.1840	1.1486	1.11.59
48	1.3632	13108	1.2640	1.2218	1.1894	1.1481	1.1154
49	1.3628	1.30.)	12633	1.2912	11828	1.1475	1.1148
50	1.3613	1.3091	1,8626	1.2405	1.1822	1.1469	1.1143
51	1.3604	1.3083	1.2618	1.2198	1.1816	1.1464	1.1198
58	1.3595	1.3075	1.2611	1.2192	1.1209	1.14 .58	1.1138
53	1.3585	1.3067	1.200 .3	1.2185	1.1803	1.1459	1.1128
54	1.3576	1.3059	1.2,96	1.2178	11797	1.1447	1.1129
55	1.3567	1.3050	1.2589	1.8172	1.1791	1.1411	1.1117
56	1.3558	1.9012	1.2582	1.2165	1.1785	1.1435	1.1112
57	1.3549	1.3034	12574	1.2159	1.1779	1.1490	1.1107
58	1.3540	1.9026	1.2567	12152	1.1773	1.1424	1.1102
59	1.3591	1.3018	12560	1.2145	1.1767	1.1419	1.1096
60	1.3528	1.3010	1.2553	1.2189	1.1761	1.1413	1.1091

A

TABLE
OF

PROPORTIONAL LOGARITHMS.

	14°	15°	16°	17°	18°	19°	20	$1{ }^{\circ}$
0	11091	1.0798	1.0512	1.0218	n000	9765	9342	9331
1	1.1086	1.0\%87	1.0507	1.0244	-976	9761	9339	9987
2	1.1081	1.0782	1.0502	1.0240	9992	9757	9535	9983
3	1.1076	1.0777	1.0498	1.0235	9938	9754	9552	9590
4	1.1071	1.0772	1.0499	1.0231	9984	9750	9528	9917
5	1.1066	1.0768	1.0489	1.0227	9980	9746	9524	9513
6	1.1061	1.0769	1.0484	1.0223 ${ }^{\circ}$	9976	9742	0.521	9310
7	1.1055	1.07:3	1.0480	10218	9972	97:38	9.17	9306
8	1.1050	1.0753	1.0475	1.0214	9968	9785	9:13	9303
9	1.1045	1.0749	1.0471	1.0210	9964	9731	9510	9300
10	1.1040	1.0744	1.0466	1.0206	9980	9727	9506	9296
11	1.108	1.07	1.046	1.0201	9956	9723	9.03	9993
12	1.1030	1.0794	1.0458	-1.0197	9954	9720	9499	9289
13	1.102 .5	1.0729	1.0453	1.0193	9948	9716	$9+95$	9286
14	1.1030	1.0785	1.0448	1.0189	9944	9712	9492	9282
15	1.1015	1.0720	1.0443	1.0185	9940	9708	9488	9879
16	1.1009	1.0715	1.0140	1.0180	9996	9704	9485	9276
17	1.1004	1.0710	1.0435	1.0176	9989	9701	9481	9272
18	1.0999	1.0706	1.0431	1.0172	9988	9697	9478	9269
19	1.0994	1.0701	1.0426	1.0168	9924	9693	9474	9965
20	1.0989	1.0696	1.0422	1.0164	9920	9689.	9470	9262
21	1.0984	10692	1.0418	1.0160	9916	9686	9467	9259
22	1.0979	1.0687	1.0413	1.0165	9912	9682	$9 \cdot 69$	0935
23	1.0974	1.0682	$1.04{ }^{\text {a }}$	1.0151	9903	9678	$9+60$	9259
24	1.0969	1.0678	1.0404	10147	9905	9675	9456	9249
25	1.0964	1.0675	1.0400	1.0143	9901	9671	9453	9245
26	1.0959	1.0668	1.0995	1.0139	9897	9667	9449	9242
47	1.0954	1.0663	1.0391	1.0135	9893	9664	9446	9238
28	1.0949	1.0659	1.0986	1.0130	9889	9660	9442	9395
29	1.0944	1.0654	1.0982	1.012i	9885	9656	9439	9291
90	1.0939	1.0649	1.03	1.012	9881	9658	9435	9228

A
TABLE
OF
PROPORTIONAL LOGARITHMS.

	14°	15°	16°	17°	18°	19°	20°	21°
31	1.0954	1.0645	1.0379	1.0118	9877	9648	9491	9925
32	1.0929	1.0640	1.0369	1.0114	9875	9645	9428	9291
33	1.0924	1.0635	1.0365	1.0110	9869	9641	9495	9218
94	1.0919	1.091	1.0360	1.010'	9865	9647	9421	9215
35	1.0914	1.0626	1.0356	1.0102	9861	9634	9417	9211
36	1.0909	1.0621	1.0954	1.0093	9858	9630	9414	9208
37	1.0904	1.0617	1.0347	1.0093	98.54	9626	9410	9805
38	1.0899	10612	1.0343	1.0089	985)	9629	9407	9201
39	1.0894	1.0608	1.0339	1.0085	98+6	9619	9404	9198
40	1.0889	1.0603	1.0394	1.0081	9842	9615	9400	9193
41	1.0884	1.0598	1.0330	1.0077	9898	9612	9396	9191
42	1.0880	1.0594	1.0326	1.0073	9834	9608	9993	9188
43	1.0875	1.0589	1.0321	1.0069	9830	9601	9389	9185
44	1.0970	1.058.4	1.0317	1.0065	9826	9601	9386	9181
45	1.0865	1.0580	1.0318	1.0061	982.8	9697	9383	9178
46	1.0860	1.0575	1.0308	1.0057	9819	9.593	9379	9175
47	1.0855	1.0571	1.0304	1.0053	9815	9590	9975	9171
48	1.0850	1.0566	1.0300	1.0049	9811	9586	9378	9168
49	1.0845	1.0561	1.0295	1.0044	9807	9582	9968	9165
50	1.0840	1.0557	1.0891	1.0040	9803	9579	9965	9161
51	1.0895	1.0552	1.0987	1.0036	9800	9575	9368	9158
52	1.0830	1.0548	1.0982	1.0038	9796	9571	9358	91.55
59	1.0826	1.0543	1.0878	1.0028	9792	9568	9355	9151
54	1.0821	1.0539	10874	1.0024	9788	9564	9351	9148
55	1.0916	1.0584	1.0269	1.0020	9784	9560	9348	9145
56	1.0811	1.0529	1.0265	1.0016	9780	9557	$93+4$	9141
57	1.0806	1.0525	1.0261	1.0012	9777	9558	9349	91.98
58	1.0801	1.0390	1.0255	1.0008	9773	9549	9311	9135
59	1.0796	1.0516	1.0252	1.000-4	9769	9546	9397	9138
60	1.0792	1.0512	1.0548	1.0000	9765	9542	9394	9188

TABLE
OR

PROPORTIONAL LOGARITHMS.

	22°	23°	24°	25°	6^{3}	27°	28°	29°	0	31°
0	-9128	893.5	8751	8573	3409	8239	8981	7929	7788	7639
1	9125	8938	8748	8570	8400	5296	3078	7926	7779	7637
2	9192	8929	8745	8567	8997	8234	8076	7924	7776	7631
5	9119	8926	$87+2$	8565	83.35	3231	8073	7921	7774	7698
4	911.5	8923	8799	8.562	8392	8288	8071	7919	7772	7650
5	9112	8920	8736	85.59	8389	8225	8063	7916	7769	7687
6	9109	8917	8739	8556	8986	8293	8066	7914	7767	7685
7	9105	8913	87.30	8553	8583	8290	8063	7911	7764	7629
8	9108	8910	8787	8500	8581	8217	8060	7909	7769	7680
9	9099	8907	8724	$8 \mathrm{i}+47$	8978	8215	8058	7906	7760	7618
10	9096	8904	8721	8544	8575	8212	8055	7904	7757	7616
11.	9092	8901	8718	8541	8372	8209	80.53	\% 7801	7755	7613
18	9089	8898	8715	8539	6370	8207	8050	. 7899	7753	7611
13	9086	8895	8712	8530	8967	8504	8047	7896	7750	7609
14	9082	8891	8709	8.833	8364	8202	8045	7894	7748	7606
15	9079	8888	8706	8550	8961	8199	8043	2891	7745	7604
16	9076	8885	8703	8527	8358	8196	8040	7889	7748	7608
17	9073	8882	8700	8524	8356	8194	8037	7886	7740	7599
18	9070	8879	8697	8.522	8353	8191	8035	7884	7788	7597
19	9066	8876	8694	8519	8350	8188	8032	7881	7756	7595
20	9063	8873	8691	8516	8347	8186	8030	. 879	7738	7598
21	9060	8870	8688	8515	834.5	8183	8027	7877	7731	7590
22	9056	8867	8685	8510	8342	8130	8024	7874	7799	7588
28	9053	8864	8682	8.507	8399	8178	8029	7878	7796	7586
24	90.50	8861	8679	8504	8337	8175	8020	7869	7784	7588
85	9047	8857	8676	8501	8334	8172	8017	7867	7721	7581
26	9044	8854	867.9	8498	8391	8170	8014	7864	7719	7579
27	9041	8851	8670	8496	8328	8167	8012	7868	7717	7577
88	9097	8848	8667	8493	8326	8164	8009	7859	7314	7574
89	9084	884.5	8664	8490	8323	8162	8007	7857	7718	7578
90	9031	8848	8661	8487	8390	8159	8004	7855	7710	7570

PRIKOM MOBILE:
 393

A

TABLE
OF'
PROPORTIONAL LOGARITHMS.

A

TABLE

oF

PROPORTIONAL LOGARITHMS.

A

TABLE
OF

PROPORTIONAL LOGARITHMS.

,	32°	S30	34°	35°	36°	37°	38°	39°	40°	41°
31	7481	7300	7178	7048	6928	6810	6696	6585	6476	6370
92	7429	7298	7170	7046	6926	6808	6694	6583	6474	6369
33	7427	7296	7168	7044	6924	6807	6692	6581	6479	-367
34	7425	7893	7166	7042	6922	6805	6690	6579	6471	6965
35	7423	7891	7164	7040	6920	6803	6689	6577	6469	-3563
36	7421	7289	7162	7098	6918	6801	6687	6576	6467	6362
37	7418	7287	7160	7936	6916	6799	6685	6574	6465	6960
38	7416	7285	7158	7034	6914	6797	668.9	6572	6464	6358
39	7414	7283	7156	7032	6918	6795	6681	6570	6462	6357
40	7411	7281	7153	7030	6910	6793	6679	6568	6460	6355
41	7409	7278	7151	70y8	6908	6791	6677	6566	64.58	63:3
42	7407	7276	-149	7020	6906	6789	6676	6565	6467	6351
43	7405	7274	7147	7024	6904	6787	6674	6.563	6455	6349
, 44	7403	7272	7145	7024	6902	6785	6672	656.1	6453	6848
45	7401	7270	7143	7020	6900	6784	6670	6559	6451	6346
46	7398	7268	7141	7018	6898	6788	6668	6557	6449	6944.
47	7996	7266	7139	7016	6896	6780	6666	6556	6448	6348
48	7594	726.	7197	7014	6894	6778	6664	6554	64-46	6341
49	7392	7261	7135	7018	6892	. 6776	6662	6552	6444	6939
50	7389	7259	$71: 3$	7010	6890	6774	6660	6550	6448	6397
51	7987	7257	7131	7008	6838	6772	6659	6548	6441	6336
52	7385	7255	7128	7006	6886	6770	6657	6546	6499	6384
53	7383	7253	7126	7004	6884	6768	'6655	6545	6437	6338
54	7381	7251	712.	7002	6882	6766	6653	6543	6435	6331
55	7978	7248	7122	7000	6880	6764	6651	6541	6434	6389
56	7376	7846	7120	6998	68-8	6762	6649	6539	6489	6327
57	7374	7244	7118	6996	6877	6761	6648	6538	6430	6385
58	7372	7249	7116	6994	6875	6759	6646	6536	6428	6393
59	7970	7240	7114	6992	6873	6757	6644	6534	6486	6389
60	7968	7838	7112	6990	6871	6755	6642	6632	6485	6380

A

TABLE

, OF

PROPORTIONAL LOGARITHMS.

	42°	$43{ }^{\circ}$	44°	45°	46°	47°	48°	49°	60°	$51^{\text {d }}$
0	6320	6218:	6118	6021	5925	5892	6740	5651	5863	7
1	6918	6216	6116	6019	5929	5890	5739	5649	5561	5475
2	6917	6214	6115	6017	5982	5828	5737	5648	5560	5474
3	6915	6813	6113	6016	5920	5897	5796	5646	6559	5473
4	6313	6211	6111	6014	6919	5825	5794	5645	5557	5471
5	6911	6809	6110	6012	5917	5824	5733	6643	6556	5470
6	6310	6208	6108	6011	5916	5823	5731	5642	5554	5469
7	6308	6806	6106	6009	5914	5821	5730	5640	5559	5467
8	6306	6204	6105	6008	5912	5819	5728	5639	5551	64
9	6505	6203	6103	6006	6911	. 6818	5727	5637	5850	5464
10	6303	6201	6102	6004	5909	5816	5795	5636	5548	5463
11	6301	6199	6100	6003	5908	5815	5724	5634	5547	61
18	6500	6198	6099	6001	5906	5813	5782	5633	5546	5460
13	6298	6196	6097	6000	5905	5812	572	5691	5544	5458
14	6296	6194	6095	5998	5903	5810	5719	5630	5548	5457
15	6294	6193	6094	6997	5908	5809	5718	5629	5541	5456
16	6293	6191	6092	6995	5900	5807	5716	5687	5540	64.j4
17	6291	6189	6090	5993	5898	5805	5715	5626	5538	5453
18	6289	6188	6089	5992	5897	5804	6719	5624	5537	5452
19	6887	6186	6087	5990	5895	5802	5712	5629	5535	5450
80	6286	6184	6085	5988	5894	5801	5710	5681	5594	54
21	6284	6183	6084	5987	5892	5800	5709	5620	5533	5447
88	6282	6181	6082	5985	5890	5798	5707	5618	5531	5446
23	6881	6179	6080	5984	5889	5796	5706	5617	5590	5444
24	6879	6178	6079	5982	5888	5795	5704	5615	5528	5443
85	6277	5176	6077	5980	5886	5793	5708	5614	5527	544
86	6875	6174	6075	5979	5884	5792	5701	5618	5595	6440
97	6874	6175	6074	5977	5889	5790	5700	5611	5594	5439
28	6278	6171	6072	5976	5881	5789	5698	5609	5529	5437
29	6870	6169	6071	5974	6880	5787	5697	5608	5521	5436
50	6269	6168	6069	5979	6878	5786	5695	5607	5580	5485

A
 TABLE
 ,OF

PROPORTIONAL LOGARITHMS.

,	42°	\$13 ${ }^{\circ}$	44°	45°	46°	47	48°	49°	50°	51°
31	6267	6166	60.7	5971	5876	6784	5694	6605	5518	5423
32	6265	6164	6066	6969	5875	5783	5693	5604	5517	5422
93	+264	6163	6064	5968	5874	5781	5691	5602	5516	5420
94	6262	6161	6062	5966	5872	6779	5689	5601	5514	5489
35	6260	6159	6061	5964	5870	5778	5688	5599	5512	6427
S6	6259	6158	6059	5963	6869	5777	5686	6598	5511	5496
57	6257	6156	- 0.58	5961	5867	5775	5635	5596	5510	5486
38	6255	6154	6056	5960	5966	5773	5688	5695	5508	5423
99	6254	6153	6055	5958	5864	5772	5682	. 5594	5607	5422
40	6252	6151	6053	5957	5862	5770	5680	5592	6505	5490
41	6850	6149	6051	5955	5861	5769	5679	5590	5504	9
42	6248	61.18	5050	5954	5860	5768	5677	5589	6503	5418
43	6247	6146	60.48	5952	58.58	. 5766	5676	5587	5501	6416
44	6845	6144	6046	5950	5856	5764	5674	5586	5500	6415
45	6243	6179	6045	5949	5855	5763	5673	5585	5498	6414
46	6241	6141	6043	5947	5859	5761	5671	5583	5497	6418
47	6240	6139	6041	5945	5853	5760	5670	5588	5495	6411
48	E298	6198	6040	5944	. 3850	5758	5669	5580	5494	6409
49	6236	6196	6038	5942	5849	5757	5667	5579	5498	5408
. 50	6235	6134	6037	5941	5847	5755	5665	5577	5491	5406
51	6233	6133	6035	5959	5846	5751	5664	5576	5490	5405
52	6231	6191	6033	5938	5844	5752	5662	5574	5488	6404
53	62930	6130	6032	5936	5842	5751	5661	5578	5487	5402
54	6828	6128	6030	5935	5841	5749	5660	5572	5486	6401
55	6296	6126	6028	5933	5839	5748	5658	6570	5484	5999
56	6225	6125	6027	5931	5838	5746	5656	5569	5482	5998
57	6823	6123	61125	5930.	5836	5745	565.5	5567	6481	5997
. 58	6921	6121	6024	5928	5835	5748	5654	5566	5480	5995
59	6220	6120	6022	5927	5833 -	5742	56.68	5564	5478	5394
60	6218	6118	6021	5925	5832	5740	5661	5563	5477	6393

A

TABLE
OF
PROPORTIONAL LOGARITHMS.

	52°	53°	54°	55°	56°	57°	58	59°	6	61°
0	53	5310	6220	5149	5071	4994	4918		1771	4699
1	5391	5908	5297	5148	5069	4992	4917	484.	7770	4698
2	5990	5807	5226	5146	5068	4991	4916	48.15	4769	4697
3	5389	5306	5925	5145	5067	4990	4915	4841	4768	96
4	5387	5904	5253	5144	5065	4989	4913	4859	4766	694
5	: 388	5303	$5 \Sigma 22$	5142	5064	4987	4912	48.88	4765	4093
6	538	5	5221	5141	5065	4936	4911	7	4764	2
7	5383	5300	5219	5140	5062	4985	4.910	48.35	4700	1
8	5881	5299	5218	5138	5060	4984	4908	4834	4761	4690
9	5380	5298	6217	5137	5059	4983	4907	4833	\$760	4059
10	6379	5296	5215	513	5058	4981	4906	4832	4759	4687
11	5977	5	5214	5134	5056	4980	4905	4831	4758	4686
12	5376	5294	5213	6133	5055	4979	4903	4830	4757	685
19	5374	5292	5211	132	5054	4977	4902	4883	4755	684
14	5373	5291	5210	5190	5053	4976	4901	4827	4754	4683
15	5372	5890	5209	5129	5051	4975	4900	4826	47.53	4682
16	5370				5050	4973	4898	4894	4752	680
17	5369	5287	5206	5127	5049	4972	4897	4823	4751	79
18	5368	5285	5205	5125	5048	4971	4896	4822	47.50	78
19	5366	5284	5203	5124	5046	4970	4895	4821	4748	4677
20	5565	5283	5202	5123	5045	4968	4893	1820	4747	$45 \% 6$
21.	5964			5129		4967	4892	4819	4746	5
22	5362	5290	5	20	2	4966	4891	4817	4745	673
23	5361	5278	3198	5119	5041	4.965	4890	4816	474.3	672
24	5359	5277	5197	5118	5040	4964	4889	4815	4742	4671
2.3	5958	5276	5195	5116	5038	4962	4887	4813	4741	4670
26	5356		5194		937	4961	4886	18		669
27	53.55	5278	5193	5114	5096	4960	4885	4811	4739	668
28	5354	5278	5191	5112	5035	4958	4883	4810	4737	4666
29	5952	5270	5190	5111	50.38	4957	4882	4809	4736	4665
50	5351	5269	5189	5110	5039	4956	4881	4808	4735	4664

A
TABLE
OF
PROPORTIONAL LOGARITHMS.

,	52°	53°	54°	55°	36°	57°	53°	59°	60°	61°
31	5350	5268	5187	5108	5031	4955	4380	4806	4794	4663
32	5348	5866	5186.	5107	5029	4953	4878	480:5	4733	4661
35	5317	5265	5185	5106	5028	49.92	4877	4804	4732	4660
94	53.45	5264	5183	5104	5027	4951	4876	4808	4750	4659
35	5344	5262	5182	5103	5026	4950	4875	4801	4799	4658
36	5343	5261	5181	5102	5025	4949	4874	4800	4728	4657
37	5341	5260	5179	5100	5023	4947	4872	4799	4727	4656
38	5340	5258	5178	5099	5029	4946	4871	4798	4725	4654
39	5339	5257	5177	5098	5021	4945	4870	4797	4724	4653
40	5397	5255	5175	5097	5019	4943	4869	4795	4723	4652
41	5396	5254	5174	5095	5018	4948	4867	4794	4782	4651
42	5395	5253	5173	5094	5017	4941	4865	4798	4721	4650
43	5939	5251	5171	5093	5015	4940	4865	4792	4719	4648
4	5392	3250	517θ	5091	6014	4998	4864	4790	4718	4647
45	5331	5249	5169	5090	5013	4937	4863	4789	4717	4646
46	5929	5247	5167	5089	5012	4936	4861	4788	4716	4645
47	5998	5246	5166	5087	5010	4934	4860	4787	4715	4644
48	5926	5245	5165	5086	5009	4933	4859	4786	4714	4648
49	5325 5923	5249 5248	5163 5169	5085	5008	4932	4858	4784	4712	4641
50	5383	5242	5162	-084	5006	4931	4856	4783	4711	4640
51	5322	5241	5161	5082	5005	4990	48.55	4782	4710	4659
59	5381	5299	5159	5081	5004	4928	4854	4781	4709	4638
59 54	5319	5298	5158	5080	5003	4927	48.53	4779	4708	4637
54	5318	5237	5157	5079	5002	4926	4852	4778	4707	4696
55	5317	5235	5155	5077	5000	4924	4850	4777	4705	4694
56	5315	5234	5154	5076	4999	4923	4849	4776		4633
57	5314	5293	5153	5075	4998	4922	4848	4776	4709	4638
58	5312	5231	5152	5079	4996	4921	4846	4779	4709	4691
59	5311	5290	5150	5072	4995	4919	4845	4778	4700	4690
60	5310	5229	5149	5071	4994	4918	4846	4771	4699	4029

\wedge^{\wedge}
 TABLE
 OH

PROPORTIONAL LOGARITHMS.

	62°	63°	64°	65°	66°	67°	68°	69°	70°	71°
0	4629	4569	4491	4484	4957	4892	4298	4164	4102	4040
1	4687	4568	4490	4492	$435 i$	4291	4226	4163	4101	4039
2.	4686	4557	4489	4481	4955	4890	4825	4162	4100	4038
3	4685	*556	4488	4480	4954	1289	4284	4161	4099	4037
4	4684	4555	4486	4419	4353	4987	4223	4160	4098	4036
5	4683	4859	4485	4418	4952	4886	4822	4159	4097	4035
6	4689	4552	4484	4417	4351	4285	4221	4158	4096	4054
7	4680	4551	4483	4416	4349	4284	4220	4157	4094	4033
8	4619	4850	4482	4415	4348	4283	4219	4156	4093	4038
9	4618	4849	4481	4414	4347	4282	4218	41.55	4092	4031
10	4517	4548	4479	4418	4946	4281	4817	4154	4091	4050
11	4616	4547	4478	4411	4345	4280	4216	4153	4090	4099
18	4615	4.546	4477	4410	4944	4279	4815	4152	4089	4088
13	4613	4544	4476	4409	4848	4278	4214	4151	4088	4087
14	4612	4643	4475	4408	4342	4877	4213	4150	4097	4086
15	4611	4548	4474	4407	4841	4876	4812	4149	4086	4025
16	4610	4541	4478	4406	4840	4275	4811	4147	4085	4084
17	4609	4540	4478	4405	4939	4274	4810	4146	4084	4023
18	4608	4599	4471	4404	4338	4279	4809	414.5	4083	4028
19	4606	4537	4469	4408	4336	4271	4207	4144	4082	4021
20	4605	4686	4468	4401	4935	4870	4806	4143	4081	4080
21	4604	4698	4467	4400	4934	4869	480.5	4148	4080	4019
23	4603	4534	4466	4399	4383	4268	4204	4141	4079	4018
23	4608	4593	4465	4598	4392	4267	4803	4140	4078	4017
24	4601	4532	4464	4397	4331	4266	4208	4139	4077	4016
25	4600	4530	4463	4.896	4390	4265	4201	4138	4076	4015
26	4598	4599	4461	4395	4929	4264	4200	4197	4075	2014
27	4597	4528	4460	4394	4928	4863	4199	4136	4074	4013
28	4596	4587	4459	4392	4987	4862	4198	4135	4073	4018
29	4595	4596	4458	4991	4396	4261	4197	4154	4072	4011
90	4594	4525.	4867	4990	4385	4260	4196	4153	4071	4010

A
TABLE
OF

PROPORTIONAL LOGARITHMS.

Δ

TABLE
or
PROPORTIONAL LOGARITHMS.

17	78°	73°	74°	75°	76°	77°	78°	79°	80°	81°
0	9979	9919	3860	3808	3745	3688	3639	3576	8582	3468
1.	99743	3918	9859	3801	3744	3687	8631	3575	8581	3467
2 9	9974	3917	3858	3800	9749	3686	3690	8574	3580	3i66
3	5976	9917	\$857	3799	3742	3685	3699	8574	3519	9465
4	3975	8916	3856	8798	3741	5684	3628	8578	3318	9464
6	8974	9915	8855	8797	3740	3683	3627	3572	3517	9468
- 6	89	391	8855	3796	8739	8682	3696	3371	9516	9468
7	8978	3913	8854	3795	8738	3681	3695	3.570	3515	68
θ	8971	8918	3853	3794	9737	9680	3624	3569	3514	3461
9	8970	3911	8858	3798	8796	3679	3689	3568	3514	3460
10	8969	3910	9451	3798	9795	3678	3588	3567	3513	9459
11	8968	3909	38.50	3791	3734	9677	9691	3566	3518	3458
18	3967	3908	3849	3791	9733	3677	3621	3565	3511	3467
19	8966	5907	3848	3790	3738.	5676	96\%	3564	3510	3456
14	8945	3906	38.47	3189	3731	3675	9619	3563	9509	\$455
15	8964	3965	3846	3788	3730	9674	9618	3.363	5508	3454
16	3968	3904	9845	9787	3729	9678	9617	9568	3507	344
17	3968	9903	3844	3786	3728	3678	5616	3561	3506	SS
18	3961	3908	9848	9785	5787	3671	5616	3560	3506	3482
19	9960	9901	3842	9784	9786	9670	$\$ 614$	3559	3505	3451
20	9969	3900	3841	9789	9785	3669	3619	3588	3504	3850
21	5959	9899	5840	5782	9725	3668	3612	3567	3508	3449
22	S957	3898	3839	3781	3724	9667	3611	3556	3502	3448
23	9956	3897	3838	3780	$\$ 793$	9666	9610	3555	9501	9447
24	3955	3896	3897	3779	3799	3665	8610	8555	3600	9446
25	3954	3895	3856	3778	\$791	3664	9609	8554	3499	9445
26	3993	3894	383,	3771	8780	3663	3608	86.53	3488	3445
27	3952	3898	3894	9776	3719	3663	9607	3558	9497	9444
28	3951	389\%	3883	3775	8718	3662	9606	3681	3496	3443
29	9950	3891	8892	3714	3717	3661	8605	3680	3496	9449
90	3949	8890	8891	8173	9716	3660	3604	3549	9495	3411

4
TABLE
OF.
PROPORTIONAL LOGARITHMS.

TABLE

of
-
PROPORTIONAL LOGARITHMS.

	82°	83°	84°	85°	86°	87°	88°	89°	90°	91°
0	3415	3308	3810	3259	3208	3158	5108	3059	90	
1	3414	3961	3909	3258	9207	3157	9107	9058	3009	2961
2	9413	3960	3908	3257	3206	3156	3106	5097	3009	2961
3	3418	3859	3907	3256	3205	3155	3105	3056	3008	2960
4	3411	3358	3506	9255	3204	9154	3105	3056	3008 9007	2960
5	3410	3358	3306	3254	3203	3153	3104	3055	3006	2958
6	3409	3957	3305	3253	3203	3153	3103	3054	3005	2958
7	3408	3956	3904	3253	3202	3152	9108	30.i3	9005	2957
8	9407	3855	3303	3258	3201	3151	3101	3052	3004	9956
9	3407	3854	3902	3251	3200	3150	3101	9052	$\bigcirc 3003$	2955
10	3406	3953	3801	3250	3199	9149	3100	9051	3002	8954
11	3405	3959	3300	3249	3198	3148	3099	3050		
12	9404	9851	3300	3248	3198	3148 8148	3098	3050 3049	3001 3001	2954 2953
13	3403	3351	3299	9247	3197	3147	3097	3048	3000	2959
14	3408	3350	3298	9247	3196	3146	3096	3047	2999	2951
15	9401	3949	9297	3246	3195	3145	3096	3047	9998	2930
16	3400	3948	3896	3245	3194	3144	5095			
17	3400	. 3947	3895	3244	3193	. 3148	3094	3046 3045	2997	2950 2949
18	3999 3998	3946	3894	3248	3193	3143	3093	3045 9044	2997 9996	8949 8948
19	3998	3345	3894	3242	3198	3142	9098	3043	2995	2947
20	3397	39	8993	3241	3191	9141	3091	5043	2994	2946
21 28	3396	3944 3945	9892	3241	3190	3140	3091	3048	2993	946
28	5	3843	9291	3240	9189	3199	9090	3041	2998	945
24				989	8188	3198	5089	9040	2998	2944
25	3993	3940	388		3188	9198	3088	3039	8991	2943
							2087	3038	2990	2949
26	3892	3339	3287	8236	3186	8186	3086			
27	3991 9890	3338 988	. 3287	. 9238	3185	3185	3086	3038 9038	2989	9948 2941
28 99	9890 3989	3988.	3886	3235	9184	8194	9085	3096	2988	2941
29 40	33889	3837	3285	3234	3183	3139	3084	3035	9987	2939
30	33	3	32	3838	S185	3133	3083	3034	2986	2939

A

TABLE
OF

PROPORTIONAL LOGARITHMS.

,	S2 ${ }^{\circ}$	83°	84°	85°	86°	37°	88°	89°	90°	91°
31	9387	3385	3283	9232	3182	S132	2082	3034	2985	2998
32	3986	3934	3282	3231	9181	3131	3082	3093	2985	2937
93	3386	3333	9282	3291	3180	3180	3081	3092	2984	2937
43	3385	3332	3281	3230	3179	3129	3080	3031	2983	2936
35	3384	3831	3880	9229	9178	3128	9079	9030	2982	2934
96	3983	3381	3279	3223	3178	3128	3078	3030	29.1	
37	3982	3380	3278	3297	9177	4127	3078	3089	2981	2934
38	3981	3329	3277	3226	3176	3126	5077	3028	2981	2983
99	3980	3828	3276	3225	3175	9125	3076	9027	2979	2931
40	3379	8327	9276	3825	3174	3194	3075	9086	2978	2931
41	3978	3826	3875	3224	3173	3123	3074	9026	2977	9930
42	3878	9325	3274	3283	3173	3123	3073	3025	2977	2989
45	3377	9385	3279	3298	5172	3128	3073	3024	2976	2988
44	3376 3975	3324	9272	3221	9171	3121	3072	3023	2975	2927
45	337	3983	3271	3220	9170	3120	3071	5022	2974	2987
46	3874 3973	3828 3321	3870	3219	3169	3119	3070	3092	2973	2986
48	3972	3381 3320	3870	9219	3168	3119	3069	3081	2973	2925
49	3871	3819	3268	3218 3817	88	3118 3117	3069	3080	2978	2924
50	9871	3318	3867	3216	9166	3116	3068 3067	3019 3018	2971 2970	2993 9923
51	3870	3318	3266	3215	3165	9115	3066	9018	2969	2992
58	3369	9317	3265	3214	3164	3114	3065	9017	8969	2921
53	3368	3816	9264	3214	5168	3114	3064	3016	2968	2920
54	3867 3366	3315	3264	3213	9163	3113	S064	3015	2967	2980
55	3366	3314	3243	3218	3169	3118	3063	9014	2966	2919
56	3965	3919	3262	3211	3161	3111	3062	3013	2965	
57	9965	3913	3261	3210	3160	3110	5061	3013	2965	2918
58 59	S364	3312	3860	3209	3159	8109	3060	3019	2963	2916
	3363 3862	3311 3910	3859	3209	31:8	3109	3060	9011	2963	2916
60	3362	3810	3259	5208	3160	3108	3059	3010	2962	2915

A
TABLE

A

TABLE
PROPORTIONAL LÓGARITHMS.

\cdots	92°	93°	94°	95 ${ }^{\circ}$	96°	97°	98°	99 ${ }^{\circ}$	100°	101°
31	2890	2844	2798	2758.	2707	2662	2618	2574	2590	2487
32	2890	2849	2797	2751	2706	2661	2617	2573	9550	2487
33	2889	2848	2796	2750	2705	2660	2616	2572	2589	2486
34	2888	2841	2795	2750	2704	2660	2615	2572	2588	2485
35	2887	2841	2795	2749	2704	2659	2615	2571	2587	2484
96	2887	2840	8794	2748	2703	9658	2614	2570	2597	2484
37	2886	2899	2798	2747	2702	2657	2613	2569	2586	2483
98	2885	2838	2792	2747	2701	2657	2612	2569	2525	2482
39	2884	2838	2792	2746	2701	2656	2612	2568	2525	2482
40	2883	2837	2791	2745	2700	2656	2611	8567	2594	2481
41	2883	2836	2790	2744	2699	2654	2610	2566	2583	2480
48	2882	2835	2789	2744	2698	26.54	2610	2566	2529	2480
43	2881	2834	2788	2743	2698	4653	2609	2565	2592	2579
44	2880	2834	2788	2742	2697	26.38	2608	2564	2521	2478
46	2880	2833	2787	2741	2696	2652	2607	2564	2620	2477
46	2879	2838	8786	2741	2695	26.51	2607	2563	2580	2477
47	2878	2891	2785	2740	2695	2650	2606	2568	2319	2476
48	2877	2891	2785	2799	2694	2649	2605	2561	2518	2175
49	9876	2890	2784	2738	9693	2649	2604	2561	2517	2474
50	2876	2829	2783	2737	2692	2648	2604	2.560	2517	2474
51	2875	2888	2782	8797	2698	2647	2603	2559	2516	2473
62	2874	2898	2782	2736	2691	2646	2602	2358	2515	2472
58	2873	2887	2781	2735	2690	2646	2601	2558	2.514	2472
54	2873	2886	2780	2735	$2689{ }^{\text {- }}$	2645	2601	25.57	2514	2471
55	2878	2825	2779	2734	2689	2643	2600	9556	2513	2470
56	2871	2824	2778	2733	2688	2643	2599	2556	2512	2470
57	2870	2824	2778	2732	2687	2643	2599	2555	2512	2469
58	2869	2823	2777	2731	2686	2648	2.598	2554	9511	2468
59	2869	2828	877\%;	2781	2686	2641	2597	2553	2510	2467
60	2868	4881	2775	2730	2685	2640	2596	2563	9610	2467

TABLE
OF
PROPORTIONAL LOGARITHMS.

	102°	$103{ }^{\circ}$	104°	105°	106°	$107^{\text {c }}$	108°	109 ${ }^{4}$	110°	111°
0	2467	2424	2382	2341	2300	2259	2218	2178	2199	2099
1	2466	2484	2382	2340	2299	$22: 8$	2218	2178	2138	2099
2	2465	2423	2381	2339	2238	2257	2217	2177	2197	2098
3	2465	2.192	2380	2339	2298	2257	2216	2176	2197	2093
4	2464	2121	2380	2558	2297	2966	2216	2176	2196	2097
5	2463	2+21	23i9	2397	2296	2255	2215	2175	2195	. 2096
6	2462	2420	2578	2337	2296	2255	2214	2174	2135	2096
7	2462	2419	2378	2336	2295	2254	2214	2174	2154	2095
8	2461	2419	2377	2935	2294	22.33	2213	2178	2133	2094
9	2460	2418	2376	2385	2294.	2259	2918	2172	2133	2094
10	2460	2417	2975	2394	2293	2252	2212	2172	2132	2093
11	2469	2417	2975	2359	2292	2251	2211	2171	2132	2092
12	2458	2416	2374	2933	2291	2251	2210	2170	2131	2092
13	2457	2415	2378	2332	2291	2250	2210	2170	2130	2091
14	2457	2414	2373	2381	2290	2849	2209	2169	2150	2090
15	2456	2414	2372	2931	2989	2249	2208	2169	2189	2090
16	2455	2413	2971	2950	2289	2248	2208	2168	2128	2089
17	2455	2412	2371	2989	2288	2947	2207	2167	2198	8088
18	2454	2412	2370	2328	2287	2847	2206	2167	2127	2088
19	2453	2411	2369	2328	2287	$29+6$	2206	2166	2126	2087
20	2458	2410	2368	2327	2286	2245	2205	2165	\$126	2086
21	2459	2410	2968	2926	228.5	2245	2204	2165	2125	2086
29	24.51	2409	2567	2596	2285	2244	2804	216.	2124	2085
23	2450	2408	2966	2325	2984	2243	2203	2163	2124	2084
24	2450	2408	2966	2324	2889	2243	2202	2163	2129	2084
25	2449	2407	2365	2324	2283	2242	2202	2162	2122	2083
26	2448	2406	2364	2923	2882	$22+1$	2201	2161	2192	2083
27	2448	2405	2364	2328	2281	2241	¢300	2161	2121	2088
28	2447	2405	2963	2322	2981	2240	2200	2160	2120	2081
29	2446	2404	2362	2381	2280	2239	2199	2159	2120	2081
30	2445	2403	2368	2820	2279	2239	2198	2159	2119	2080

A
TABLE
or

PROPORTIONAL LOGARITEMS.

,	102°	1090	104°	105°	+060	107°	108°	109°	1100	11°
31	94.4.5	2403	2361	2319	2979	2238	2198	2158	2118	2079
32	2414	9102	2300	2319	2978	2297	2197	2157	2118	2079
37	21.83	2401	2359	2318	2877	2997	2196	2157	2117	2978
34	24.4*	2100	2359	2317	2276	9236	2196	2156	2116	2077.
35	$24+2$	2400	2358	2317	2276	2235	2195	2155	2116	2077
. 96	24.1	2399	9357	2316	297.5	2295	2194	21.55	2115	2076
37	2410	2998	2357	2315	2974	2234	219*	215	2114	2075
58	2410	2998	2350	2315	2974	2938	2193	2153	2114	2075
99	2189	2397	2355	2314	2273	2293	2192	2159	2119	2074
40	. 2498	2396	2955	2313	2972	2992	2198	2159	2113	2073
41	2498	2396	2954	2319	2872	2991	2191	2151	2118	2073
42	2437	2395	23.53	2912	2871	2931	2190	21.51	2111	2078
43	2436	2992	2353	231.1	2870	2930	2190	2150	2111	9071
44	24:36	2394	\& 3532	2311	2970	2929	2189	2149	2110	2071
45	1838	2393	2931	2310	2869	2289	2188	2149	2109	2070
46	8431	2992	2350	2310	2468	292\%	2188	2148	2109	8070
47	2+38	\% 391	23.50	2308	2268	2227	2187	2147	2108:	2069
48	2133	2991	2.519	2308	2867	'8227	2186	2147	2107	2068
49	2482	2990	2318	23307	2966	2226	2186	2146	2107	9068
50	2431	2389	83.48:	2305	9266	2296	2185	2146	2100	S067
51	8534	2999	23.7	2500	9268	2295	2184	2146	2105	24te 6
59	2436	2938	2316	2305	2964	2384	2184	2144	2108	2066
58	2489	2387	2346	29.30	2964	2423	2183	2118	2104	2065
54	2429	2987	2946	2304	2963	2828	2182	2148	2109	2064
58	. 2428	2986	2314	2308	2188	8228	2188	2142	2103	2064
56.	2427	2985	2944	2902	2282	8291	2181	2141	2102	2063
57	2126	2984	2319:	2302	2951	2820	2180	$21+1$	2101	2062
58	9426	2394	2918	2801	2260	2220	2180	2140	2101	2062
59	2125	2384	2441	2900	2860	2919	2179	2194	2100	2061
60.	8. 294	2392	$29+1$.	2300	c2 39	2216	2178	2199	2090	

A.
. TABLE
07
PROPORTIONAL LOGARITHMS.

	112°	113°	114°	115°	116°	117°	$118{ }^{\circ}$	119°	180°	121°
0	8061	2082	1984	1946	1908	1871	1834	1797	1761	25
1	2060	2081	1983	1945	1907	1870	1833	1797	1760	1724
8	8059	2091	1988	1944	1907	1870	1835	1796	1760	1724
3	2059	2020	1982	1944	1906	1869	1898	1795	1759	1729
4	2058	2019	1981	1943	1906	1868	1831	1795	1758	1782
5	2057	2019	- 1980	1948	1905	1868	1831	1794	1758	1782
6	2057	2018	1980	1948	1904	1867	1880	1794	1757	1781
7	2056	2017	1979	1941	1904	1867	1830	1798	1757	1781
8	2055	2017	1979	1941	1903	1866	1889	1798	1756	1720
9	2055	2016	1978	1940	1903	1866	1828	1798	1755	1719
10	2054	2016	1977	1939	1918	1866	1828	1791	1755	1719
11	2053	2015	1977	1939	1901	1864	1827	1791	1754	1718
12	8059	2014	1976	1998	1901	1863	1827	1790	1754	1718
13	2052	2014	1978	1938	1900	1863	1826	1789	1735	1717
14	2051	2019	1975	1937	1899	1868	1825	1789	1758	1716
15	2051	2012	1974	1986	1899	1862	1825	1788	1752	1716
16	2050	2019	1973	1996	1898	1861	1894	1787	1751	1715
17	2050	2011	1973	1935	1898	1860	1829	1787	1751	1715
${ }^{18}$	9049	2010	1978	1934	1897	1860	1883	1786	1750	1714
19	2048	2010	1972	1934	1896	1859	1892	1786	1749	1713
20	2048	2009	1971	1933	1896	1858	1822	1785	1749	1713
21	20	2009	1970	1933	1895	1858	1891	1785	1748	1712
29	2046	9008	1970	1938	1894	18.7	1880	1784	1748	1718
23	2046	2007	1969	1931	1894	1857	1820	1783	1747	1711
24	2045	8007	1968	1991	1893	18.6	1819	1789	1746	1711
25	2054	2006	1968	1930	1893	1855	18	${ }^{1789}$	1746	1710
26	2044	2005	1967	1929	1898	1855	1818	1781	1745	1709
97	2045	2005	1967	1929	1891	1854	1817	1781	1745	1709
98	2042	2004	1966	1998	1891	1854	1817	1780	1744	1708
29	2042	2004	1965	1927	1890	1853	1816	1730		1700
S0	2041	2003	1965	1927	1889	1858	1816	1779	184	1707

A

TABLE

05

PROPORTIONAL LOGARITHMS.

1	112°	113°	114°	115°	116°	117°	118°	119°	120°	121°
31	2041	2008	1964	1986	1889	1859	1815	1778	1742	1706
92	2040	8001	1963	1986	1888	18.51	1814	1778	1748	1706
35	2039	2001	1963	1985	1888	1850	1814	1777	1751	1705
34	2039	8000	1968	1984	1887	1850	1813	1777	1740	5
3.5	2038	8000	1961	1984	1886	1840	1818	1776	1740	1704
36	2057	1999	1961	1983	1886	1849	1818	1775	1799	1703
97	2087	1998	1960	1989	1885	1848	1811	1775	1799	1703
98	2086	1998	1960	192\%	1884	1847	1811	1774	1738	1708
99	2035	1997	1959	1991	1884	1847	1810	1774	1737	1702
40	2085	1996	1958	1981	1883	1846	1809	1775	7	1701
41	2094	1996	1958	1980	1883	1846	1899	1778	1736	1700
48	2038	1995	1957	1919	1888	1846	1808	1778	1736	1700
43	2093	1994	1956	1919	1881	1844	1808	1771	1736	1699
44	2089	1994	1956	1918	1881	1844	1807	1771	1794	1699
45	2058	1993	1955	1918	1880	1848	1806	1770	1734	1698
46	2031	1998	1955	1917	1879	1848	1806	1769	1738	1697
47	2050	1998	1954	1916	1879	1848	1805	1769	1738	1697
48	2050	1991	1953	1916	1878	1841	1805	1768	1738	1696
49	2029	1991	1953	1915	1878	1841	1804	1768 1767	1731	1696
50	5088	1990	1958	1914	1877	1840	1803	1767	1731	1696
51	2088	1989	1951	1914	1876	1899	1808	1766	1750	1694
58	2097	1989	1951	1913.	1876	1899	1802	1766	1790	1694
53	2096	1988	1950	1912	1875	1898	1801	1765	1799	1693
54	2086	1987	1950	1918	1875	1848	1801	1765	1798	1695
56	2025	1987	1949	1911	1874	1837	1800	1764	17	1698
56	2084	1986	1948	1911	1873	1896	1800	1763	1787	1691
57	S024	1986	1948	1910	1873	1836	1799	1763	1787	1691
58	2083	1985	1947	1909	1878	1835	1798	1768	1786	1690
59	2023	1984	1946	1909	1871	1884	1798	1761	1785	169
60	8028	1984	1946	1908	1871	1894	1797	1761	1785	1685

TABLE

0δ

PROPORTLONAL LOGABITHMS.

TA賈LE

0.1

PROPORTIONAL LOGARITHMS.

,	$12.2{ }^{\circ}$	123°	124°	125°	126°	$127^{\text {c }}$	1280	129°	139°	31°
31	1671	1685	1600	1566	1531	1497	1463	$14: 2$	1396	1863
32	1670	1655	1 100	1.566	1.581	1496	1463	1429	1395	1362
93	1670	1634	1.49	1565	1.530	1496	1468	1428	1995	1562
94	1669	1634	1599	1564	1529	1495	1461	1488	1994	1961
35	1668	1683	1598	1563	1589	1495	1461	1487	1994	1961
96	1668	1639	1598	1569	1588	1494	14.60	1487	1893	1560
37	1667	1698	1597	1.568	1588	1494	1160	1426	1993	1860
98	1667	1631	1596	1562	1527	1493	1459	1486	1398	1859
39	1666	1631	1596	1561	1587	1493	1459	. 1425	1398	13.59
40	1665	1690	1595	1560	1526	1492	1458	1484	1391	1358
41	1665.	1690	1593	1560	1525	1491	1457	1424	1390	13.57
42	1664	1699	1594	1569	1525	1491	1437	1423	1390	1357
43	1664	1628	1593	15.9	1524	1490	1456	1423	1989	1356
44	1663	1628	1593	1558	1524	1490	1456	1428	1389	1356
46	1669	1627	1692	1358	1523	1489	1455	1429	1388	1355
46	1662	1627	. 1599	1.557	1523	1489	1465	1491	1388	1355
47	\$661	1626	1591	1556	1522	1488	1454	1420	1387	1354
48	1661	1626	1591	. 1556	1582	1487	1454	1420	1387	1954
49	1660	1625	1590	1555	1521	1487	1453	1419	1386	1955
50	1660	1684	1589	1555	1520	1486	14.52	1419	1386	1359
51	1659	1624	1589	1554	1.580	1486	1452	1418	1385	13.52
29	1658	162:	1588	1554	1519	1485	1451	1418	1384	1351
53	1658	1623	1588	1559	1518	1485	1451	1+17	1984	1351
54	1 1657	1622	1587	1552	1.518	1484	1450	1417	1383	1350
55	1657	1621	1.586	15.32	1518	1489	1450	1416	4383	1350 1
56	1656	1621	1586	1551	1517	1489	1449	1415	1988	1549
57	1655	1680	1.185	1551	4.516	1482	1449	1415	1388	1349
58	1655	1620	1585	1550	1516	1488	1448	1414	1381	1348
59	1654	1619	1584	1560	1515	1481	1447	1414	4381	1347
60	1654	1619	1581	$15+9$	1515	1481	1447	1418	1380	1347

414

A

TABLE

07

PROPORTIONAL LOGARITHMS.

	132°	1330	$134{ }^{\circ}$	135 ${ }^{\circ}$	130°	137°	133°	189°	1400	141°
0	1347	1914	1882	1249	1817	1186	1154	1183	1091	1061
1	1346	1914	1881	1249	1817	1185	1158	1188	1091	1060
2	1946	1819	1881	1848	1216	1184	1153	1191	1090	1059
3	1545	1313	1980	1248	1216	1184	1159	1181	1090	1059
4	1945	1312	1879	1847.	1815	1183	1158	1180	1089	1058
5	1344	1911	1279	1247	1815	1183	1151	1180	1089	1058
6	1344	1311	1878	1846	1814	1188	1151	1119	1088	1057
7	1343	1310	1978	1246	1814	1188	1150	1119	1088	1057
8	1943	1310	1877	1845	1813	1181	1180	1118	1087	1056
9	1342	1300	1277	1245	1818	1181	1149	1118	1087	1056
10	1341	1309	1276	1244	1218	1180	1148	1117	1086	1056
11	1341	1908	1276	1243	1811	1180	1148	1117	1086	1055
12	1940	1308	1275	1843	1211	1179	1148	1116	1085	1054
13	1340	1307	1875	1248	1210	1179	1147	1116	1085	1054
14	1399	1807	12\%4	1848	1810	1178	1147	1118	108s	1053
16	1339	1906	127 +	1241	1809	1178	1146	1115	1084	1053
16	1338	1305	1273	1241	1809	1177	1146	1114	1083	1058
17	1938	1905	1872	1240	1208	1177	1145	1114	1003	- 1058
18	1387	1304	1872	1240	1808	1176	1145	1119	1089	1058
19	1387	1904	1271	1299	1807	1175	1144	1113	1088	1051
50	1936	1903	1871	1899	1207	1176	. 1148	1112	1081	1050
21	1935	1309	1870	1238	1206	1174	1148	1118	1081	1050
22	1335	1302	1270	1258	1206	1174	1142	1111	1000	1049
23	1994	1502	1269	1297	1205	1179	1148	1111	1080	1089
24	1384	1501	1869	1297	1205	1173	1141	1110	1079	1048
25	1839	1501	1868	1236	1204	1172	1141	1110	1079	1048
26	1393	1300	1268	1935	1203	1178	1140	1109	1078	1049
87	1388	1300	1267	1235	1203	1171	1140	1109	1078	1047
' 88	1938	1299	1267	1234	1202	1171	1199	1108	1077	1046
99	1981	1298	1866	1294	1208	1170	1139	1107	1076	1046
50	1381	1298	1266	1233	1201	1170	1138	1107	1076	1045

A

TABLE

OF

PROPORTIONAL LOGARITHMS.

	132°	133°	134°	135°	$136{ }^{\text {c }}$	137°	1380	139°	140°	141°
31	1980	1897	1866	1933	1201	1169	1138	1106	1075	1045
32	1989	1897	1264	1234	1200	1169	1197	1106	1075	1044
39	1989	1896	1264	1238	1200	1168	1137	1105	1074	1044
34	1988	1296	12.9	1231	1199	1168	1196	1105	1074	1043
35	1398	1295	1263	1231	1199	1167	1196	1104	1073	1043
36	1987	1295	1268	1250	1198	1167	1135	1104	1079	1042
37	1387	1294	1268	1250	1198	1160	1135	1103	1078	1042
98	1326	1294	1261	1229	1197	1165	1194	1103	1072	1041
99	1986	1293	1261	1289	1197	1165	1134	1102	1071	1041
40	1925	1898	1260	1288	1196	1164	1138	1102	' 1011	1040
61	1985	1998	1260	1287	1196	1164	1192	1101	1070	1039
48	1924	1891	1259	1227	1195	1163	1138	1101	1070	1039
-49	1929	1891	1258	1296	1193	1163	1131	1100	1069	1038
44	1923	$1290{ }^{-}$	1258	1226	1194	1168	1191	1100	1069	1038
45	1982	1890	1257	1295	1193	1168	1130	1099	1068	1037
46	1982	1289	1257	1295	1193	1161	1130	1099	1068	1087
47	1981	1889	1256	1294	1198	1161	1129	1098	1067	1036
48	1381	1288	1256	1293	1198	1160	1199	1098	1067	1036
49	1320	1288	1255	1283	1191	'1160	1188	1097	1066	1035
50	1980	1287.	1255	1289	1191	1159	1128	1097	1066	1038
51	1319.	1287	1254	1282	1190	1159	1197	1096	1065	1094
62	1319	1886	1854	1228	1190	1158	1187	1096	1065	1034
53	1318	1885	1235	1291	1189	1158	1186	1095	1064	1033
54	1317	1285	18;3	1891	1189	1157	1126	1095	1064	1039
56	1317	1284	1258	1220	1188	1157	1125	1094	1063	1032
56	1316	1284	1251	1219	1188	1156	1125	1093	1063	1092
57	1516	1283	1251	1219	1187	1156	1194	1093	1068	1031
58	1315	1883	1250	1218	1187	1156	1194	1092	1069	1031
69	1315	1282	1950	1218	1186		1193	1092	1061	1030
60	1814	1882	1249	1217	1186	1153	1183	1091	1061	1030

A
TABLE
OP
PROPORTIONAL LOGARITHMS،

	142°	143°	144°	145°	146°	147°	148°	149°	15!	151^{9}
0	1080	0999	0969	0999	0909	0880	0850	0881	0792	0768
1	1089	0994	0969	0999	0909	0879	0350	0820	0-91	0769
2	1089	0998	0968	0988	0908	0879	0849	0820	0791	0762
3	1083	0998	0968	(19988	0908	0878	0849	0819	0790	0762
4	1028	0997	0967	0937	0907	0878	0848	081?	0.90	0761
5	1027	0997	0967	0937	0907	6877	0848	0818	0789	0761
6	109;	0996	0966	0986	0906	0877	0847	0818	0789	0760
7	1026	1)996	0966	. 0936	0906	0876	0847	0817	0788	0760
8	1026	0995	0965	0985	0905	0876	0846	0817	0788	0769
9	102.	0995	0965	0935	0905	0875	0846	0816	0787	0759
10	1095	0994	0964	0934	0904	0875	0845	0816	0787	0750
11	102.	0994	0964	0934	0904	0374	0845	0815	0787	0750
12	1024	0993	0965	0938	0903	0874	0844	0815	0786	0757
13	1023	0993	0969	0933	0903	0873	0844	0814	0786	0757
14	1023	0992	0962	$0!39$	0902	0373	0843	$0: 14$	0785	0756
15	1028	0992	0962	0932	0902	0872	0848	0814	0783	Or 56
16	1022	0991	0961	0931	0901	0872	0842	0813	0784	Or 55
17	1021	0991	0961	0931	0901	U871	0848	0819	0784	0755
18	1081	0990	0960	0930	0900	08.71	0841	0812	0785	0754
19	1020	0990	0960	0930	0900	0870	0841	0818	0783	0754
20	1020	0989	0959	0929	0899	0870	0840	0811	0782	0753
21	1019	0989	0959	0929	0399	0869	0840	0812	0782	0753
. 29	1019	0988	09.38	0928	0898	QH69	0839	0810	0781	07.52
23	1018	0988	0958	0928	0898	0868	Q899	0810	0781	0758
94	1018	0987	0957	09\%7	0897	0858	0898	0809	0780	0751
25	1017	0987	0957	0927	0897	0667	0838	0809	0.50	0751
96	1017	0986	0956	0926	0896	0867	0837	0808	0779	0750
27	1016	0986	0956	0926	0896	0866	0837	0605	0779	0750
28	1016	0985	0955	0926	0895	0866	OR36	0807	0778	0750
29	1015	0985	09.55	0925	089.5	0865	0896	0807	0878	0749
50	1015	0984	0954	0924	0894	0865	0895	080\%	0787	0749

TABLE

OF
 PROPORTIONAL LOGARITHMṢ:

,	$142^{\text {c }}$	1430	144°	145°	$146{ }^{\text {c }}$	147°	1488°	149°	150°	151°
31	1014	0984	0954	092t	0894	0864	089.5	080;	0777	0748
32	1014	0983	0953	0923	0893	0864	0834	0805	0776	0748
33	1013	0983	0953	0989	0893	0868	0834	0805	0776	0747
34	1013	0982	0952	0912	0892	0863	0893	0804	0775	0747
35	1012	0982	09.4	0922	0892	0868	0833	0804	0775	07+6
36	1012	0981	0951	0921	0891	0808	08383	0803	0774	0746
37	1011	0981	0961	0981	0891	0851	0638	0803	0774	0745
38	1010	0980	0960	0980	0890	0861	0832	0308	0773	0745
99	1010	0980	0960	0920	0490	0860	0831	0802	0779	0744
40	1009	0979	0949	0919	0889	0860	0831	0801	0773	0744
41	1009	0979	0949	0919	0889	0869	0830	0801	0778	0743
42	1038	0978	0948	0918	0888	4869	0850	0801	0778	0743
48	1008	0978	0948	0918	0888	0858	0889	0800	0771	0742
44	1007	0979	0947	0917	0887	0858	0899.	0800	0771	0742
46	1007	0977	0947	0917	0887	0857	0888	0799	0770	0741
46	1006	0976	0946	0916	0886	0857	0828	0799	1770	0741
47	1006	0976	0946	0916	0886	0856	0887	0798	0769	0740
48	1005	0975	0945	0915	0885	0856	0927	0798	0769	0740
49	1006	0975	0945	0916	0885	0865	0826	0797	0768	0799
50	1004	0974	0914	0.314	. 0884	0855	0826	0797	0768	0739
61	1004	0974	0944	0914	088.4	0855	0825	0796	0767	0739
59	1003	0973	0949	0913	08883	0854	0825	0756	0767	0798
. 63	1003	097.3	0948	0913	0883	0854	0824	0795	0706	0738
52	1002	. 0972	0942	0912	0883	0953	0924	0795	0766	0737.
53.	1002	0972	0942	0918	0882	0853	0829	0794	0765	$0: 37$
56	1001	0971	0941	0911	0842	0859	0823	0794	0765	073n
57	. 1001	0971	0941	0911	0881	$08!2$	0828	0793	0764	07:36
. 88	1000	0970	0940	0910	0881	0851	0322	0793	0764	0755
59	! 1000	0970	0940	0910	0880	0861	0821	0798	0763	0735
¢0	09\%	0969	0939	0909	0488	0850	0821	0792	0769	

A

TABLE
0
PROPORTIONAL LOGARITHMS.

	152°	153°	154°	155°	156°	157°	$158{ }^{\circ}$	$159{ }^{\circ}$	$160{ }^{\circ}$	161°
0	0794	0706	0678	0649	0621	0594	0566	0589	0512	0484
1	0734	0705	0677	0649	0681	0599	0566	0538	0511	0484
2	0733	0705	0677	0648	0621	0598	0565	0538	0511	0484
3	0753	0704	0676	0648	0690	0592	0565	0597	0510	0483
4	0732	0704	0676	0649	0680	0592	0564	0537	0510	0483
6	0738	0303	0675	0647	0619	0591	0564	0536	0509	0489
6	0731	0703	$06^{\prime} 75$	0647	0619	0591	0563	0536	0509	0482
7	0731	0708	0674	0646	0618	0590	0563	0596	0508	0481
8	0730	0708	0674	0646	0.618	0590	0.568	0535	0508	0481
9	0780	0702	0673	0645	0617	0590	0562	0585	0507	0480
10	0799	0701	0673	0646	0517	0.589	0562	0534	0507	0480
11	0789	0701	0678	0644	0616	0589	0561	0534	0507	9
18	0789	0700	0078	0644	0616	0588	0561	0539	0506	0479
13	0788	0790	0671	0648	0615	0588	0560	0583	0506	0479
14.	0728	6099	d671	0648	0615	0587	0560	0532	0505	0478
15	0727	0699	0670	0642	061.5	0587	0569	063:	0505	0478
16	0727	0698	0670	0648	0614	0586	0559	0581	0504	0477
17	0726	0698	0669	0641	0614	0586	0558	0581	0504	0477
18	0726	0697	0669	0641	0613	0585	0568	0581	0508	0476
19	0725	0697	0669	0641	0613	0585	0567	0530	0503	9476
20	0725	0696	0668	0640	0618	0584	0557	0500	0502	0475
21	0784	0696	0668	0640	0618	0584	0557	0589	0502	04.5
22	0724	0695	0667	0699	0611	0584	0556	0529	0508	0475
23	0723	0695	0667	0699	0611	0.583	05.56	0528	0501	0474
24	0783	0694	0666	0638	0610	0588	0555	0528	0501	0474
25.	0728	0694	0666	0638	0610	0588	0555	0587	0500	0473
26	0788	0693	0665	0637	0609	0588	0554	0.527	0500	0473
97	0721	0693	0665	0637	0609	0581	0554	0586	0499	0478
88	0721	0693	0664	0686	0608	0581	0553	0586	0499	0472
99	0780	0692	0664	0636	0608	0580	05.53	0526	0198	0471
90	0720	0692	0663	0635	0608	0380	0552	0525	0498	0471

A

TABLE

OF
PROPORTIONAL LOGARITHMS.

	152°	$153{ }^{\circ}$	$154{ }^{\circ}$	155°	156°	7°	8°	9°	160°	
31	0720	0691	066	0656	060	0.57	055	0525	7	1
32	0719	0691	0668	0634	0607	0579	0551	0684	0497	70
38	0719	0690	0662	0694	0606	0579	0551	0624	0497	70
34	0718	0690	066	0634	060	0578	0561	0683	0496	
35	0718	0689	0661	0633	0605	0578	0550	0523	04	0469
9			0661	0633	0605	0577	0550			
	071	06	0660	069		0577	05	82'	5	
38	071	068	06	0638	06	05	05	0581	04	0467
99	0716	0687	0659	0691	0609	0576	054	0591	0494	467
40	0715	0687	0659	0631	0603	0576	054	0521	0498	
41	0		0658		0602	0575				
42	0714	068	0658		0602	0574	05	0520	0493	
43	0714	068	0657	0629	060	0574	054	0519	0492	0465
44	0713	0685	0657	0689	0602	0573	054	0519	2	0465
45	0713	0685	0666	0628	0601	0573	054	0518	0491	0464
46	07									
47	0712	0684	0656	068	060	O5	054	0517	0490	
48	0711	068	0655	0687	0599	0578	054	0517	049	046
49	0711	06	0656	0587	0599	0571	054	0516	0489	0468
50	0711	0682	0654	0686	0598	0571	0543	0616	04	1462
51	0710			06	059					
58	0710	0681	0653	0625	0597	0570	0548	0616	048	61
63	0709	0681	0653	0625	0597	0569	0548	0615	0488	0461
54	0709	0680	0658	0694	0.59	0569	0541	0514	0487	0460
55	0708	0680	0658	0624	0596	0568	054	0514	0487	
56	0708	06	0651	0625	0.59	0568	Ob4	Sis		9
5	070	0679	0651	0623	0595	0568	0540	0513	0486	0469
89	070	0678	0650	0628	0595	0567	0540	0518	0485	$0+58$
59	0706	0678	0650	0622	0594	0567	0589	0612	0485	0468
50	0706	0678	0649	068!	0594	0566	059	0518	0484	0458

A

TABLE

OF
PṘOPORTIONAL LOGARITHMS:

	162°	163°	164°	165°	166°	167°	168°	169°	170°	171°
0	0468	0434	0404	0378	0362	0326	0500	0274	0948	0299
1	0457	0430	0404	0377	0351	1 385	0299	0273	0 ¢48	0289
2	04.57	0.490	0408	0377	0351	0356	0899	0279	0248	0282
3	$0: 56$	0430	0403	0377	0350	10324	0298	0273	0247	0221
4	0466	0489	0402	0376	03.io	0324	0898	0278	0246	0221
5	0455	0449	0408	0376	0349	0388	0897	0278	0246	0221
6	0453	0428	0.408	0976	0349	0589	0897	0271	0846	0220
7	0454	0488	0101	0375	0349	0382	0897	0271	0245	0890
8	0454	0427	0401	0374	0348	0382	0996	0870	0245	0219
9	04.54	0487	0400	0374	0348	0382	0290	0870	0844	0219
10	0433	0486	0400	0378	0347	0321	0295	11870	02.44	02.8
11	0453	0426	0999	0378	0347	0381	0895	0269	0244	0218
12	0452	0486	0599	0.373	0346	0380	0994	0869	0849	0218
19	04.58	0485	0599	0972	u346	0820	0294	0868	0248	0217
14	0451	0485	0398	0378	0S46	0319	0294	C.268	0942	0917
15	0451	0484	0398	0371	0345	0319	0293	0267	0842	0216
16	0450	0424	0997	0971	0545	0319	0893	0267	0241	0216
17	0450	0483	0397	0370	0844	0818	0298	0267	0241	0816
18	0450	0428	0396	0370	0944	0318	0898	0266	0241	0816
19	0449	0482	0996	0370	0948	0317	0291	0266	0840	0216
20	0449	0482	0385	0369	0348	0817	0291	0265	0240	0214
2	0448	0482	0395	0969	0342	0316	0291	0265	0949	214
22	0448	0481	0385	0368	0342	0316	0290	0264	0299	0918
23	0447	0481	0394	0968	09.2	0316	0290	0264	0838	0813
24	0447	0480	0594	0367	0341	0915	0289	0264	0988	0213
25	0446	0480	0393	0367	0341	0316	0289	0263	0838	0212
26	0446	0819	0999	0366	0840	0314	0288	0269	0937	0819
27	0446	0419	0992	0366	0840	0314	4288	1262	$0 ¢ 97$	(12) 11
28	0445	0418	0392	0366	0399	0313	0288	0268	0296	0211
29	0145	0418	0:391	0365	0389	0513	0287	0261	0236	0210
50	0444	0418	0991	0363	0339	0313	0887	0961	0233	0210

TABLE

OF.
PROPORTIONAL LOGARITHMS.'.

,	$16 .{ }^{\circ}$	163°	$164{ }^{\circ}$	165°	166°	167°	168°	169°	170°	171°
31	04.4	0417	0391	0564	0388	0312	0286	0261	0835	0210
38	0+43	0417	0990	0364	0338	0312	0236	0260	0235	0209
93	9619	0416	0990	0368	0937	0311	0285	0260	0234	0209
98	0442	0416	0389	0363	0337	0311	028.5	0259	0234	0208
35	0142	0415.	0389	0368	0336	0910	0285	0259	0293	0208
36	0442	0415	0398	0362	0336	0310	0284	0258	C2,33	0208
37	$04+1$	0414	0388	03¢\%	0336	0310	0284	0258	0232	0207
98	0441	0414	0388	0361	0935	0:09	0283	0258	0238	0207
39	04.10	0414	0387	0361	0935	0.309	0289	0257	0238	0206
40	0440	0+13	0387	0360	0394	0308	0282	0257	0231	0206
41	0499	0413	0386	0360	0334	0308	0282	0256	02:31	0208
42	0439	0412	0386	0359	03,39	0307	0232	0256	0230	0205
43	0438	$0+12$	0385	0359	0338	0:307	0281	02:3	0890	0805
44	0.438	0411	0385	0359	0392	0:306	0281	0255	0290	0201
45	0.38	0411	0384	0338	0332	0306	0280	02,5	0229	0204
46	04.37	0410	0384	0358	0932	0306	0280	0254	0299	0203
17	0437	0+10	0384	0:357	0331	0305	02:9	02.54	0228	0203
48	0:36	0+10	0383	0357	09.31	0305	0279	0253	0288	0202
49	$0+36$	0.409	0383	0356	0330	0304	0279	0253	0287	0208
50	0435	0409	0388	0556	U350	0504	0278	0<52	0287	0208
51	013.5	0.408	0982	0356	0989	0504	0278	0252	0287	0201
. 2	$0+34$	10 म18	0981	139.5	10389	0.503	1277	0258	0226	0201
53	0134	0107	0381	0355	0529	0303	0277	0251	0226	0200
34	${ }_{0}^{0134}$	$0 \dot{0} 07$	0981	0;534	0¢23	0302	0876	0251	0225	0200
55	0153	0240	0980	03.54	0398	0902	0276	0250	022.5	0260
56	0439	0446	0880	0363	0387	0501	0276	0250	0224	0199
57	01.32	0 ¢0	0979	0953	0527	0:301	0275	0250	0224	0199
58	0132	0405	0379	$0 ; 52$	0386	0300	0275	0249	0224	0198
59	0431	0105	usi88	0.52	0326	0300	0274	0249	0293	0198
60	$0+31$	0404	0378	0352	0386	0300	0274	0248	0823	0197

A
TABLE
OF
PROPORTIONAL LOGARITHMS.

A
TABLE

OF
PROPORTIONAL LOGARITHMS.

a \mathbb{C} able of the cyirtid patiuitics.

Page

1. Charles the Fifth, Emperor of Germadry 13!
2. Francis the First, King of France 189
3. Philip the 'Third, King of Spain 140
4. Heary the Fourth, King of Fratice 151
5. Sebnatian, King of Portugal 137
6. Gustavas Adoiphus; King of Six cden 165
7. Odoardus, Cardinal Farnese 170
8. Rairutius Farnese, Duke uf Parma 186
9. John Columina; Patriarch of Jerusalem 180
10. Ferdiuand Gonzaga, Duke of Mantua 187
11. Cosmo the Second, Great Düke of Tusicuny 191
12. Lewis, Cardinal Zachia 195
13. Dominick, Cardinal Gymnascus 204
14. Charles, Cardital Pius 210
15. Antonio, Cardital Fachinetti 918
16. Antonio Maria; Cardinal deSalriatis 224
17. Philip, Cardinal Spinelli 250
18. Fabricius, Cardinal Verospius 231
19. Peter, Curdinal Aldubraudini 242
20. Geurge, Prince Aldubrandimi 246
21. Andrew, Cardinal Pereti 250
22. Octavius, Cardinal Bandini 256
23. Margotius, Cardinal Lanfraischi 208
24. Cardinal Panciroli 269
25. Dominick Molinus, Senator of Vetice 274
26. Octavian Ubaldine 979
2†. Octavian Vestrius, of Romé 285
27. Barthulomelv Massari, Physician of Dononia ๕月
28. Leonora, Duchess of Sfortia 290
29. Jobro Baptist Cardas 301

An ${ }^{\circ}$
 APPENDIX

то

PLACIDUS DE TITUUSS艮rimum fillobile.

Containing the Trigonometrical Precepts for computing the Right Ascension, Declination, Semidiurnal and Nocturrial Atris, Poles of Position, Sun's Depression and Secondary Distance; and every other Requisite for obtaining the Arcs of Direction with much more facility and accuiracy than by amy Collection of Tables hitherto extant; the whole referred to the Placidian 'Canons, and illustirated by examples adapted to the work.

THE many etrors contained in the old astronomical tables, as well as the great want of new ones adapted to the modern discoveries and improvements in Astronomy, render it essentially necessary for all who would make their calculations with any degree of accuracy, to perform their operations by the rules of Trigonometry; which, if they should at first appear difficult to a beginner, will more than doubly recompense him for bis labour in their attainment.

In all cases where precision is required, Trigonometry becomes not only the most exact, but also more concise 3 K
than any other mode of calculation, for which reason 1 have here inserted the Trigonometrical Precepts necessary for calculating the Arcs of Direction, and referred them to their corresponding Canons in this work.

Canon I.
To find the Declination, and, from that, the Longitude, in the Ecliptic.
If the declination is requited, and you have the longitade given:

To the sine of $23^{\circ} 28^{\prime}$ add the sine of the distance from the nearest equinoctial point, and the sum is the sine of the declination.

Example. In the following figure the \odot is in $7^{\circ} \mathbf{2 5}^{\prime}$ of x, which is $22^{\circ} 35^{\prime}$ from r.

To the sine of $23^{\circ} 28^{\prime}$ - - - 9.60011
Add the sine of $22^{\circ} 35^{\prime \prime}, ~-~-~-~ 9.58436 ~$
Sum is sine of $8^{\circ} 48^{\prime}$ - - - 9.18447
which is the \odot 's declination.
If the declination is given, to find the longitade corresponding :

To the arithmetical complement of the sine of $23^{\circ} 28^{\prime}$, add the sine of the declination, and the sum is the sine of the longitude from the nearest equinox, as in the foregoing example.

The arith. comp. of sine of $\mathbf{2 3 ^ { \circ }} 28^{\prime}$ - 0.39989
Sine of \odot^{\prime} 's declination $8^{\circ} 48^{\prime}$ - - 9.18465
Sum is sine of $22^{\circ} 35^{\prime}$ - - - - 9.58454
which is θ^{\prime} longitude from r, or $7^{\circ} 25^{\prime}$ of \mathcal{A}.

If the declination of a planet is required with latitude, the most easy method is as follows :

Example. Let b be in $15^{\circ} 20^{\prime}$ of m, with $2^{\circ} 29^{\prime}$ north latitude; required his declination.

To the sine of b 's long. from $\triangle 45^{\circ} 20^{\prime} 9.85110$
Add the tangent of $23^{\circ} \mathbf{2 8}$ - - 9.63588
Sum is tangent of first angle $17^{\circ} 4^{\prime}-9.48698$
To \quad 's lat. $2^{\circ} 29^{\prime}$ add 90°, sum is - $92^{\circ} 29 \prime$
From which subtract the first angle $17 \quad 4$
And there remains the second angle $\quad 75 \quad 25$
Then as cosine of first angle $17^{\circ} 4^{\prime}$, C. A. 0.01956
Is to cosine of second angle $75^{\circ} 25^{\prime}-9.40104$
So is cosine of $23^{\circ} 28^{\prime} \quad$ - - . - 9.96251
TQ sine of h^{\prime} s declination $14^{\circ} 1^{\prime} \mathrm{S}$. -9.38311
If the longitude and latitude are of the same denomination, viz. both north, or both south, the declination is of the same denomination also; but if the longitude and latitude are of different denominations, viz. one north and the other south, then observe whether the declination found is greater or less than the latitude, and if the deolination is less than the latitude, it is of the same denomination as the latitude; but, if it is greater, it is of the same denomination as the sign wherein it is placed; north ${ }_{2}$ in a northern sign, and south, in a southern one.

Canon II.

To find the Ascensional Difference.
Add the tangent of the latitude of the place to the tangent of the planet's declination, and the sum is the sine of the ascensional difference.

Example. In the same figure, the latitude of the birth is 53°, and 44^{\prime} s declination $15^{\circ} 54^{\prime}$; required his ascensional difference.

To tangent of latitude $53^{\circ} 0^{\circ}$ - - 10.12289
Add tangent of 4^{\prime} 's declin. $15^{\circ} 54^{\prime} \quad 9.45463$
Sine of 4^{\prime} 's ascen. diff. $22^{\circ} 13$! - 9.57752

Canon III.

To find the Semidiurnal or Nocturnal Arcs.
Having found the ascensional difference by Canon II, if the planet's declination is north above the earth, or south betow; add the ascensional difference to 90°, and the sum will be the arc required; but, if the planet's declination is south above the earth, or north below, subtract the ascensiorial difference from 90°, and the difference will be the arc required; and which, being divided by 3 , will produce the space of the house.

In the last example, 4 's ascensional difference was found to be $22^{\circ} 13^{\prime}$, and as 4 has north declination, and is above the earth, 90° must be added, which makes. 112013^{\prime} for his semidiurnal arc; and, divided by 3 , gives $37^{\circ} 24^{\prime}$ for the space of $\boldsymbol{4}^{\prime}$ s house.

Canon V.

To obtain the Right Ascension.

The most convenient rule for practice is as follows: To the arithmetical complement of the cosine of the planet's declination, add the cosine of the longitude from the nearest equinoctial point, and the cosine of the planet's latitude; the sum, rejecting radius, is the cosine of the right ascension from the same equinoctial point from which the longitude was taken; and, if the longitude is in γ, 8 , or π, the are found is the right ascension; if in σ, Ω, or 吹, subtract the arc found from 180°, for the right ascension; if it is in Ω, m, or f, add the arc to 180°; and, if in $\vdash \rho, \ldots$, or \mathcal{H}, subtract the arc found from 360° for the right ascension required.

Example. In the following figure, $\boldsymbol{4}$ is in 20° of Ω, with $1^{\circ} 8^{\prime}$ of tatitude, and his declination is $15^{\circ} 54^{\prime}$; required his right ascension.

As cosine of 4 's declination $15^{\circ} 54^{\prime}$ C. A. 0.01695
Is to cos. of his long. from $\bumpeq 40 \quad 0 \quad 9.38425$
So is cosine of 4 's latitude $188 \quad 9.99991$
To cosine of his right ascen. $3713 \quad 9.90111$
Which, subtracted from 1800
Remains $14247 \boldsymbol{4}$'s right ascen.

For the \odot 's right ascension,
To cosine of \odot^{\prime} 's declination $8^{\circ} 47$ ' C. A. 0.00513

Add cos. of its long. from $\boldsymbol{r} 2235$	9.96535
Sum is cos. of 9 's R. A. à $\boldsymbol{r} 2053$	9.97048
Which, subtract from - 360	

Remains $339 \quad 7 \bigcirc$'s right ascen.
Here it is to be observed, that when a planet is in the beginning of r, with great north latitude, or the beginning of Ω, with south, the above method will not answer the purpose, and you may then proceed thus; for example, Let the) be in 56^{\prime} of \bumpeq, with $4^{\circ} 32^{\prime}$ south latitude; required her right ascension.

As radius - - - - . - . . 10.00000
To sine of \boldsymbol{D} 's long. from $\triangle 0^{\circ} \mathbf{5 6}^{\prime} \quad 8.21189$
So is cotangent of \rangle 's latitude $4 \quad 32 \quad 11.10079$
To tangent of first arc - $-11 \quad 36 \quad 9.31268$
Subt. from obliquity of ecliptic 2328
Remains second arc 11 52. Now say,
As sinc of first arc - - $11^{\circ} 36^{\prime}$ C. A. 0.69663
To sine of second arc - 1152 9.31309
So is tang. of long. from $\sim 056 \quad 8.21195$
To tangent of R. A. from $\approx 057 \quad 8.22167$
Which, subtract from - 1800
Remains 1793 D's right ascen.

Canon X.

To describe a Figure of the Heavens.

This may be done two ways besides the common method by the tables of houses, viz. either by the tables of oblique asceusion, or trigonometrically. The first method is taught in almost all astrological authors, as well as in page 46 of this work, in its proper Canon.

To erect a Figure of the Heavens by the Rules of Trigonometry for any Latitude.
To the given clock time apply the equation of time, and you will have the apparent time, which is to be added to, or subtracted from, the \odot 's right ascension in time, as occasion requires, for the right ascension of the M. C. in time, which convert into degrees and minutes, and, to that, add 30° for the oblique ascension of the eleventh house, 30° more for the oblique ascension of the twelfth, \&c., till you come to the third. Then, to obtain the degree of the ecliptic upon the cusp of the M. C.; to the cosine of the obliquity of the ecliptic, add the cotangent of the.R. A. of M. C. from the nearest equinox, and the sum is the cotangent of its longitude from the same equinoctial point. For the other houses you must obtain their polar elevation, and then, to the cosine of the oblique ascension of the house, add the cotangent of the pole of the house, and the sum is the cotangent of the first arc, to which, if the oblique ascension of the house is nearest to r, add - the obliquity of the ecliptic $23^{\circ} 28$; but if it is nearest to α, subtract $23^{\circ} 28^{\prime}$ from it, and the sum or differ-
ence is the second arc. Then say, as the cosine of the second arc is to the cosine of the first, so is the tangent of the oblique ascension of the bouse to the tangent of its lóngitude from γ or Ω, which, if the second angle is less than 90°, is to be accounted from the sappe equinoctial point which the oblique ascension was reckoned from, but, if more than 90°, it is to be accounted from the contrary equinoctial point.
Example. In the following figure; where the R.A. of $\mathrm{M} . \mathrm{C}$. is $110^{\circ} 45^{\prime}$.

To cosine of obliquity of ecliptic $23^{\circ} 28^{\prime} \quad 9.96251$
Add cotangent of R.A. from $\bumpeq \quad 69 \quad 15 \quad 9.57849$
Sum is cotang. of long. from $\triangle 7050 \quad 9.54100$
But as q. $_{0} 0$ is 90°, subtract it from 90 0
Remains longitude of M. C. 1910 of $\mathfrak{9}$,

P.	Lat.	Dec.	Semi. Arcs.	Hor. Times.	Rt. Ascen.
b	$9^{0} 99 \mathrm{~N}$.	140518.	1090 27' N.	$18^{\circ} 14 \mathrm{~N}$.	2230 $37{ }^{\prime}$
4	18 N.	1554 N.	11213 D.	1842 D.	14247
δ	085 S	013 N.	$80 \quad 40 \mathrm{~N}$.	1436 N.	155
(1)	10	848 S.	10150 N.	16. 58 N .	3397
9	1918	12868.	1071 N.	1750 N.	38528
$\underline{8}$	09 S .	1748 S	$11518 \mathrm{~N}^{\prime}$	1912 N.	31252
3	389 S.	17538.	11521 N.	1913 N.	324 8
$\boldsymbol{\oplus}$	0	17538.	6439 D.	1047 D.	17356

3 I.

Example. To find the ecliptical degree upon the cusp of the eleventh house:

To the R. A. of M. C. $110^{\circ} 45^{\prime}$, add 30°, and the sum is $140^{\circ} 45^{\prime}$, the oblique ascension of the eleventh. The pole of the eleventh, in latitude 53°, is $24^{\circ} 40^{\circ}$; subtract $140^{\circ} 45^{\prime}$ from 180°, and the remainder is 39° 15^{\prime}, which is the oblique ascension of the eleventh from \bumpeq, then
$\begin{array}{lrrr}\text { To cos. of oblique ascen. of } 11 \text { th } 39^{\circ} 15^{\prime} & 9.88396 \\ \text { Add cotang. of pole of } 11 \text { th } & 24 & 40 & 10.33796\end{array}$
$\begin{array}{llll}\text { Sum is cotang. of first angle } & 3040 & 10.22692 \\ \text { Obliquity of ecliptic subtract } & 23 & 23 \\ & \end{array}$

$$
\text { Remains second angle } 712
$$

As cosine of second angle $\quad 7^{\circ} 12^{\prime} \mathrm{C}$. A. 0.00344
Is to cosine of the first angle $3040 \quad 9.93457$
So is tang. of obl. as. of 11th $3915 \quad 9.91224$
To tangent of long. from $\boldsymbol{\Delta} \mathbf{3 5 1 9} \mathbf{9 . 8 5 0 2 5}$
or $24^{\circ} 41^{\prime}$ of Ω; and in this manner you may proceed to find the ecliptical degree upon the other houses, down to the third ; and put the opposite signs and degrees upon the opposite houses; and, in all cases, bes fore you attempt to calculate the directions to any figures it will be necessary to obtain all the requisites placed in the foregoing table.

Canon XII.
To find the Elecation of the Pole above the Circle of Position of either the Planets or Houses.
General Rule.-As the semi arc of the planet is to 90° of the equator, so is its distance from the meridian to the distance of the circle of position from the meridian, the difference between which is the planet's ascensional difference under its own pole; then, to the sine of the ascensional difference, add the cotangent of the planet's declination, and the sum is the tangent of the elevation of the pole.

Example. To find the pole of 4 in the preceding figure, his semidiurnal arc being $112^{\circ} 13^{\prime}$, distance from the tenth $32^{\circ} 2^{\prime}$, and declination $15^{\circ} 54^{\prime}$.

As the semidiurnal arc of $\psi-112^{\circ} 13^{\prime} 2052$
Is to 900 of the equator - $\quad 90 \quad 3 \quad 3010$

So is 4^{\prime} 's distance from M. C. $\quad 32 \quad 2 \quad 7496$
To dist. of circ. of pos. from M. C. $2542 \quad 1.0506$

H's ascensional difference | 620 | 2052 |
| :--- | :--- |

To the sine of the ascen, differ. $6^{\circ} 20^{\prime} \quad 9.04263$
Add cotangent of 4 's declin. 15'54 10.54537
Sum is tangent of 4 's pole $2111,9.58800$

Or, thus:

As the space of 4^{\prime} 's house - p $37^{\circ} \mathbf{2 4}$	6824
Is to $80{ }^{\text {t }}$ of the equator - - 800	7782
So is 4 's distance from M. C. - 32×2	7496
To dist. of circ, of pos, from M, C: 2542	1.5278
's ascen. difference, as before 620	
	8454

The pales of the houses man be foupd by placing the o upon the cusp of the house, and fading his pole in that situation.

> Canoz XV:

The Use of the Logarithmes:

The logarithms inserted in this work are the compmon proportional lograthms, only their demominetion is altered from minutes to degrees, and from nepopds to minutes, in order to render them more familiar to those not well verved in compptations: the degraes are to be sought at the top of the table, and the minutes at the side, and in the compop angle is the logarithm required, and they will answer equally the same for hours and minutes, or minutes and seconds, if you only suppose the denomination to be changed.

In the last example, the space of \boldsymbol{y}^{\prime} 's house is $37^{\circ} 24^{\prime}$; to find the logarithm corresponding to that number, I fook at the head of the table for 37°, and down the side
for 24', opposite to which, and under 37°, is 6824, the logarithm required.

When those logarithma are used for finding the prom portional parts, the second and third numbers are usur ally added together, and the first subtracted from the aum, and the remainder is the logarithm of the fourth number required; but the work will be shorter, if you take the arithmetical complement of the first logarithm, and then add them all three together, which will pro-

- duce the same result as by adding the two last logar rithms together, and subtracting the firt. Example in Canon XII : The space of $4^{\prime} ' 6$ house is $97^{\circ} 24^{\prime}$, the logarithm of which is 6824, which, subtraet from 10.000, and the remainder is 3176 , the arithnsetical complement of the logarithm required; then will the work stand thus:

$$
\text { As the space of } 4^{\prime} \text { 's house - } 37^{\circ} 24^{\prime} \text { C. A. } 3176
$$

Is to 30° of the equator - $30 \quad 7782$
So is 4 's distance from M. C. $32 \quad 2 \quad 7496$
To the circle of position's dist. 2542 8454
By this means you have two lines less in the work than by the other method.

Canon XVI.

Of equating the Arc of Direction.
There have been several modes of equation adopted in different ages, by various authors, all of whom aupport their favourite method by some plausible argu-
ment in its favour; but, certainly none so well entitled to credence as the Placidian method, for it is not among the least beauties to be found in the works of this author, that he is a strict observer and follower of nature. His method of equation is as old as Nature herself, and is not fettered with suppositions and human inventions, but resolves itself into nothing more or less than one single revolution of the earth upon its axis to denote one year, or one annual revolution round the 0 . In this way of equating, there are no degrees of human invention (for the circle might as well have been divided into 360000 degrees as 360) which require to be equated by parts of other degrees equally as incompetent to the purpose; as is done in the use of Naibod's measure of time, whilst that of Ptolemy uses a single 360th part of a circle, but upon what ground we are at a loss to comprehend. I have been led to these remarks, by observing, that some persons of the present day are advocates for Naibod's measure of time, although it is not possible to prove its existence in nature. In the nativity of George, Prince Aldobrandini, at page 248, Placidus has demonstrated this measure of time beyond dispute, and shewn the absurdity of those artificial methods adopted previous to the discovery of that of his own.

> Canon XX.

To obtain the \odot 's Depression below the Horizon, and
its secondary Distance upon the Crepusculine Circle.
For the \odot 's depression, find the altitude of his opposite point, by the following ruke.-Take the R. A, of
M. C. in time, and the R.A. of \odot^{\prime} s 8 in time, thedifference between which is the horary angle, with which, enter table 16 of the Requisite Tables, and take out the logarithm rising corresponding thereto; to which add the cosine of the latitude of the place, and the cosine of the \odot 's declination, the sum, abating 20 from the index, is the logarithm of a number, which, subtracted from the natural sine of the \odot 's meridian altitude, leaves the natural sine of the altitude required.

Example. In the foregoing figure:

$$
\text { R. A. of M. C. in time - } 7^{\mathrm{h}} 23^{\prime}
$$

R. A. of \odot 's 8 in time - $10 \quad 37$

Difference is the horary angle 3 I4
The logarithm rising of which is - 4.52812
Cosine of latitude of birth - $53^{\circ} 0^{\prime} \quad 9.77946$
Cosine of \bigcirc 's declination - 847 9.99487
4.30245

Natural number $=20061$.
To 0^{\prime} 's declination - - $8^{\circ} 47^{\prime}$
Add comp. latitude - - 370
©'s meridian altitude - 45 ' 47 N . sine 71671
Natural number subtract - - - . 20061
51610
Natural sine of altitude of \odot^{\prime} ' $831^{\circ} 4^{\prime}$, or $0^{\prime \prime}$ s de-
pression, which, as it exceeds 18°; the $\dot{\sigma}$ is not in the orepusculine but in the obscare space:

For the secondary Distance, proceed as follows:
As the \odot here is not in the crepusculine circles, we will take the example of the \odot to the \square of δ in the nativity of Gustavus Adolphus, King of Sweden, page 164-165, for the 0 's depression.
R. A. of 0 's 8 int time $5^{\text {h }} 48^{\prime}$
R. A. of M. C. in time $13 \mathbf{3 0}$

Horary angle . - - - 742 log. rising 5.15548
Cosine of latitude 59。 - - - - 9.71183
Cosine of 0^{\prime} declination $23^{\circ} 30^{\prime}$ - $\mathbf{9 . 9 6 2 3 9}$
Sum is logarithm of $\mathbf{N}^{\circ} 67560$ * . 4.82970
To compl. of lat. $31^{\circ} \mathbf{O}^{\prime}$
Add 0 's declinat. 2330

5430

Natural number subtract 67560
Natural sine of $7^{\circ} 58^{\prime} \quad 13852$

O's depression.

To find the secondary Distance of the of of δ.

Co. latitude -	31°	0°	sine co. ar.	0.28817
Co. altitude - 82	2			
Co. dec. of y of o 76	46	sine co. 20	0.01169	

Sum 2)189 48

Half sum 9454
6354 half sum - co.lat. sine 9.95329
18 8 half sum \rightarrow co. dec.sine 9.49946
2)19.74661
9.87330
which is the sine of - $48^{\circ} 20^{\circ}$
2
doubled is - . . . 9640
which, subtract from
the semi. noc. arc
of the place of the
sepect
Remains secondary dist. 1622
\bigcirc 's primary distance in horoscope is $200^{\circ} 48$
Secondary subtract $\quad-\quad-\quad 1622$
Remains, ortive difference - - - 425
To be added to the, conmonon arc of dir. 3736
Makes the proper ărc 422
$3 \mathbf{M}$

Canon XXI.

To find the Crepusculine and Obscure Arcs.
If you have not tables of arcs and twilight, they may be found in the following manner:

Example. Latitude $51^{\circ} 32^{\prime}$, and the 0^{\prime} s declination $15^{\circ} 9^{\prime}$ north; required his crepusculine and obscure arc.

Half sum $=$ sine of $74^{\circ} 23^{\prime}$
Multiplied by - 2
Produces $14850=95^{\prime}$.
Which, subtracted from - 120
Leaves the beginn. of twilight 25
And, subtracted from - - 436 time of 0 rise,
Remains, crepusculine arc - 231 , or $37^{\circ} 30^{\prime}$;
and, if you subtract the crepusculine arc from the semi-nocturnal arc, the remainder is the obscure arc; but if the obscure arc is wanted for-London osly, it may be obtained from White's Ephemeris, thus :

Example: May lst, 1814, required the semi-nocturnal, crepusculine, and obscure arc of the \odot at London.

Time of a set Subtract from .	$\begin{array}{cc} 71 & 23 \\ 12 & 0 \end{array}$
Semi-nocturnal arc	437
Crepusculine arc	231
Obscure arc	2.6

Canon XXIV.

To find the Place of the D's Zodiacal Parallels in Longitude and Latitude.
General Rule.-Find the daily change in declination, and the required change in declination; then any, as the daily change in declination is to 24 hours, so if the required change in declination to the time required to make that change; to which time, find the D's lopgitude and latitude, and that will be the place of the parallel required, to which direct the under her own pole.

Example. Of the to the parallel of the 0 , in the foregoing figure, in $8^{\circ} 47^{\prime}$ south declination.
1778.

Then as $5^{\circ} 13^{\prime}$	8.4621	For
Is to - 240 0	8751	D's long. 28th, $27^{\circ} 0$ x
So is 2012	1.9128	Ditto, 27th, 1256 \%
To - 10, 7	1.2500	- diur motion - 144

the time required.

Rov the D 's lexitude et that tivme.

Thermifore, the o meets the zodiacal parallel of the 0 in 180.52^{\prime} of x, with $4^{\circ} 47^{\prime}$ south latiate; to which plese she muse bedirected under her own pole.

Canon XXXVI.

To direct the 0 to the Aspecto in Musedo, by the Crepusculine and Obscure Arcs.

Exemplification.-In the nalivity of Odoardus, Cardinal Farnese, page 170, the © to the Δ of ψ in mundo, in the crepusculine aros.
Ao the noct. horary times of the $\odot 19^{\circ} 17^{\prime} \quad 9.0299$
Te hie distance from the ascend. $2057 \quad 9341$
Sa is the noct. horary times of $41151 \quad 1.1816$
To his secondary dist. from the 5th 12531.1456
ψ^{\prime} 's primary distance - $\quad 34 \quad 3 \quad \square$
Common arc - . - . . . 2110
\bigcirc 's oblique ascension pole 38 - 28435
Place the Q arrives at - - - $30545=15^{\circ} 20^{\circ}$ bs.
To pole 44, σ^{\prime} 's distance from the ascendant in 25° of f is $20^{\circ} 57^{\prime}$, which gives his depression 13° to the same depression under 15° of h°, the secondary distance is $20^{\circ} 46^{\prime}$; therefore,

PRIMUM MOBILE.
447
Then, as the horary times of © $14^{\circ} 26^{\prime} \quad 8.9041$
To its distance from the 5th - 0.23 2.6717
So is horary times of \% - $\quad 16 \quad 0 \quad 1.0512$

To $\%$'s second. dist. from the 3d $026 \quad 2.6270$
8 's primary dist. from the $3 \mathrm{~d} \quad 5851$
Arc of direction - - - 5825

Hence it appears, the arc of direction, as now wrought, excceds the common arc nearly 15°.

Canon XXXIX.

As the secondary directions are of some importance in finding the time of the operation of the primary ones, I shall here point out to the young Tyro the method of obtaining the times of the mutual and lunar 2spects, in order that he may know at what period the secondary directions co-operate with those of the primary; for, in ascertaining the times of the effects of directions, it is necessary that we should have recourse to all the known causes of those effects, and, by comparing them together, we shall be able to know at what time the majority of concurrent causes operate together to produce the effect ; for we are not to expect the event to immediately follow the expiration of the arc of direction, as there may be divers causes exist either to accelerate or retard the event, as may be seen in several of these examples. I have known some instances of persons who have entertained such ideas, and then,
because they were not realized, have materially sattered the time of birth, or endeavoured to make the event agree, by adopting another measure of time.

To obtain the Mutual and Larrar Aspects.

First, get the diurnal motion of each planet whose d or aspect you want, and, if they are both direct, or both retrograde, subtract the lesser from the greater, and use the difference; but, if one is direct, and the other retrograde, add both their motions together, and make use of the sum; and this sum or difference shall be the diurnal motion of the swifter planet from the slower. This done, take the distance of the aspect from noon, which reserve, and the true time is found by the proportional logarithms; thas:

September 13th, 1814, I observe the dim meets the of of 4 D .

Diurnal motion of $\odot-00^{\prime} 58^{\prime} \mid$ Distance at noon, Diurnal motion of 4 direct $\left.013\right|^{\circ} \quad 0^{\circ} 29^{\prime}$

Diurnal motion of \odot from 4045

Now, say,			
If - -	- 45'	ce. ar.	9.3979
give	- 24	hours	8751
what will	- 29	give	2929
Answer	$15^{2} 29$	- -	1.0659

Sept. 17 th, the Sun meets the Δ of $\overline{5}$ retrograde.

Now, If - - 60 corar. 9.5229
give - . 24 hours 8751
what shall - 22' give 9128
Answer 85 48 - . . 1.3108

Sept 18th, the Moon meets the Sun's Seatile Appeot.

hemares on the Division or the Heavens, From Partridge's Ephemoris for the Years 1708 and 1709.

The division of the heavens, formerly made use of, was that which is commonly called (but improperly) 8 N
the rational way of Regiomontanus, which is false, and not true to the real and natural motion of the heavens; for it is impossible, by dividing the equator into twelve equal parts, to divide the ecliptic so too; for, in dividing the ecliptic we shall divide true motion, but, in dividing the equator, we divide nothing but air. And, though trigonometry is an excellent art, yet, if your data are false, your quasita must be of the same nature. But, in dividing the heavens true, the sun, \&c. \&cc. must have an equal variance in each house between cusp and cusp, supra aut infra terrant. Now then, let us examine how this common division in use doth agree with this motion. We will take the longest day in the year, when the Sun enters Cancer. The semi-diurnal arc of the \odot, in the beginning of $\boldsymbol{\pi}$, is $123^{\circ} 11^{\prime}$, the third part of that is $41^{\circ} 3^{\prime}$ nearly. Now, let us suppose the Θ in the very beginning of Cancer on the cusp of the ascendant, take $41^{\circ} 3^{\prime}$ from $123^{\circ} 11^{\prime}$, and there remains $82^{\circ} 8^{\prime \prime}$, the sun's distance from the tenth, when be comes to the cusp of the twelfth, 9° of r being then on M. C.; but, by the rational way (a very improper term), when the sun comes to the twelfth house, there is 2° of \boldsymbol{r} on the M. C., which makes 6° false on the twelfth house. Again, bring the sun to the eleventh house, and then he is distant from the M.C. $41^{\circ} 3^{\prime}$, one third of his S. D. arc, and 22° of ४ is cubminant : but, by the rational, there is 17° of γ on the mid-heaven, which makes an error of $5 \circ$ on the cusp of the eleventh house. And when the sun comes to the cusp of the tenth we differ 3°, on the eleventh 2°, on the tivelfth 2°, on the second 2^{3}, and 3° on the :hird.

Nuw, let us try the shortest day also ; the Sun in the beginning of Capricorn, his semi-diurnal are is $56^{\circ} \mathbf{4 8}^{\prime}$, the third of which is $18^{\circ} 56^{\prime}$, which is also the sun's true distance from the ascendant, when he comes to the cusp of the twelfth house, 24° of Scorpio is then on the mid-heaven, which, in their irrational way, hath 1° of f, which is 6° false on the cusp of the twelfith house. Again, from $37^{\circ} 52^{\prime}$, take one third more, and that brings the \odot to the cusp of the eleventh house; at which time we have 12° of f on the tenth, and they have 18; so that they are false 5° on the eleventh houge by true motion : but, besides, when they have $\mathbf{0}^{\circ}$ of ho on the tenth, they have but 13° of the same sign on the eleventh house, which should be 18 ; which, by their rule, will make the semi-diurnal arc of 0° of hs but 39°, which any one may see is false, if they have but ingenuity enough to examine it. And, as for their trigonometry, they are deoeived in their data, for the same proportions and numbers serve us likewise. As, for example, to gain the cusp of the eleventh house, $\mathbf{0}^{\circ}$ of wo being on the teuth. As radius to C. S. of 60° 00°, so is the C.T. $28^{\circ} 28^{\prime}$ to the C. T. $40^{\circ} 56^{\prime}$. Again, as C. S. $64^{\circ} 26^{\prime}$ to C.S. of $40^{\prime} 56^{\prime}$, so is the T. $60^{\circ} 00^{\prime}$ to the T of $71^{\circ} 45^{\prime}$, which gives $18^{\circ} 15^{\prime}$ of ins on the cusp of the eleventh house, as, before, it was by the semi-diurnal are. Hence, it is plain, that the division of the heavens, by the equator, is not true, and they may as well divide the eoliptic by the primevertical as that, and much about as true as that is; but, besides, they may also consider the poles of the houses, whether $32^{\circ}, 47^{\circ}$, and $51^{\circ} 32^{\prime}$ do agree in proportian
to the division of the semi-diurnal arc, for 320 , the pole of their eleventh, bear no proportion to 4° and a half, the difference between the poles of the ascendant and twelfth bouse : and, from hence it will appear, to eny reasonable person, that their imaginary division is all filct, and not agreeable to the real and natural motion cf the heavers.

I moot the frot that hath complained of the modus vationalic; to you may see if you please to look into Mariman's Gall. lib. 17, which is all about that; teat, more particularly, in the fifth chapter of that book. 'Tis true, his objections are not the same with mine; but his objections were to prove the rational false. 1 would give you some of his objections, but I wame room to do it hene, and therefore refer you to the suthor himself, and, in particular, to page 409. Hence you ought not to be aagry with me, but rather thank me for belping you to so easy a remedy for your false division. There are old errors as well as old truths, and the former generally rides the fore-borse. However, I will so on and give you farther proafs of its falseness, and also shew the ill consequence of it in practice. Let us suppote the 0 in 8 deg. of $\overline{I I}$ sub. lat. $51^{\circ} 32^{\prime}$, his semiodiarmal are there is $120^{\circ} 12^{\prime}$, the thind part of that is $40^{\circ} 4^{\prime}$; this, taken from $120^{\circ} 12^{\prime}$, leaves its distance from the M. C., and is its distance from the ecendant when the sun comes to the cusp of the twelfth house, at which time there is 8° of II on the twelfth; but, by the rational, there are 15° of II there, and yet how positive they are to exactness when they work the cuspe to minutes and seconds. Now, let us
soe how trigonometry will justify this division by the diumal arcs 15° of \boldsymbol{x} on M. C. and its R. A. $346^{\circ} 5^{\prime}$. As radius to the cosine $46^{\circ} 5^{\prime}$, so the cotang. $40^{\circ} 52^{\prime}$ to the cotang. of $51^{\circ} 17^{\prime}$. Again, as the cosine of $74^{\circ} 47^{\prime}$ to the cosine of $51^{\circ} 17^{\prime}$, wo the tangent of $46^{\circ} 5^{\prime}$ to the tangent of $68^{\circ} 0^{\circ}$, which gives exactly 8° of In on the twelfth, as before. I do intreat them, that endeavour to justify Regiomontanus, to prove theirs by urue motion. He was a learned man, but Bernardus non videt onsxia. Again, let us take the σ in 22° of 2f, sub. lat. $51^{\circ} 32^{\prime}$, the M. C. 15° of f, to find the cusp of the twelfth house. The semi-diurnal arc of the \odot there is $59^{\circ} 48^{\prime}$, and one third of it is $19^{\circ} 56^{\prime}$, which, subtracted from $59^{\circ} 48^{\prime}$, leaves the distance of the \odot, from the tenth house, $39^{\circ} 52^{\prime}$, when he comes to the cusp of the twelfth, at which time there is exactly 22° of is on the cusp of the twelfth; but, by the rationa, there is but 15°, which is a very great difference in so small an arc, no less than 7° false; which, if it be well considered, is certainly the ground of abundance of errors in directions in nativities, which you see ought to be rectified; and the method I take is by natural motion, not imaginary, as theirs is, dividing nothing but air. Now let us see here, again, how trigonometry will justify us in this kind of division. As radius to the cosine of $46^{\circ} 5^{\prime}$, so is the cotang. of $40^{\circ} 52^{\prime}$ to the cotang. of $51^{\circ} 17^{\prime}$. Again, as the cosine of $74^{\circ} 47^{\prime}$ to the cosine of $51^{\circ} 17^{\prime}$, so is the tang. of $46^{\circ} 5^{\prime}$ to the tang. of $68^{\circ} 0^{\prime}$: this, subtracted from twelve signs, leaves 22° of hf° on the cusp of the twelfth bouse, as before ; which, by the division of Regiomon-
tanus, hath but 15°. I think I need not say any thing to expose the falseness of it, for it is very visible in itself. I now come to shew the mischief of this false division in direction, which is the pr.ncipal thing I aim at in what I do on this subject.

Let us suppose the 0 in 22° of $\mathfrak{5}$, on the cusp of the twelfth house, by the true division; and I will direct him to the body of 5 in 26° in \mathcal{F}, south latitude, and the arc of direction will be $43^{\circ} 44^{\prime}$. Now, let us direct the \odot to the cusp of the twelfih in 220 of wo, by their division, to the body of \bar{h}, as before, south latitude, and see what difference there will be : the arc of direction, in their way, will be $38^{\circ} 8^{\prime}$, differing, from the former, $5^{\circ} 36^{\prime}$, which will be almost six years. I hope they will all own this to be a vast difference, as well as a horrid error, in a direction.

Again, let us take the 0 in 1° of \boldsymbol{x}, on the cusp of the twelfth house, and direct him to the body of ψ in 11° of $\%$, by the true division, and the anc of direction will be $42^{\circ} 1^{\prime}$: Let us also work the same direction in their way, and the arc will be $36^{\circ} 20^{\circ}$, differing 5° and a half. Take one example more in signs of long ascension: Let the \odot be in 15° of Ω, on the twelfth, as before, and I direct him to 20° of ar, and the arc of direction is $44^{\circ} 41^{\prime}$: then direct it their way, and the are is $47^{\circ} 41^{\prime}$, too great a difference to be allowed. And so I will leave it with those who think it worth their while to inquire into the matter, and see what they can say in defence of their division.

OBSERVATIONS

ON THE

yRativith of ©earye the Thith.

[See the Plate.]

THE positions and directions in this geniture being compared with the various events which have occurred at different periods of His Majesty's life, will be found to accord with a degree of accuracy very rarely to be seen; and, it is presumed, that their agreement is a sufficient proof of the correctness of the figure.

At the time His Majesty came to the crown, the ascendant was directed to the $*$ of the \odot, and, upon the \odot to the quintile of δ, he was crowned and married. In 1763, a definitive treaty of peace was concluded at Paris, between His Britannic Majesty, the King of France, and the King of Spain, and acceded to by the King of Portugal ; at this time, the \odot was directed to the $*$ of 4 in mundo; and, on the ascendant to the $*$ of h, the American war broke out ; the arc is $38^{\circ} 11^{\prime}$. Then came the \odot to the \square of δ in mundo, arc $42^{\circ} 33^{\prime}$, and a war commenced with France. On the ascendant to the square of δ, arc $44^{\circ} 49^{\prime}$, Lord Cornwallis surrendered himself, and his whole army, to General Washington; in consequence of which, more pacific steps were taken by the British parliament ; and, on the ascendant to the Δ of 4 , arc $45^{\circ} 45^{\prime}$, a general peace ensued. In the month of August, 1786,

Margaret Nicholson made an attempt upon His Majesty's life, as he was alighting from his carriage at the gate of St. James's palace; the D was then directed to the square of δ. On the M. C. to the $*$ of δ, St. Vincent's victory was obtained; and, on the \odot to the Δ of δ, Duncan's victory and the battle of the Nile. When the © came to the M. C., the Union with Ireland was effected; and, about that time, Hatfield made his attempt to assassinate His Majesty.

When the © came to his own $*$, the battle of Trafalgar was gained. His Majesty's present indisposition commenced when the) came to the mundane parallel of 8 ; and the various great victories which have recently taken place, have been effected under the M. C. to the quintile of δ, and the \odot to the Δ of δ in mundo; the latter of which, in tbis geniture, is a great and glorious direction.
The directions for the next, and following years, are as under:-

$$
\begin{aligned}
& \text { Ascendant to o of } \quad 1915 \\
& \text { Ascendant to a of } b \\
& \text { Ascendant to } 0 \text { of } p
\end{aligned}
$$

There are also various other inportant directions in this geniture, which accurately correspoad with the events which have happened, and will be worth the attention of the young Tyro, and scrve as a praxis for calculation.

Crtate.

Page 3, Thesis 5, for " noncause" read "concause."
Page 152, line 21, for " O^{\prime} " read " $)$."
Any other errors which onay hare escaped notice, the reader is requonted to correct.

A TABLE OF HOUSES,

For the Latitude of 51 Degrees 32. Mimutef,

According to Prolgar.

A TABLE OF HOUSES,

For the Latitude of 51 Degrees 32 Mirutes,

According to Prolemy.

\bigcirc in II. \|	\bigcirc in σ.
	Time 10 11 12 Afcen. 2 3 from noon. $\boxed{0}$ Ω $\square R$ \simeq \simeq m
	6 13 3 9 9 2 19 27
4 8 4 11 14 10 18 2 29	
4 25 8 15 17 13 16 5 3	6 35 8 14 13 6 9 1 2
	6 48 11 16 16 8 26 3 4
$4 \quad 46138002117 \quad 1798$	
4 59 16 28 24 19 17 12 11	
	7 44 24 29 27 18 14 14
5 43 26 2 3 26 55 20 20	
	$8 \quad 028832101820$
	$8 \quad 5 / 29{ }^{8} 4$

A TABLE OF HOUSES,

For the Latitude of 51 Degrees 32 Minutes,
According to Ptolemy.

A TABLE OF HOUSES,

For the Latitude of 51 Degree 32 Manytion,

According to Protexy.

A TABLE OF HOUSES,

Fof the Lattiude of 51 Degrees 32 ,Minutes,

According to Prolimy.

 According to Prolemy.

Speedily will be published,

A New Translation of PTOLEMY's QUADRIPARTITE, with Notes and Observations, by the Editor of this Edition of Placidus de Titus.

Davis and Dickson, Pranters,
8t Martin's-le-Grand, London.

[^0]: N. B. Arighmetice Algebr, Geopetry, Trigopamptry, Navigation, Actronomy, Projection of the Sphere, the Use of the Globes, the Art of Directions, \&oa tapheht on moderate Terms.

[^1]: - For the Trigonometrical Precepts relative to the Canons, sec the Appenidix.

[^2]: - N.B. Instead of the common logarithms a $_{2}$ use Dr. Maskelyne's Proportional Logarithms.

[^3]:

[^4]: \dagger If you divide the arc of direction to the west by 12, it gives the proportional part required.

[^5]: - Pulengy sayn, were is only one convease direction able to kill, viz. Aphete ad Orcapu.

